生物多样性 ›› 2019, Vol. 27 ›› Issue (12): 1269-1278. DOI: 10.17520/biods.2019224
所属专题: 物种形成与系统进化
• 研究报告: 植物多样性 • 下一篇
收稿日期:
2019-07-10
接受日期:
2019-12-12
出版日期:
2019-12-20
发布日期:
2019-12-24
通讯作者:
张明罡
基金资助:
Xuerui Dong1, Hong Zhang2, Minggang Zhang1,*()
Received:
2019-07-10
Accepted:
2019-12-12
Online:
2019-12-20
Published:
2019-12-24
Contact:
Zhang Minggang
摘要:
黄土高原地区植被类型多样, 森林、草原和荒漠在此交汇并逐渐过渡。由于水热条件限制和人类活动加剧, 该地区生态环境脆弱, 生物多样性保护面临的形势日益严峻, 因此获取该区域物种多样性的空间分布格局并阐明其影响因素成为该地区生物多样性保护的首要任务。本研究首先结合标本采集记录与环境因子, 利用物种分布模型获取了293种木本植物的潜在分布区, 分析了物种丰富度和物种加权特有性的空间格局。其次, 引入系统发育信息, 分析系统发育多样性和系统发育特有性的空间格局, 并进一步利用环境因子对上述格局分别进行解释。最后, 对黄土高原地区的特有中心性质和显著性进行分析。结果表明, 生物多样性热点地区均出现在黄土高原南部水热条件较好的地区, 即秦岭和中条山一带。本区域的生物多样性空间格局由年平均降水量和最冷月最低温主导, 符合植物区系交汇带的特点。特有中心集中在南部地区和青海省, 由南向北分别是古特有中心和混合特有中心, 不存在单独的新特有中心。黄土高原地区木本植物起源较为古老, 生物多样性格局的形成以来源于热带或亚热带的物种扩散为主, 物种的分化不占主导地位。上述结果表明了将植物的进化历史纳入生物多样性保护的重要性。
董雪蕊, 张红, 张明罡 (2019) 基于系统发育的黄土高原地区木本植物多样性及特有性格局. 生物多样性, 27, 1269-1278. DOI: 10.17520/biods.2019224.
Xuerui Dong, Hong Zhang, Minggang Zhang (2019) Explaining the diversity and endemic patterns based on phylogenetic approach for woody plants of the Loess Plateau. Biodiversity Science, 27, 1269-1278. DOI: 10.17520/biods.2019224.
年平均温度 Annual mean temperature | 平均日较差 Mean diurnal range | 温度季节性 Temperature seasonality | 最热月最高温 Max. temperature of warmest month | 最冷月最低温 Min. temperature of coldest month | 年平均降水量 Annual precipitation | |
---|---|---|---|---|---|---|
平均日较差 Mean diurnal range | -0.197 | |||||
温度季节性 Temperature seasonality | -0.110 | 0.750 | ||||
最热月最高温 Max. temperature of warmest month | 0.640 | 0.436 | 0.548 | |||
最冷月最低温 Min. temperature of coldest month | 0.727 | -0.713 | -0.687 | 0.059 | ||
年平均降水量 Annual precipitation | 0.362 | -0.619 | -0.709 | -0.167 | 0.702 | |
最干月降水量 Precipitation of driest month | 0.327 | -0.265 | -0.134 | 0.209 | 0.374 | 0.602 |
表1 保留的环境因子间的Spearman相关系数
Table 1 Spearman correlation coefficient between reserved environmental variables
年平均温度 Annual mean temperature | 平均日较差 Mean diurnal range | 温度季节性 Temperature seasonality | 最热月最高温 Max. temperature of warmest month | 最冷月最低温 Min. temperature of coldest month | 年平均降水量 Annual precipitation | |
---|---|---|---|---|---|---|
平均日较差 Mean diurnal range | -0.197 | |||||
温度季节性 Temperature seasonality | -0.110 | 0.750 | ||||
最热月最高温 Max. temperature of warmest month | 0.640 | 0.436 | 0.548 | |||
最冷月最低温 Min. temperature of coldest month | 0.727 | -0.713 | -0.687 | 0.059 | ||
年平均降水量 Annual precipitation | 0.362 | -0.619 | -0.709 | -0.167 | 0.702 | |
最干月降水量 Precipitation of driest month | 0.327 | -0.265 | -0.134 | 0.209 | 0.374 | 0.602 |
图1 黄土高原地区木本植物多样性分布格局图。(A)物种丰富度(SR); (B)物种加权特有性(WE); (C)系统发育多样性(PD); (D)系统发育特有性(PE); (E)采样记录物种丰富度。
Fig. 1 Spatial pattern of woody plant diversity in the Loess Plateau. (A) Species richness (SR); (B) Weighted endemism (WE); (C) Phylogenetic diversity (PD); (D) Phylogenetic endemism (PE); (E) Species richness of sampling records.
R2adj. | Beta | t | |
---|---|---|---|
物种丰富度 Species richness | |||
年平均降水量 Annual precipitation | 0.656 | 0.438 | 31.316 |
最冷月最低温 Min. temperature of coldest month | 0.772 | 0.392 | 30.247 |
最干月降水量 Precipitation of driest month | 0.777 | 0.098 | 8.549 |
平均日较差 Mean diurnal range | 0.782 | -0.097 | 7.798 |
物种加权特有性 Weighted endemism | |||
年平均降水量 Annual precipitation | 0.544 | 0.197 | 9.037 |
最冷月最低温 Min. temperature of coldest month | 0.658 | -0.445 | -2.245 |
最干月降水量 Precipitation of driest month | 0.682 | 0.288 | 16.948 |
最热月最高温 Max. temperature of warmest month | 0.700 | 0.661 | 3.831 |
平均日较差 Mean diurnal range | 0.701 | -0.359 | -5.554 |
温度季节性 Temperature seasonality | 0.704 | -0.847 | -4.621 |
系统发育多样性 Phylogenetic diversity | |||
年平均降水量 Annual precipitation | 0.652 | 0.411 | 21.770 |
最冷月最低温 Min. temperature of coldest month | 0.766 | -1.014 | -5.746 |
平均日较差 Mean diurnal range | 0.771 | -0.466 | -8.296 |
最干月降水量 Precipitation of driest month | 0.775 | 0.121 | 8.308 |
温度季节性 Temperature seasonality | 0.777 | -1.215 | -7.670 |
最热月最高温 Max. temperature of warmest month | 0.781 | 0.885 | 4.931 |
年平均温度 Annual mean temperature | 0.782 | 0.264 | 2.219 |
系统发育特有性 Phylogenetic endemism | |||
最冷月最低温 Min. temperature of coldest month | 0.520 | -0.443 | -2.166 |
年平均降水量 Annual precipitation | 0.633 | 0.157 | 6.957 |
最干月降水量 Precipitation of driest month | 0.659 | 0.307 | 17.472 |
最热月最高温 Max. temperature of warmest month | 0.680 | 0.653 | 3.666 |
平均日较差 Mean diurnal range | 0.681 | -0.352 | -5.270 |
温度季节性 Temperature seasonality | 0.683 | -0.866 | -4.572 |
表2 黄土高原地区气候因子与生物多样性指数多元逐步回归的结果。R2adj: 标准化决定系数; Beta: 回归系数; t: 回归系数t检验。
Table 2 Results of multiple stepwise regression of climatic factors and biodiversity indices in the Loess Plateau. R2adj: the adjusted coefficients of determination; Beta: the standardized regression coefficient; t: t test for the regression coefficient.
R2adj. | Beta | t | |
---|---|---|---|
物种丰富度 Species richness | |||
年平均降水量 Annual precipitation | 0.656 | 0.438 | 31.316 |
最冷月最低温 Min. temperature of coldest month | 0.772 | 0.392 | 30.247 |
最干月降水量 Precipitation of driest month | 0.777 | 0.098 | 8.549 |
平均日较差 Mean diurnal range | 0.782 | -0.097 | 7.798 |
物种加权特有性 Weighted endemism | |||
年平均降水量 Annual precipitation | 0.544 | 0.197 | 9.037 |
最冷月最低温 Min. temperature of coldest month | 0.658 | -0.445 | -2.245 |
最干月降水量 Precipitation of driest month | 0.682 | 0.288 | 16.948 |
最热月最高温 Max. temperature of warmest month | 0.700 | 0.661 | 3.831 |
平均日较差 Mean diurnal range | 0.701 | -0.359 | -5.554 |
温度季节性 Temperature seasonality | 0.704 | -0.847 | -4.621 |
系统发育多样性 Phylogenetic diversity | |||
年平均降水量 Annual precipitation | 0.652 | 0.411 | 21.770 |
最冷月最低温 Min. temperature of coldest month | 0.766 | -1.014 | -5.746 |
平均日较差 Mean diurnal range | 0.771 | -0.466 | -8.296 |
最干月降水量 Precipitation of driest month | 0.775 | 0.121 | 8.308 |
温度季节性 Temperature seasonality | 0.777 | -1.215 | -7.670 |
最热月最高温 Max. temperature of warmest month | 0.781 | 0.885 | 4.931 |
年平均温度 Annual mean temperature | 0.782 | 0.264 | 2.219 |
系统发育特有性 Phylogenetic endemism | |||
最冷月最低温 Min. temperature of coldest month | 0.520 | -0.443 | -2.166 |
年平均降水量 Annual precipitation | 0.633 | 0.157 | 6.957 |
最干月降水量 Precipitation of driest month | 0.659 | 0.307 | 17.472 |
最热月最高温 Max. temperature of warmest month | 0.680 | 0.653 | 3.666 |
平均日较差 Mean diurnal range | 0.681 | -0.352 | -5.270 |
温度季节性 Temperature seasonality | 0.683 | -0.866 | -4.572 |
图2 黄土高原地区木本植物多样性指数的显著性检验结果图。(A)系统发育多样性; (B)系统发育特有性; (C)相对系统发育多样性; (D)相对系统发育特有性。
Fig. 2 Spatial pattern of significant metrics of woody plant in the Loess Plateau. (A) Phylogenetic diversity; (B) Phylogenetic endemism; (C) Relative phylogenetic diversity; (D) Relative phylogenetic endemism.
[1] | Barnabas HD, Michelle B, Davies TJ ( 2015) Spatial incongruence among hotspots and complementary areas of tree diversity in southern Africa. Diversity and Distributions, 21, 769-780. |
[2] | Barnabas HD, Peter LR, Jeyanthi G, Daniel SP, Ben GH, Michelle G ( 2018) Spatial overlaps between the global protected areas network and terrestrial hotspots of evolutionary diversity. Global Ecology and Biogeography, 28, 757-766. |
[3] | Chen ZD, Li DZ ( 2013) On Barcode of Life and Tree of Life. Plant Diversity and Resources, 35, 675-681. (in Chinese with English abstract) |
[ 陈之端, 李德铢 ( 2013) 生命条形码与生命之树. 植物分类与资源学报, 35, 675-681.] | |
[4] | Crisp MD, Laffan SW, Linder HP, Monro A ( 2001) Endemism in the Australian flora. Journal of Biogeography, 28, 183-198. |
[5] | Donoghue MJ ( 2008) A phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences, USA, 105, 11549-11555. |
[6] | Faith DP ( 1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10. |
[7] | Feng XM, Fu BJ, Piao SL, Wang S, Ciais P, Zeng ZZ, Lu Y, Zeng Y, Li Y, Jiang XH, Wu BF ( 2016) Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 6, 1019-1022. |
[8] | Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Proches S, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V ( 2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757-760. |
[9] | Francis AP, Currie DJ ( 2003) A globally consistent richness- climate relationship for angiosperms. The American Naturalist, 161, 523-536. |
[10] | Ge XJ ( 2015) Application of DNA barcoding in phylofloristics study. Biodiversity Science, 23, 295-296. (in Chinese) |
[ 葛学军 ( 2015) DNA条形码在植物系统发育区系学研究中的应用. 生物多样性, 23, 295-296.] | |
[11] | Graham MH ( 2003) Confronting multicollinearity in ecological multiple regression. Ecology, 84, 2809-2815. |
[12] | Huang JH, Chen B, Liu CR, Lai JS, Zhang JL, Ma KP ( 2012) Identifying hotspots of endemic woody seed plant diversity in China. Diversity and Distributions, 18, 673-688. |
[13] | Huang JH, Zhang JL, Yang Y, Ma KP ( 2013) Advances in methods for measuring patterns of endemic plant diversity. Biodiversity Science, 21, 99-110. (in Chinese with English abstract) |
[ 黄继红, 张金龙, 杨永, 马克平 ( 2013) 特有植物多样性分布格局测度方法的新进展. 生物多样性, 21, 99-110.] | |
[14] | Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO ( 2012) The global diversity of birds in space and time. Nature, 491, 444-448. |
[15] | Kerkhoff AJ, Moriarty PE, Weiser MD ( 2014) The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proceedings of the National Academy of Sciences, USA, 111, 8125-8130. |
[16] | Laffan SW, Lubarsky E, Rosauer DF ( 2010) Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography, 33, 643-647. |
[17] | Liu CR, White M, Newell G ( 2018) Detecting outliers in species distribution data. Journal of Biogeography, 45, 164-176. |
[18] | Lu LM, Sun M, Zhang JB, Li HL, Lin L, Yang T, Chen M, Chen ZD ( 2014) Tree of life and its applications. Biodiversity Science, 22, 3-20. (in Chinese with English abstract) |
[ 鲁丽敏, 孙苗, 张景博, 李宏雷, 林立, 杨拓, 陈闽, 陈之端 ( 2014) 生命之树及其应用. 生物多样性, 22, 3-20.] | |
[19] | Ma YP, Chen G, Grumbine ED, Dao ZL, Sun WB, Guo HJ ( 2013) Conserving plant species with extremely small populations (PSESP) in China. Biodiversity and Conservation, 22, 803-809. |
[20] | Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W ( 2009) Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, 15, 59-69. |
[21] | Merow C, Smith MJ, Silander JA ( 2013) A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36, 1058-1069. |
[22] | Mishler BD, Knerr N, Gonzalez-Orozco CE, Thornhill AH, Laffan SW, Miller JT ( 2014) Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. Nature Communications, 5, 4473. |
[23] | Phillips SJ, Anderson RP, Schapire RE ( 2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. |
[24] | Qian H ( 2013) Environmental determinants of woody plant diversity at a regional scale in China. PLoS ONE, 8, e75832. |
[25] | Qian H, Jin Y, Ricklefs RE ( 2017) Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America. Proceedings of the National Academy of Sciences, USA, 114, 11452-11457. |
[26] | Qian H, Sandel B ( 2017) Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Global Ecology and Biogeography, 26, 1258-1269. |
[27] | Raes N, Ter Steege H ( 2007) A null-model for significance testing of presence-only species distribution models. Ecography, 30, 727-736. |
[28] | Rosauer D, Laffan SW, Crisp MD, Donnellan SC, Cook LG ( 2009) Phylogenetic endemism: A new approach for identifying geographical concentrations of evolutionary history. Molecular Ecology, 18, 4061-4072. |
[29] | Schmidt-Lebuhn AN, Knerr NJ, Miller JT, Mishler BD ( 2015) Phylogenetic diversity and endemism of Australian daisies (Asteraceae). Journal of Biogeography, 42, 1114-1122. |
[30] | Shangguan TL, Zhang F, Fan LS ( 2000) Analysis on the flora of xylophyta in Zhongtiao Mountains, Shanxi. Bulletin of Botanical Research, 20, 143-155. (in Chinese with English abstract) |
[ 上官铁梁, 张峰, 樊龙锁 ( 2000) 中条山木本植物区系地理成分分析. 植物研究, 20, 143-155.] | |
[31] | Shapcott A, Forster PI, Guymer GP, McDonald WJF, Faith DP, Erickson D, Kress WJ ( 2015) Mapping biodiversity and setting conservation priorities for SE Queensland’s rainforests using DNA barcoding. PLoS ONE, 10, e0122164. |
[32] | Shi SL, Li ZS, Wang H, Arx GV, Lü YH, Wu X, Wang XC, Liu GH, Fu BJ ( 2016) Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau: Herb-chronology based analysis. Scientific Reports, 6, 28535. |
[33] | Tang CW, Sun XG, Xiao DN ( 2005) Priority area assessment for species diversity conservation of spermatophytic genera endemic to China in Gansu Province. Chinese Journal of Ecology, 24, 1127-1133. (in Chinese with English abstract) |
[ 汤萃文, 孙学刚, 肖笃宁 ( 2005) 甘肃省中国种子植物特有属物种多样性保护优先地区分析. 生态学杂志, 24, 1127-1133.] | |
[34] | Tang ZY, Fang JY, Zhang L ( 2004) Patterns of woody plant species diversity along environmental gradients on Mt. Taibai, Qinling Mountains. Biodiversity Science, 12, 115-122. (in Chinese with English abstract) |
[ 唐志尧, 方精云, 张玲 ( 2004) 秦岭太白山木本植物物种多样性的梯度格局及环境解释. 生物多样性, 12, 115-122.] | |
[35] | Wang L, Li YY, Li YY ( 2004) The eco-environment deterioration and its counter measures in the Loess Plateau. Journal of Natural Resources, 19, 263-271. (in Chinese with English abstract) |
[ 王力, 李裕元, 李秧秧 ( 2004) 黄土高原生态环境的恶化及其对策. 自然资源学报, 19, 263-271.] | |
[36] | Wang YF, Xiao XM ( 1993) Climatic gradient of main vegetation types in the Loess Plateau region. Acta Botanica Sinica, 35, 291-299. (in Chinese with English abstract) |
[ 王义凤, 肖向明 ( 1993) 黄土高原地区主要植被类型的气候梯度分布. 植物学报, 35, 291-299.] | |
[37] | Wang YR, Yin XZ, Yuan ZP ( 2004) Main characteristics of climate system in Loess Plateau in China. Journal of Catastrophology, 19(S1), 39-45. (in Chinese with English abstract) |
[ 王毅荣, 尹宪志, 袁志鹏 ( 2004) 中国黄土高原气候系统主要特征. 灾害学, 19(S1), 39-45.] | |
[38] | Wang ZH, Fang JY, Tang ZY, Lin X ( 2011) Patterns, determinants and models of woody plant diversity in China. Proceedings of the Royal Society B: Biological Sciences, 278, 2122-2132. |
[39] | Webb CO, Donoghue MJ ( 2005) Phylomatic: Tree assembly for applied phylogenetics. Molecular Ecology Notes, 5, 181-183. |
[40] | Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A ( 2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763-773. |
[41] | Xu XT, Wang ZH, Rahbek C, Lessard JP, Fang JY ( 2013) Evolutionary history influences the effects of water-energy dynamics on oak diversity in Asia. Journal of Biogeography, 40, 2146-2155. |
[42] | Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RL, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM ( 2014) Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92. |
[43] | Zhang HH, Huang ZB ( 2001) Bio-climatic division and restoration of the degraded ecosystem on the Loess Plateau. Journal of Arid Land Resources and Environment, 15(1), 64-71. (in Chinese with English abstract) |
[ 张厚华, 黄占斌 ( 2001) 黄土高原生物气候分区与该区生态系统的恢复. 干旱区资源与环境, 15(1), 64-71.] | |
[44] | Zhang JL ( 2017) plantlist: Looking up the Status of Plant Scientific Names based on the Plant List Database. R package version 0.3.0. . (accessed on 2019-01-06) |
[45] | Zhang MG, Slik JWF, Ma KP ( 2017) Priority areas for the conservation of perennial plants in China. Biological Conservation, 210, 56-63. |
[46] | Zhang WH, Li DW, Liu GB, Xu XH ( 2002) The characteristics of the seed plant flora in Loess Plateau. Bulletin of Botanical Research, 22, 373-379. (in Chinese with English abstract) |
[ 张文辉, 李登武, 刘国彬, 徐学华 ( 2002) 黄土高原地区种子植物区系特征. 植物研究, 22, 373-379.] | |
[47] | Zhang YB, Guo LL, Wang W, Tian Y, Li JS ( 2014) Spatial distribution patterns of species richness and hotspots of protected plants in Qinling Mountain. Acta Ecologica Sinica, 34, 2109-2117. (in Chinese with English abstract) |
[ 张殷波, 郭柳琳, 王伟, 田瑜, 李俊生 ( 2014) 秦岭重点保护植物丰富度空间格局与热点地区. 生态学报, 34, 2109-2117.] | |
[48] | Zhao MF, Xue F, Wang YH, Wang GY, Xing KX, Kang MY, Wang JL ( 2017) Phylogenetic structure and diversity of herbaceous communities in the conifer forests along an elevational gradient in Luya Mountain, Shanxi, China. Chinese Journal of Plant Ecology, 41, 707-715. (in Chinese with English abstract) |
[ 赵鸣飞, 薛峰, 王宇航, 王国义, 邢开雄, 康慕谊, 王菁兰 ( 2017) 山西芦芽山针叶林草本层群落谱系结构与多样性的海拔格局. 植物生态学报, 41, 707-715.] |
[1] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[2] | 吕燕文, 王子韵, 肖钰, 何梓晗, 吴超, 胡新生. 谱系分选理论与检测方法的研究进展[J]. 生物多样性, 2024, 32(4): 23400-. |
[3] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[4] | 李庆多, 栗冬梅. 全球蝙蝠巴尔通体流行状况分析[J]. 生物多样性, 2023, 31(9): 23166-. |
[5] | 李治中, 彭帅, 王青锋, 李伟, 梁士楚, 陈进明. 中国海菜花属植物隐种多样性[J]. 生物多样性, 2023, 31(2): 22394-. |
[6] | 宋会银, 胡征宇, 刘国祥. 绿藻门小球藻科的分类学研究进展[J]. 生物多样性, 2023, 31(2): 22083-. |
[7] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[8] | 王婷, 舒江平, 顾钰峰, 李艳清, 杨拓, 徐洲锋, 向建英, 张宪春, 严岳鸿. 中国石松类和蕨类植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22381-. |
[9] | 孙维悦, 舒江平, 顾钰峰, 莫日根高娃, 杜夏瑾, 刘保东, 严岳鸿. 基于保护基因组学揭示荷叶铁线蕨的濒危机制[J]. 生物多样性, 2022, 30(7): 21508-. |
[10] | 王健铭, 曲梦君, 王寅, 冯益明, 吴波, 卢琦, 何念鹏, 李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素[J]. 生物多样性, 2022, 30(6): 21503-. |
[11] | 彭莳嘉, 罗源, 蔡宏宇, 张晓玲, 王志恒. 全球变化情景下的中国木本植物受威胁物种名录[J]. 生物多样性, 2022, 30(5): 21459-. |
[12] | 姜晓燕, 高圣杰, 蒋燕, 田赟, 贾昕, 查天山. 毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性[J]. 生物多样性, 2022, 30(5): 21387-. |
[13] | 赵琦, 蒋际宝, 张曾鲁, 金清, 李佳丽, 邱江平. 海南岛蚯蚓物种组成及其系统发育分析[J]. 生物多样性, 2022, 30(12): 22224-. |
[14] | 栗冬梅, 杨卫红, 李庆多, 韩茜, 宋秀平, 潘虹, 冯云. 巴尔通体在滇西南蝙蝠中高度流行并具有丰富的遗传变异特征[J]. 生物多样性, 2021, 29(9): 1245-1255. |
[15] | 许祖昌, 罗亚皇, 秦声远, 朱光福, 李德铢. 中国竹类植物馆藏标本现状与地理分布[J]. 生物多样性, 2021, 29(7): 897-909. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn