生物多样性 ›› 2019, Vol. 27 ›› Issue (12): 1298-1308.DOI: 10.17520/biods.2019157
刘硕然1,2,3,杨道德1,*(),李先福2,3,4,谭路4,孙军5,和晓阳5,杨文书5,任国鹏2,3,Davide Fornacca2,3,蔡庆华4,肖文2,3,*(
)
收稿日期:
2019-05-08
接受日期:
2019-09-26
出版日期:
2019-12-20
发布日期:
2020-02-22
通讯作者:
杨道德,肖文
基金资助:
Shuoran Liu1,2,3,Daode Yang1,*(),Xianfu Li2,3,4,Lu Tan4,Jun Sun5,Xiaoyang He5,Wenshu Yang5,Guopeng Ren2,3,Davide Fornacca2,3,Qinghua Cai4,Wen Xiao2,3,*(
)
Received:
2019-05-08
Accepted:
2019-09-26
Online:
2019-12-20
Published:
2020-02-22
Contact:
Yang Daode,Xiao Wen
摘要:
高山微水体由于面积微小且通过地表径流形成串联结构常常被认为与高山溪流具有类似的生境, 然而由于这两类生境中环境因子与底栖动物多样性存在差异, 它们在生态系统中的作用可能完全不同。滇西北地区是全球生物多样性热点区域之一, 境内高山微水体和高山溪流分布密集, 在区域底栖生物多样性维持方面具有重要的功能, 然而目前对这两类高山淡水生态系统的研究较少。为了比较这两类生境环境因子的异同及其对底栖动物多样性的维持作用, 2015年6月, 作者在云南省怒江州贡山县的高山峡谷内, 对27个高山微水体和同区域分布的1条高山溪流(海拔高差500 m范围)的底栖动物多样性和水环境因子进行了实地调查。结果表明: (1)高山微水体和高山溪流底栖动物群落中优势分类单元种群数量均比较庞大, 而稀有分类单元数量较多且种群较小; (2)两种生境在环境因子、物种多样性、功能多样性和群落结构方面的差异明显, 高山溪流有较高的物种丰富度、物种多样性和功能多样性; (3)高山微水体底栖动物多样性的分布与水环境因子无关, 而高山溪流底栖动物多样性与群落结构的形成受到与流速关联的水环境因子和海拔的影响。因此, 高山微水体与高山溪流不能简单地视为类似的生境类型, 它们对区域底栖动物多样性和生态功能维持可能具有不同的作用。
刘硕然, 杨道德, 李先福, 谭路, 孙军, 和晓阳, 杨文书, 任国鹏, Davide Fornacca, 蔡庆华, 肖文 (2019) 滇西北高山微水体与溪流生境底栖动物多样性和环境特征. 生物多样性, 27, 1298-1308. DOI: 10.17520/biods.2019157.
Shuoran Liu, Daode Yang, Xianfu Li, Lu Tan, Jun Sun, Xiaoyang He, Wenshu Yang, Guopeng Ren, Davide Fornacca, Qinghua Cai, Wen Xiao (2019) Diversity in benthic and environmental characteristics on alpine micro-waterbodies and stream ecosystems in northwest Yunnan. Biodiversity Science, 27, 1298-1308. DOI: 10.17520/biods.2019157.
图1 研究区域及样点图示(微水体串联图示中圈内的微水体串最终与溪流连通)
Fig. 1 Research area and sampling sites. The micro-waterbodies (MWB) which are circled indicate that the water flow from the micro-waterbody cascades is running into the stream finally.
环境因子 Environmental variables | 微水体 Micro-waterbody | 溪流 Stream | ||||
---|---|---|---|---|---|---|
最小值 Min. | 最大值 Max. | 平均值 ± 标准差 Mean ± SD | 最小值 Min. | 最大值 Max. | 平均值 ± 标准差 Mean ± SD | |
海拔 Alt (m) ns2 | 3,266.00 | 3,332.00 | 3,299.70 ± 27.34 | 3,087.00 | 3,586.00 | 3,364.90 ± 188.82 |
电导率 Cond (μs/cm) **2 | 2.94 | 10.45 | 5.12 ± 1.33 | 10.82 | 34.50 | 17.54 ± 8.84 |
溶解氧含量 DO (mg/L) **1 | 3.13 | 7.51 | 5.68 ± 0.92 | 6.22 | 7.18 | 6.72 ± 0.27 |
pH值 pH **1 | 5.48 | 6.20 | 5.84 ± 0.24 | 5.80 | 6.55 | 6.23 ± 0.26 |
面积 Area (m2) none | 3.00 | 160.00 | 26.15 ± 33.65 | / | / | / |
水深 Depth (cm) *1 | 8.00 | 43.00 | 27.70 ± 10.09 | 6.00 | 26.00 | 18.33 ± 6.48 |
底泥深度 BSD (cm) none | 9.50 | 58.00 | 26.09 ± 13.02 | / | / | / |
浊度 Turb (NTU) ns1 | 0.00 | 3.70 | 1.42 ± 1.08 | 0.00 | 2.40 | 0.98 ± 1.06 |
总氮 TN (mg/L) ns1 | 0.096 | 0.729 | 0.300 ± 0.170 | 0.115 | 0.445 | 0.280 ± 0.110 |
总磷 TP (mg/L) ns1 | 0.024 | 0.104 | 0.046 ± 0.016 | 0.036 | 0.068 | 0.050 ± 0.010 |
化学需氧量 COD (mg/L) *1 | 0.160 | 4.730 | 2.150 ± 1.290 | 0.160 | 5.056 | 3.320 ± 1.420 |
总有机碳含量 TOC (mg/L) ns1 | 0.924 | 7.590 | 4.270 ± 1.640 | 3.043 | 6.963 | 4.800 ± 1.070 |
溪流宽度 Width (m) none | / | / | / | 0.50 | 5.30 | 2.53 ±1.78 |
溪流流速 FV (m/s) none | / | / | / | 0.16 | 0.93 | 0.58 ± 0.31 |
表1 溪流与微水体各环境因子描述及差异性分析
Table 1 List of the descriptive statistics and difference in environmental variables between stream and micro-waterbody
环境因子 Environmental variables | 微水体 Micro-waterbody | 溪流 Stream | ||||
---|---|---|---|---|---|---|
最小值 Min. | 最大值 Max. | 平均值 ± 标准差 Mean ± SD | 最小值 Min. | 最大值 Max. | 平均值 ± 标准差 Mean ± SD | |
海拔 Alt (m) ns2 | 3,266.00 | 3,332.00 | 3,299.70 ± 27.34 | 3,087.00 | 3,586.00 | 3,364.90 ± 188.82 |
电导率 Cond (μs/cm) **2 | 2.94 | 10.45 | 5.12 ± 1.33 | 10.82 | 34.50 | 17.54 ± 8.84 |
溶解氧含量 DO (mg/L) **1 | 3.13 | 7.51 | 5.68 ± 0.92 | 6.22 | 7.18 | 6.72 ± 0.27 |
pH值 pH **1 | 5.48 | 6.20 | 5.84 ± 0.24 | 5.80 | 6.55 | 6.23 ± 0.26 |
面积 Area (m2) none | 3.00 | 160.00 | 26.15 ± 33.65 | / | / | / |
水深 Depth (cm) *1 | 8.00 | 43.00 | 27.70 ± 10.09 | 6.00 | 26.00 | 18.33 ± 6.48 |
底泥深度 BSD (cm) none | 9.50 | 58.00 | 26.09 ± 13.02 | / | / | / |
浊度 Turb (NTU) ns1 | 0.00 | 3.70 | 1.42 ± 1.08 | 0.00 | 2.40 | 0.98 ± 1.06 |
总氮 TN (mg/L) ns1 | 0.096 | 0.729 | 0.300 ± 0.170 | 0.115 | 0.445 | 0.280 ± 0.110 |
总磷 TP (mg/L) ns1 | 0.024 | 0.104 | 0.046 ± 0.016 | 0.036 | 0.068 | 0.050 ± 0.010 |
化学需氧量 COD (mg/L) *1 | 0.160 | 4.730 | 2.150 ± 1.290 | 0.160 | 5.056 | 3.320 ± 1.420 |
总有机碳含量 TOC (mg/L) ns1 | 0.924 | 7.590 | 4.270 ± 1.640 | 3.043 | 6.963 | 4.800 ± 1.070 |
溪流宽度 Width (m) none | / | / | / | 0.50 | 5.30 | 2.53 ±1.78 |
溪流流速 FV (m/s) none | / | / | / | 0.16 | 0.93 | 0.58 ± 0.31 |
图2 基于环境因子的PCoA双标图。AS为溪流样点, AU、AD为微水体样点。Depth: 水深; Area: 面积; Width: 溪流宽度; FV:流速; Cond: 电导率; Turb: 浊度。
Fig. 2 Biplot of PCoA calculated based on environmental factors. AS indicates stream sites, AU and AD indicate micro-waterbody sites. Depth, Water depth; Area, Waterbody surface area; Width, Stream width; FV, Flow velocity; Cond, Conductivity; Turb, Turbidity.
图3 高山微水体(A)及溪流(B)分类单元多度排序曲线(箭头所示为曲线拐点, 作为优势分类单元与稀有分类单元分界), 横坐标为物种排列顺序,对应附录1。
Fig. 3 Species abundance ranking curves for alpine micro-waterbody (A) and stream (B). Arrows indicate the inflection point of the curve between the dominant taxa and rare taxa. X axis refers to the species order in Appendix 1.
图4 底栖动物物种在样点间分布热图(分类单元物种多度以颜色深浅区分)
Fig. 4 Heatmap of the benthic species distribution among the collection sites. The species abundance for each taxon marked by the color shade
微水体 Micro-waterbody | 溪流 Stream | |||||
---|---|---|---|---|---|---|
最小值 Min. | 最大值 Max. | 平均值 ± 标准差 Mean ± SD | 最小 值 Min. | 最大 值 Max. | 平均值 ± 标准差 Mean ± SD | |
S ns1 | 3.00 | 10.00 | 6.26 ± 2.07 | 3.00 | 12.00 | 8.67 ± 3.43 |
H' *1 | 0.882 | 1.649 | 1.240 ± 0.250 | 1.011 | 2.265 | 1.720 ± 0.460 |
FDis **1 | 0.000 | 0.469 | 0.220 ± 0.130 | 0.544 | 0.968 | 0.820 ± 0.130 |
表2 溪流与微水体底栖动物群落的物种丰富度(S)、物种多样性(H')和功能多样性(FDis)
Table 2 List of the species richness, species diversity and functional diversity between stream and micro-waterbody
微水体 Micro-waterbody | 溪流 Stream | |||||
---|---|---|---|---|---|---|
最小值 Min. | 最大值 Max. | 平均值 ± 标准差 Mean ± SD | 最小 值 Min. | 最大 值 Max. | 平均值 ± 标准差 Mean ± SD | |
S ns1 | 3.00 | 10.00 | 6.26 ± 2.07 | 3.00 | 12.00 | 8.67 ± 3.43 |
H' *1 | 0.882 | 1.649 | 1.240 ± 0.250 | 1.011 | 2.265 | 1.720 ± 0.460 |
FDis **1 | 0.000 | 0.469 | 0.220 ± 0.130 | 0.544 | 0.968 | 0.820 ± 0.130 |
图6 基于底栖动物群落数据和环境因子的CCA双标图。AS为溪流样点, AU、AD为微水体样点。Alt: 海拔; FV: 流速; Cond: 电导率。
Fig. 6 Biplot of CCA which calculated based on the benthic community data and environmental factors. hydrogen ion concentration (pH), flow velocity (FV) and conductivity (Cond). AS indicates stream sites, AU and AD indicate micro-waterbody sites. Alt, Altitude; FV, Flow velocity; Cond, Conductivity.
[1] | Altermatt F ( 2013) Diversity in riverine metacommunities: A network perspective. Aquatic Ecology, 47, 365-377. |
[2] | Bazzanti M, Bella VD, Seminara M ( 2003) Factors affecting macroinvertebrate communities in astatic ponds in central Italy. Journal of Freshwater Ecology, 18, 537-548. |
[3] | Belletti B, Rinaldi M, Buijse AD, Gurnell AM, Mosselman E ( 2015) A review of assessment methods for river hydromorphology. Environmental Earth Sciences, 73, 2079-2100. |
[4] | Belmar O, Velasco J, Gutierrezcanovas C, Melladodiaz A, Millan A, Wood PJ ( 2013) The influence of natural flow regimes on macroinvertebrate assemblages in a semiarid Mediterranean basin. Ecohydrology, 6, 363-379. |
[5] | Biggs J, Williams P, Whitfield M, Nicolet P, Weatherby AJ ( 2005) 15 years of pond assessment in Britain: Results and lessons learned from the work of pond conservation. Aquatic Conservation-Marine and Freshwater Ecosystems, 15, 693-714. |
[6] | Bogan MT, Boersma KS, Lytle DA ( 2013) Flow intermittency alters longitudinal patterns of invertebrate diversity and assemblage composition in an arid-land stream network. Freshwater Biology, 58, 1016-1028. |
[7] | Bonada N, Rieradevall M, Prat N ( 2007) Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia, 589, 91-106. |
[8] | Borcard D, Legendre P ( 2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51-68. |
[9] | Carrara F, Altermatt F, Rodrigueziturbe I, Rinaldo A ( 2012) Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proceedings of the National Academy of Sciences, USA, 109, 5761-5766. |
[10] | Carrara F, Rinaldo A, Giometto A, Altermatt F ( 2014) Complex interaction of dendritic connectivity and hierarchical patch size on biodiversity in river-like landscapes. The American Naturalist, 183, 13-25. |
[11] | Chakona A, Phiri C, Magadza CH, Brendonck L ( 2008) The influence of habitat structure and flow permanence on macroinvertebrate assemblages in temporary rivers in northwestern Zimbabwe. Hydrobiologia, 607, 199-209. |
[12] | Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler D, Leveque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny MLJ, Sullivan CA ( 2006) Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81, 163-182. |
[13] | Henriques-Oliveira AL, Nessimian JL ( 2010) Aquatic macroinvertebrate diversity and composition in streams along an altitudinal gradient in southeastern Brazil. Biota Neotropica, 10, 115-128. |
[14] | Hoffman M, Koenig K, Bunting G, Costanza J, Kristen JM ( 2016) Biodiversity Hotspots (version 2016.1). . (accessed on 2019-03-18) |
[15] | Laliberte E, Legendre PA ( 2010) Distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305. |
[16] | Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Tilman D, Loreau M, Gonzalez A ( 2004) The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters, 7, 601-613. |
[17] | Liu SR, He XY, Yang WS, Ren GP, Li YP, Zhou J, Cai QH, Xiao W ( 2017) Spatial distribution and significance of high mountain micro-waterbodies in northwestern Yunnan, China. Journal of Hydroecology, 38, 18-23. (in Chinese with English abstract) |
[ 刘硕然, 和晓阳, 杨文书, 任国鹏, 李延鹏, 周俊, 蔡庆华, 肖文 ( 2017) 滇西北高山微水体空间分布格局及研究意义初探. 水生态学杂志, 38, 18-23.] | |
[18] | Liu SR, Li YP, Yan JG, Xiao W ( 2018) A Waterbody, Organisms and Sediment Sampling Equipment Used for Different Kinds of Water Environments. Chinese Patent. ZL201510837357.X. 2018-10-19. (in Chinese) |
[ 刘硕然, 李延鹏, 闫家国, 肖文 ( 2018) 一种适用于不同水体环境的水体、生物、沉积物采集器. 中国专利: ZL201510837357. X. 2018-10-19.] | |
[19] | Liu SR, Lu T, Yang DD, Ren GP, He XY, Yang WS, Cai QH, Xiao W ( 2018) Spatiotemporal environmental heterogeneity of alpine micro-waterbodies. Fresenius Environmental Bulletin, 27, 8088-8095. |
[20] | McCune B, Mefford MJ ( 2016) PC-ORD Multivariate Analysis of Ecological Data, Version 7.04. MjM Software, Gleneden Beach, Oregon. |
[21] | Ministry of Ecology and Environment of the People’s Republic of China ( 2017) HJ 828-2017. Water Quality Determination of Chemical Oxygen Demand: Dichromate Method . China Environmental Press, Beijing. (in Chinese with) |
[ 中华人民共和国生态环境部 ( 2017) HJ 828-2017 水质化学需氧量的测定: 重铬酸盐法. 中国环境出版社, 北京.] | |
[22] | Miserendino ML ( 2001) Macroinvertebrate assemblages in Andean Patagonian rivers and streams: Environmental relationships. Hydrobiologia, 444, 147-158. |
[23] | Myers N ( 1988) Threatened biotas: Hot spots in tropical forests. The Environmentalist, 8, 187-208. |
[24] | Myers N, Mittermeier RA, Mittermeier CG, Fonseca GA, Kent J ( 2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. |
[25] | National Environmental Protection Administration ( 1990a) GB 11893-1989. Water Quality Determination of Total Phosphorus: Ammonium Molybdate Spectrophotometric Method. China Standard Press, Beijing. (in Chinese with) |
[ 国家环境保护总局 ( 1990) GB 11893-1989 水质总磷的测定: 钼酸铵分光光度法. 中国标准出版社, 北京.] | |
[26] | National Environmental Protection Administration ( 1990b) GB 11894-1989. Water Quality Determination of Total Nitrogen: Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method. China Standard Press, Beijing. (in Chinese with) |
[ 国家环境保护总局 ( 1990) GB 11894-1989 水质总氮的测定: 碱性过硫酸钾消解紫外分光光度法. 中国标准出版社, 北京.] | |
[27] | Poff NL, Olden JD, Vieira NK, Finn DS, Simmons MP, Kondratieff BC ( 2006) Functional trait niches of North American lotic insects: Traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society, 25, 730-755. |
[28] | Real M, Rieradevall M, Prat N ( 2000) Chironomus species (Diptera: Chironomidae) in the profundal benthos of Spanish reservoirs and lakes: Factors affecting distribution patterns. Freshwater Biology, 43, 1-18. |
[29] | Sala OE, Chapin FS, Armesto JJ, Berlow EL, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig AP, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH ( 2000) Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774. |
[30] | Scheffer M, Van Geest GJ, Zimmer KD, Jeppesen E, Sondergaard M, Butler MG, Hanson MA, Declerck S, De Meester L ( 2006) Small habitat size and isolation can promote species richness: Second-order effects on biodiversity in shallow lakes and ponds. Oikos, 112, 227-231. |
[31] | Stokstad E ( 2014) EPA science report signals start of wetlands battle. Science, 343, 15. |
[32] | Taft B, Koncelik JP ( 2006) Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI). Division of Surface Water, Ohio EPA. . (accessed on 2019-05-07) |
[1] | 易浪, 董亚坤, 苗白鸽, 彭艳琼. 云南高黎贡山地区蝴蝶群落多样性[J]. 生物多样性, 2021, 29(7): 950-959. |
[2] | 王楠, 黄菁华, 霍娜, 杨盼盼, 张欣玥, 赵世伟. 宁南山区不同植被恢复方式下土壤线虫群落特征:形态学鉴定与高通量测序法比较[J]. 生物多样性, 2021, 29(11): 1513-1529. |
[3] | 吴二焕, 李东海, 杨小波, 左永令, 李龙, 张培春, 陈琳, 田路嘉, 李晨笛. 海南苏铁种群结构与森林群落郁闭度的关系[J]. 生物多样性, 2021, 29(11): 1461-1469. |
[4] | 余宏昌, 毕宝帅, 唐文乔, 张亚, 郭弘艺. 上海苏州河治理中鱼类多样性及群落结构变化[J]. 生物多样性, 2021, 29(1): 32-42. |
[5] | 向颖, 刘素群, 黄兴龙, 刘志霄, 张佑祥, 马方舟. 湖南高望界国家级自然保护区及其周边蝶类多样性与影响因素[J]. 生物多样性, 2020, 28(8): 940-949. |
[6] | 尚素琴, 吴兴波, 王召龙, 彭鹤年, 周惠丽, 张红勇, 白映禄. 兴隆山国家级自然保护区不同生境的蝴蝶群落结构与种-多度分布[J]. 生物多样性, 2020, 28(8): 983-992. |
[7] | 赵志霞, 赵常明, 邓舒雨, 申国珍, 谢宗强, 熊高明, 李俊清. 重度砍伐后极小种群野生植物崖柏群落结构动态[J]. 生物多样性, 2020, 28(3): 333-339. |
[8] | 周昌艳, 王彬, 邓云, 乌俊杰, 曹敏, 林露湘. 林冠结构是局域尺度木本植物功能性状beta多样性形成的重要驱动力[J]. 生物多样性, 2020, 28(12): 1546-1557. |
[9] | 胡芮, 王儒晓, 杜诗雨, 李萌, 邢雨辉, 潘达, 徐海根, 孙红英. 扬州宝应湖底栖大型无脊椎动物的生物多样性及其变化[J]. 生物多样性, 2020, 28(12): 1558-1569. |
[10] | 孙远, 胡维刚, 姚树冉, 孙颖, 邓建明. 黄河流域被子植物和陆栖脊椎动物丰富度格局及其影响因子[J]. 生物多样性, 2020, 28(12): 1523-1532. |
[11] | 宋础良. 结构稳定性: 概念、方法和应用[J]. 生物多样性, 2020, 28(11): 1345-1361. |
[12] | 孙蓓蓓, 俞存根, 刘惠, 颜文超, 张文俊, 戴冬旭. 南麂列岛东侧海域春秋季虾蟹类生物多样性[J]. 生物多样性, 2019, 27(7): 787-795. |
[13] | 邢圆,吴小平,欧阳珊,张君倩,徐靖,银森录,谢志才. 赣江水系大型底栖动物多样性与受胁因子初探[J]. 生物多样性, 2019, 27(6): 648-657. |
[14] | 谢峰淋,周全,史航,舒枭,张克荣,李涛,冯水园,张全发,党海山. 秦岭落叶阔叶林25 ha森林动态监测样地物种组成与群落特征[J]. 生物多样性, 2019, 27(4): 439-448. |
[15] | 杨陆飞, 陈琳琳, 李晓静, 周政权, 刘博, 宋博, 李秉钧, 李宝泉. 烟台牟平海洋牧场季节性低氧对大型底栖动物群落的生态效应[J]. 生物多样性, 2019, 27(2): 200-210. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn