生物多样性 ›› 2020, Vol. 28 ›› Issue (3): 376-384. DOI: 10.17520/biods.2019116
所属专题: 物种形成与系统进化
苏金源1,燕语1,李冲2,李丹2,杜芳1,*
收稿日期:
2019-04-03
接受日期:
2019-08-08
出版日期:
2020-03-20
发布日期:
2019-12-27
通讯作者:
杜芳
基金资助:
Jinyuan Su1,Yu Yan1,Chong Li2,Dan Li2,Fang K. Du1,*
Received:
2019-04-03
Accepted:
2019-08-08
Online:
2020-03-20
Published:
2019-12-27
Contact:
Fang K. Du
摘要:
遗传多样性是生物多样性的重要组成部分, 然而由于资源的过度开发利用和生境的破碎化影响了物种的遗传多样性, 甚至威胁到物种的生存适应性和生物多样性。极小种群野生植物是亟待保护的国家重点保护濒危植物,遗传多样性研究对揭示极小种群致濒机理及保护策略具有重要意义。生境破碎化会造成物种遗传多样性降低、种群间分化增加、基因流减少等, 使种群濒危。但在某些物种中, 繁殖特征、进化历史等生物和生态因素的不同也可能造成近期生境破碎化后遗传效应的延迟。裸子植物进化历史悠久, 包含许多孑遗物种, 由于生活史周期长, 遭受生境破碎化后可能短期内显示不出遗传效应的改变, 但长期很难恢复。本文以裸子植物为例综述了濒危植物的遗传多样性研究的案例, 探讨了濒危裸子植物应对环境恶化的维持机制、致濒因素和保护方案, 旨在说明通过遗传多样性研究充分认识极小种群致濒机理对高效保护极小种群野生植物的重要性。
苏金源, 燕语, 李冲, 李丹, 杜芳 (2020) 通过遗传多样性探讨极小种群野生植物的致濒机理及保护策略: 以裸子植物为例. 生物多样性, 28, 376-384. DOI: 10.17520/biods.2019116.
Jinyuan Su, Yu Yan, Chong Li, Dan Li, Fang K. Du (2020) Informing conservation strategies with genetic diversity in Wild Plant with Extremely Small Populations: A review on gymnosperms. Biodiversity Science, 28, 376-384. DOI: 10.17520/biods.2019116.
物种 Species | 研究方法 Methods | 主要结论 Main results | 文献 Reference |
---|---|---|---|
杉科 Taxodiaceae | |||
水杉属 Metasequoia | |||
水杉 M. glyptostroboides | RAPD | 恢复种群依然未保留足够的遗传多样性, 建议未来迁地保护 Restored populations are lack of sufficient genetic diversity, requiring future ex situ conservation | Li et al, 2005 |
松科 Pinaceae | |||
银杉属 Cathaya | |||
银杉 C. argyrophylla | nDNA, mtDNA | 野生种群遗传多样性极低, 建议迁地保护及人工授粉 Low genetic diversity of wild populations, suggesting ex situ conservation and artificial pollination | Wang & Ge, 2006 |
冷杉属 Abies | |||
资源冷杉 A. ziyuanensis | cpDNA, mtDNA | 种群内遗传多样性低, 种群间遗传分化高, 建议就地保护成年树及幼苗 Low genetic diversity within populations and high genetic differentiation among populations, suggesting in situ protection of adult trees and seedlings | Peng et al, 2012 |
百山祖冷杉 A. beshanzuensis | |||
元宝山冷杉 A. yuanbaoshanensis | |||
梵净山冷杉 A. fanjingshanensis | |||
紫果冷杉 A. recurvata | |||
巴山冷杉 A. fargesii | |||
红豆杉科 Taxaceae | |||
穗花杉属 Amentotaxus | |||
穗花杉 A. argotaenia | cpDNA, mtDNA, nSSRs | 历史生境破碎化和近期生境退化降低了遗传多样性, 建议加强生境修复 Historical fragmentation and recent habitat degradation reduced genetic diversity, suggesting habitat restoration | Ge et al, 2015 |
台湾穗花杉 A. formosana | |||
云南穗花杉 A. yunnanensis | |||
A. poilanei | |||
红豆杉属 Taxus | |||
密叶红豆杉 T. contorta | cpDNA, nSSRs | 第四纪气候震荡导致低遗传多样性, 建议就地和迁地综合保护 Quaternary climatic oscillations resulted in low genetic diversity of species, suggesting in situ and ex situ conservation | Poudel et al, 2014 |
喜马拉雅红豆杉 T. wallichiana | |||
南方红豆杉 T. mairei | |||
东北红豆杉 T. cuspidata | cpDNA, mtDNA | 自然和移栽种群皆具高遗传多样性、无明显遗传结构和丰富基因流, 说明是 近期的致濒, 建议就地保护 High genetic diversity, lack of genetic structure, and extensive gene flow were detected in both natural and transplanted populations, indicating recently decrease of the species and suggesting in situ conservation | Su et al, 2018 |
麻黄科 Ephedraceae | |||
麻黄属 Ephedra | |||
草麻黄 E. sinica | cpDNA | 种群内遗传多样性高, 遗传分化显著, 建议保护物种遗传多样性 High genetic diversity within populations and significant genetic differentiation, suggesting gene conservation of species | Yin et al, 2016 |
中麻黄 E. intermedia | |||
苏铁科 Cycadaceae | |||
苏铁属 Cycas | |||
攀枝花苏铁 C. panzhihuaensis | AFLP | 野生和栽培种群遗传多样性高和遗传分化低, 建议加强迁地保护 High genetic diversity and low genetic differentiation within both wild and cultivated populations, requiring ex situ conservation | Yang et al, 2015 |
银杏科 Ginkgoaceae | |||
银杏属 Ginkgo | |||
银杏 G. biloba | cpDNA | 种群内遗传多样性高, 种群间基因交流频繁, 建议就地保护 High genetic diversity within populations and continual gene flow among populations, suggesting in situ conservation | Gong et al, 2008 |
罗汉松科 Podocarpaceae | |||
陆均松属 Dacrydium | |||
陆均松 D. pectinatum | ISSR | 岛屿种群遗传多样性高, 遗传分化低和基因流丰富, 建议就地保护 High genetic diversity, low genetic differentiation and high gene flow on island populations, suggesting in situ conservation | Su et al, 2010 |
表1 极小种群野生植物的遗传多样性研究汇总
Table 1 Summary of research on genetic diversity of Wild Plant with Extremely Small Populations (WPESP)
物种 Species | 研究方法 Methods | 主要结论 Main results | 文献 Reference |
---|---|---|---|
杉科 Taxodiaceae | |||
水杉属 Metasequoia | |||
水杉 M. glyptostroboides | RAPD | 恢复种群依然未保留足够的遗传多样性, 建议未来迁地保护 Restored populations are lack of sufficient genetic diversity, requiring future ex situ conservation | Li et al, 2005 |
松科 Pinaceae | |||
银杉属 Cathaya | |||
银杉 C. argyrophylla | nDNA, mtDNA | 野生种群遗传多样性极低, 建议迁地保护及人工授粉 Low genetic diversity of wild populations, suggesting ex situ conservation and artificial pollination | Wang & Ge, 2006 |
冷杉属 Abies | |||
资源冷杉 A. ziyuanensis | cpDNA, mtDNA | 种群内遗传多样性低, 种群间遗传分化高, 建议就地保护成年树及幼苗 Low genetic diversity within populations and high genetic differentiation among populations, suggesting in situ protection of adult trees and seedlings | Peng et al, 2012 |
百山祖冷杉 A. beshanzuensis | |||
元宝山冷杉 A. yuanbaoshanensis | |||
梵净山冷杉 A. fanjingshanensis | |||
紫果冷杉 A. recurvata | |||
巴山冷杉 A. fargesii | |||
红豆杉科 Taxaceae | |||
穗花杉属 Amentotaxus | |||
穗花杉 A. argotaenia | cpDNA, mtDNA, nSSRs | 历史生境破碎化和近期生境退化降低了遗传多样性, 建议加强生境修复 Historical fragmentation and recent habitat degradation reduced genetic diversity, suggesting habitat restoration | Ge et al, 2015 |
台湾穗花杉 A. formosana | |||
云南穗花杉 A. yunnanensis | |||
A. poilanei | |||
红豆杉属 Taxus | |||
密叶红豆杉 T. contorta | cpDNA, nSSRs | 第四纪气候震荡导致低遗传多样性, 建议就地和迁地综合保护 Quaternary climatic oscillations resulted in low genetic diversity of species, suggesting in situ and ex situ conservation | Poudel et al, 2014 |
喜马拉雅红豆杉 T. wallichiana | |||
南方红豆杉 T. mairei | |||
东北红豆杉 T. cuspidata | cpDNA, mtDNA | 自然和移栽种群皆具高遗传多样性、无明显遗传结构和丰富基因流, 说明是 近期的致濒, 建议就地保护 High genetic diversity, lack of genetic structure, and extensive gene flow were detected in both natural and transplanted populations, indicating recently decrease of the species and suggesting in situ conservation | Su et al, 2018 |
麻黄科 Ephedraceae | |||
麻黄属 Ephedra | |||
草麻黄 E. sinica | cpDNA | 种群内遗传多样性高, 遗传分化显著, 建议保护物种遗传多样性 High genetic diversity within populations and significant genetic differentiation, suggesting gene conservation of species | Yin et al, 2016 |
中麻黄 E. intermedia | |||
苏铁科 Cycadaceae | |||
苏铁属 Cycas | |||
攀枝花苏铁 C. panzhihuaensis | AFLP | 野生和栽培种群遗传多样性高和遗传分化低, 建议加强迁地保护 High genetic diversity and low genetic differentiation within both wild and cultivated populations, requiring ex situ conservation | Yang et al, 2015 |
银杏科 Ginkgoaceae | |||
银杏属 Ginkgo | |||
银杏 G. biloba | cpDNA | 种群内遗传多样性高, 种群间基因交流频繁, 建议就地保护 High genetic diversity within populations and continual gene flow among populations, suggesting in situ conservation | Gong et al, 2008 |
罗汉松科 Podocarpaceae | |||
陆均松属 Dacrydium | |||
陆均松 D. pectinatum | ISSR | 岛屿种群遗传多样性高, 遗传分化低和基因流丰富, 建议就地保护 High genetic diversity, low genetic differentiation and high gene flow on island populations, suggesting in situ conservation | Su et al, 2010 |
1 |
Aguilar R, Quesada M, Ashworth L, Herrera’s-Diego Y, Lobo J ( 2008) Genetic consequences of habitat fragmentation in plant populations: Susceptible signals in plant traits and methodological approaches. Molecular Ecology, 17, 5177-5188.
DOI URL PMID |
2 |
Arnqvist G, Wooster D ( 1995) Meta-analysis: Synthesizing research findings in ecology and evolution. Trends in Ecology and Evolution, 10, 236-240.
DOI URL PMID |
3 |
Bacles CF, Burczyk J, Lowe AJ, Ennos RA ( 2005) Historical and contemporary mating patterns in remnant populations of the forest tree Fraxinus excelsior L. Evolution, 59, 979-990.
URL PMID |
4 |
Bacles CF, Jump AS ( 2011) Taking a tree’s perspective on forest fragmentation genetics. Trends in Plant Science, 16, 13-18.
DOI URL PMID |
5 |
Bai WN, Liao WJ, Zhang DY ( 2010) Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia. New Phytologist, 188, 892-901.
DOI URL PMID |
6 |
Borrell JS, Wang N, Nichols RA, Buggs RJA ( 2018) Genetic diversity maintained among fragmented populations of a tree undergoing range contraction. Heredity, 121, 304-318.
DOI URL PMID |
7 |
Browne L, Karubian J ( 2018) Habitat loss and fragmentation reduce effective gene flow by disrupting seed dispersal in a neotropical palm. Molecular Ecology, 27, 3055-3069.
DOI URL PMID |
8 |
Cavers S, Navarro C, Lowe AJ ( 2004) Targeting genetic resource conservation in widespread species: A case study of Cedrela odorata L. Forest Ecology and Management, 197, 285-294.
DOI URL |
9 |
Del Tredici P, Ling H, Yang G ( 1992) The Ginkgos of Tian Mu Shan. Conservation Biology, 6, 202-209.
DOI URL |
10 |
Ellstrand NC, Elam DR ( 1993) Population genetic consequences of small population size: Implications for plant conservation. Annual Review of Ecology and Systematics, 24, 217-242.
DOI URL |
11 |
Frankham R ( 1995) Effective population-size/adult-population size ratios in wildlife: A review. Genetics Research, 66, 95-107.
DOI URL |
12 |
Fu LK, Cheng SZ ( 1981) The discovery and naming of Cathaya argyrophylla Chun et Kuang. Plants, 4, 44-45.
DOI URL PMID |
(in Chinese) [ 傅立国, 程树志 ( 1981) 银杉的发现及命名. 植物杂志, 4, 44-45.]
DOI URL PMID |
|
13 | Fu LK, Li N, Mill RR ( 1999) Taxaceae. In: Flora of China (eds Wu ZY, Raven PH), vol. 4, pp. 89-96. Science Press, Beijing & Missouri Botanical Garden Press, Missouri. |
14 |
Gao LM, Möller M, Zhang XM, Hollingsworth ML, Liu J, Mill RR, Gibby R, Li DZ ( 2007) High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Molecular Ecology, 16, 4684-4698.
DOI URL PMID |
15 |
Ge XJ, Hung KH, Ko YZ, Hsu TW, Gong X, Chiang TY, Chiang YC ( 2015) Genetic divergence and biogeographical patterns in Amentotaxus argotaenia species complex. Plant Molecular Biology Reporter, 33, 264-280.
DOI URL |
16 | Gillespie JH ( 2004) Population Genetics: A Concise Guide. Johns Hopkins University Press, Baltimore, Maryland. |
17 |
Gong W, Zeng Z, Chen YY, Chen C, Qiu YX, Fu CX ( 2008) Glacial refugia of Ginkgo biloba and human impact on its genetic diversity: Evidence from chloroplast DNA. Journal of Integrative Plant Biology, 50, 368-374.
DOI URL |
18 | Gurevitch J, Hedges LV ( 2001) Meta-analysis: Combining the results of independent experiments. In: Design and Analysis of Ecological Experiments, 2nd edn (eds Scheiner SM, Gurevitch J), pp. 378-398. Oxford University Press, New York. |
19 |
Hamrick JL, Linhart YB, Mitton JB ( 1979) Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Annual Review of Ecology and Systematics, 10, 173-200.
DOI URL |
20 |
Hao Q, De Lafontaine G, Guo D, Gu H, Hu FS, Han Y, Song Z, Liu H ( 2018) The critical role of local refugia in postglacial colonization of Chinese pine: Joint inferences from DNA analyses, pollen records, and species distribution modeling. Ecography, 41, 592-606.
DOI URL |
21 |
Harris TM ( 1976) Two neglected aspects of fossil conifers. American Journal of Botany, 63, 902-910.
DOI URL |
22 |
Hewitt GM ( 2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 359, 183-195.
DOI URL PMID |
23 |
Hu LJ, Uchiyama K, Shen HL, Saito Y, Tsuda Y, Ide Y ( 2008) Nuclear DNA microsatellites reveal genetic variation but a lack of phylogeographical structure in an endangered species, Fraxinus mandshurica, across North-east China. Annals of Botany, 102, 195-205.
DOI URL PMID |
24 |
Kramer AT, Ison JL, Ashley MV, Howe HF ( 2008) The paradox of forest fragmentation genetics. Conservation Biology, 22, 878-885.
DOI URL PMID |
25 |
Ledig FT ( 1988) The conservation of diversity in forest trees: Why and how should genes be conserved? BioScience, 38, 471-479.
DOI URL |
26 |
Ledig FT, Millar CI, Riggs LA ( 1990) Conservation of diversity in forest ecosystems. Forest Ecology and Management, 35, 1-4.
DOI URL |
27 |
Lefèvre F, Koskela J, Hubert J, Kraigher H, Longauer P, Olrik DC, Schüler S, Bozzano M, Alizoti P, Bakys R, Baldwin C, Ballian D, Black-Samuelsson S, Bednarova D, Bordäcs S, Collin E, De Cuyper B, De Vries SMG, Eysteinsson T, Frýdl J, Haverkamp M, Ivankovic M, Konrad H, Koziol C, Maaten T, Paino EN, Öztürk H, Pandeva ID, Parnuta G, Pilipovič A, Postolache D, Ryan C, Steffenrem A, Varela MC, Vessella F, Volosyanchuk RT, Westergren M, Wolter F, Yrjänä L, Zariŋa I ( 2013) Dynamic conservation of forest genetic resources in 33 European countries. Conservation Biology, 27, 373-384.
DOI URL |
28 |
Leimu R, Mutikainen PIA, Koricheva J, Fischer M ( 2006) How general are positive relationships between plant population size, fitness and genetic variation? Journal of Ecology, 94, 942-952.
DOI URL PMID |
29 | Li JW, Liu QL, Chen YD ( 1964) Research on the natural regeneration of clear felling in Pinus koraiensis forest. Scientia Silvae Sinicae, 9, 97-113. |
(in Chinese) [ 李景文, 刘庆良, 陈运大 ( 1964) 红松林皆伐迹地天然更新的研究. 林业科学, 9, 97-113.] | |
30 |
Li YY, Chen XY, Zhang X, Wu TY, Lu HP, Cai YW ( 2005) Genetic differences between wild and artificial populations of Metasequoia glyptostroboides: Implications for species recovery. Conservation Biology, 19, 224-231.
DOI URL |
31 |
Li YY, Tsang EPK, Cui MY, Chen XY ( 2012) Too early to call it success: An evaluation of the natural regeneration of the endangered Metasequoia glyptostroboides. Biological Conservation, 150, 1-4.
DOI URL PMID |
32 |
Litkowiec M, Lewandowski A, Wachowiak W ( 2018) Genetic variation in Taxus baccata L.: A case study supporting Poland’s protection and restoration program. Forest Ecology and Management, 409, 148-160.
DOI URL |
33 |
Liu J, Möller M, Provan J, Gao LM, Poudel RC, Li DZ ( 2013) Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytologist, 199, 1093-1108.
DOI URL PMID |
34 |
Liu J, Milne RI, Möller M, Zhu GF, Ye LJ, Luo YH, Yang JB, Wambulwa MC, Wang CN, Li DZ, Gao LM ( 2018) Integrating a comprehensive DNA barcode reference library with a global map of yews (Taxus L.) for forensic identification. Molecular Ecology Resources, 18, 1115-1131.
DOI URL PMID |
35 |
Liu JQ, Sun YS, Ge XJ, Gao LM, Qiu YX ( 2012) Phylogeographic studies of plants in China: Advances in the past and directions in the future. Journal of Systematics and Evolution, 50, 267-275.
DOI URL |
36 |
Llorens TM, Ayre DJ, Whelan RJ ( 2018) Anthropogenic fragmentation may not alter pre-existing patterns of genetic diversity and differentiation in perennial shrubs. Molecular Ecology, 27, 1541-1555.
DOI URL PMID |
37 |
Lowe AJ, Cavers S, Boshier D, Breed MF, Hollingsworth PM ( 2015) The resilience of forest fragmentation genetics—no longer a paradox—we were just looking in the wrong place. Heredity, 115, 97-99.
DOI URL PMID |
38 |
Maunder M ( 1992) Plant reintroduction: An overview. Biodiversity and Conservation, 1, 51-61.
DOI URL |
39 |
Maxwell SL, Fuller RA, Brooks TM, Watson JE ( 2016) Biodiversity: The ravages of guns, nets and bulldozers. Nature, 536, 143-145.
DOI URL PMID |
40 |
Neale DB, Kremer A ( 2011) Forest tree genomics: Growing resources and applications. Nature Reviews Genetics, 12, 111-122.
DOI URL PMID |
41 |
Nei M, Maruyama T, Chakraborty R ( 1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1-10.
DOI URL PMID |
42 |
Pant S, Samant S ( 2008) Population ecology of the endangered Himalayan Yew in Khokhan Wildlife Sanctuary of north western Himalaya for conservation management. Journal of Mountain Science, 5, 257-264.
DOI URL |
43 |
Peng Y, Yin S, Wang J, Tian B, Ren G, Guo Q, Liu J ( 2012) Phylogeographic analysis of the fir species in southern China suggests complex origin and genetic admixture. Annals of Forest Science, 69, 409-416.
DOI URL |
44 |
Petit RJ, El Mousadik A, Pons O ( 1998) Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12, 844-855.
DOI URL |
45 |
Poudel RC, Möller M, Liu J, Gao LM, Baral SR, Li DZ ( 2014) Low genetic diversity and high inbreeding of the endangered yews in Central Himalaya: Implications for conservation of their highly fragmented populations. Diversity and Distributions, 20, 1270-1284.
DOI URL |
46 |
Qian H, Ricklefs RE ( 2000) Large-scale processes and the Asian bias in species diversity of temperate plants. Nature, 407, 180-182.
DOI URL PMID |
47 |
Qin HN, Zhao LN ( 2017) Evaluating the threat status of higher plants in China. Biodiversity Science, 25, 689-695. (in Chinese with English abstract)
DOI URL |
[ 覃海宁, 赵莉娜 ( 2017) 中国高等植物濒危状况评估. 生物多样性, 25, 689-695.]
DOI URL |
|
48 |
Qiu YX, Fu CX, Comes HP ( 2011) Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Molecular Phylogenetics and Evolution, 59, 225-244.
DOI URL |
49 |
Rajora OP, Mosseler A ( 2001) Challenges and opportunities for conservation of forest genetic resources. Euphytica, 118, 197-212.
DOI URL |
50 |
Su JY, Yan Y, Song J, Li JQ, Mao JF, Wang N, Wang WT, Du FK ( 2018) Recent fragmentation may not alter genetic patterns in endangered long-lived species: Evidence from Taxus cuspidata. Frontiers in Plant Science, 9, 1571-1583.
DOI URL PMID |
51 |
Su YJ, Wang T, Deng F ( 2010) Population genetic variation, differentiation and bottlenecks of Dacrydium pectinatum (Podocarpaceae) in Hainan Island, China: Implications for its conservation. Australian Journal of Botany, 58, 318-326.
DOI URL |
52 | Sun WB, Yang WZ ( 2013) Conserving Plant Species with Extremely Small Populations (PSESP) in Yunnan. Yunnan Science and Technology Press, Kunming. |
(in Chinese) [ 孙卫邦, 杨文忠 ( 2013) 云南省极小种群野生植物保护实践与探索. 云南科技出版社, 昆明.] | |
53 |
Vranckx GUY, Jacquemyn H, Muys B, Honnay O ( 2012) Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conservation Biology, 26, 228-237.
DOI URL |
54 |
Wade EM, Nadarajan J, Yang X, Ballesteros D, Sun WB, Pritchard HW ( 2016) Plant species with extremely small populations (PSESP) in China: A seed and spore biology perspective. Plant Diversity, 38, 209-220.
DOI URL PMID |
55 | Wang BSP, Charest PJ, Downie B ( 1993) Ex situ Storage of Seeds, Pollen, and in vitro Cultures of Perennial Woody Plant Species. Food and Agriculture Organization of the United Nations. |
56 |
Wang HW, Ge S ( 2006) Phylogeography of the endangered Cathaya argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA. Molecular Ecology, 15, 4109-4122.
DOI URL PMID |
57 | Wright S ( 1931) Evolution in Mendelian populations. Genetics, 16, 97-159. |
58 |
Yang Y, Liu B, Njenga DM ( 2017) Red list assessment and conservation status of gymnosperms from China. Biodiversity Science, 25, 758-764. (in Chinese with English abstract)
DOI URL |
[ 杨永, 刘冰 , Njenga DM ( 2017) 中国裸子植物物种濒危和保育现状. 生物多样性, 25, 758-764.]
DOI URL |
|
59 |
Yang YQ, Huang BH, Yu ZX, Liao PC ( 2015) Inferences of demographic history and fine-scale landscape genetics in Cycas panzhihuaensis and implications for its conservation. Tree Genetics and Genomes, 11, 78.
DOI URL |
60 |
Ye JW, Yuan YG, Cai L, Wang XJ ( 2017) Research progress of phylogeographic studies of plant species in temperate coniferous and broadleaf mixed forests in Northeastern China. Biodiversity Science, 25, 1339-1349. (in Chinese with English abstract)
DOI URL |
[ 叶俊伟, 袁永革, 蔡荔, 王晓娟 ( 2017) 中国东北温带针阔混交林植物物种的谱系地理研究进展. 生物多样性, 25, 1339-1349.]
DOI URL |
|
61 |
Yin HX, Yan X, Zhang W, Shi Y, Qian CJ, Yin CL, Tian F, Wang XQ, Ma XF ( 2016) Geographical or ecological divergence between the parapatric species Ephedra sinica and E. intermedia? Plant Systematics and Evolution, 302, 1157-1170.
DOI URL |
62 | Ying JS ( 1984) The discovery of Metasequoia glyptostroboides. Bulletin of Biology, ( 2), 28. |
(in Chinese) [ 应俊生 ( 1984) 水杉发现的经过. 生物学通报, ( 2), 28.] | |
63 |
Young A, Boyle T, Brown T ( 1996) The population genetic consequences of habitat fragmentation for plants. Trends in Ecology and Evolution, 11, 413-418.
DOI URL |
64 | Zang RG, Dong M, Li JQ, Chen XY, Zeng SJ, Jiang MX, Li ZQ, Huang JH ( 2016) Conservation and restoration for typical critically endangered wild plants with extremely small population. Acta Ecologica Sinica, 36, 7130-7135. (in Chinese with English abstract) |
[ 臧润国, 董鸣, 李俊清, 陈小勇, 曾宋君, 江明喜, 李镇清, 黄继红 ( 2016) 典型极小种群野生植物保护与恢复技术研究. 生态学报, 36, 7130-7135.] | |
65 | Zhang BY ( 2000) The “Living Fossil” Metasequoia glyptostroboides Hu et W. C. Cheng. China Forestry Publishing House, Beijing. |
(in Chinese) [ 张卜阳 ( 2000) 活化石水杉. 中国林业出版社, 北京.] | |
66 |
Zhang JJ, Ye QG, Gao PX, Yao XH ( 2012) Genetic footprints of habitat fragmentation in the extant populations of Sinojackia (Styracaceae): Implications for conservation. Botanical Journal of the Linnean Society, 170, 232-242.
DOI URL |
67 | Zheng Z ( 1991) Distribution of Dacrydium in South China during the Late Quaternary. Acta Botanica Sinica, 33, 130-139. (in Chinese with English abstract) |
[ 郑卓 ( 1991) 晚第四纪陆均松属在中国南方的分布. 植物学报, 33, 130-139.] |
[1] | 李庆多, 栗冬梅. 全球蝙蝠巴尔通体流行状况分析[J]. 生物多样性, 2023, 31(9): 23166-. |
[2] | 冯晨, 张洁, 黄宏文. 统筹植物就地保护与迁地保护的解决方案: 植物并地保护(parallel situ conservation)[J]. 生物多样性, 2023, 31(9): 23184-. |
[3] | 齐海玲, 樊鹏振, 王跃华, 刘杰. 中国北方六省区胡桃的遗传多样性和群体结构[J]. 生物多样性, 2023, 31(8): 23120-. |
[4] | 李仕裕, 张奕奇, 邹璞, 宁祖林, 廖景平. 广东省植物园植物多样性迁地保护现状及发展建议[J]. 生物多样性, 2023, 31(6): 22647-. |
[5] | 熊飞, 刘红艳, 翟东东, 段辛斌, 田辉伍, 陈大庆. 基于基因组重测序的长江上游瓦氏黄颡鱼群体遗传结构[J]. 生物多样性, 2023, 31(4): 22391-. |
[6] | 蒲佳佳, 杨平俊, 戴洋, 陶可欣, 高磊, 杜予州, 曹俊, 俞晓平, 杨倩倩. 长江下游外来生物福寿螺的种类及其种群遗传结构[J]. 生物多样性, 2023, 31(3): 22346-. |
[7] | 何艺玥, 刘玉莹, 张富斌, 秦强, 曾燏, 吕振宇, 杨坤. 梯级水利工程背景下的嘉陵江干流蛇鮈群体遗传多样性和遗传结构[J]. 生物多样性, 2023, 31(11): 23160-. |
[8] | 孙维悦, 舒江平, 顾钰峰, 莫日根高娃, 杜夏瑾, 刘保东, 严岳鸿. 基于保护基因组学揭示荷叶铁线蕨的濒危机制[J]. 生物多样性, 2022, 30(7): 21508-. |
[9] | 钱宏, 张健, 赵静超. 世界上已知维管植物有多少种? 基于多个全球植物数据库的整合[J]. 生物多样性, 2022, 30(7): 22254-. |
[10] | 孙哲明, 刘亚恒, 彭秋桐, 徐芷妍, 杨予静, 欧文慧, 李中强. 湖北省极小种群野生植物在原生群落中的竞争地位及保护建议[J]. 生物多样性, 2022, 30(6): 21517-. |
[11] | 张淑梅, 李微, 李丁男. 辽宁省高等植物多样性编目[J]. 生物多样性, 2022, 30(6): 22038-. |
[12] | 崔静, 徐明芳, 章群, 李瑶, 曾晓舒, 李莎. 基于3种线粒体标记探讨中日沿海角木叶鲽遗传多样性差异[J]. 生物多样性, 2022, 30(5): 21485-. |
[13] | 祖奎玲, 王志恒. 山地物种海拔分布对气候变化响应的研究进展[J]. 生物多样性, 2022, 30(5): 21451-. |
[14] | 陶克涛, 白东义, 图格琴, 赵若阳, 安塔娜, 铁木齐尔·阿尔腾齐米克, 宝音德力格尔, 哈斯, 芒来, 韩海格. 基于基因组SNPs对东亚家马不同群体遗传多样性的评估[J]. 生物多样性, 2022, 30(5): 21031-. |
[15] | 许玥, 臧润国. 中国极小种群野生植物保护理论与实践研究进展[J]. 生物多样性, 2022, 30(10): 22505-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn