生物多样性 ›› 2024, Vol. 32 ›› Issue (1): 23371. DOI: 10.17520/biods.2023371 cstr: 32101.14.biods.2023371
吕晓琴1,2,3(), 李杨1,2,3(
), 王顺雨1,2,3(
), 姚仁秀1,2,3(
), 王晓月1,2,3,*(
)(
)
收稿日期:
2023-10-04
接受日期:
2023-12-04
出版日期:
2024-01-20
发布日期:
2023-12-09
通讯作者:
*E-mail: wang.xiaoyue1989@163.com
基金资助:
Xiaoqin Lü1,2,3(), Yang Li1,2,3(
), Shunyu Wang1,2,3(
), Renxiu Yao1,2,3(
), Xiaoyue Wang1,2,3,*(
)(
)
Received:
2023-10-04
Accepted:
2023-12-04
Online:
2024-01-20
Published:
2023-12-09
Contact:
*E-mail: wang.xiaoyue1989@163.com
摘要:
植物花序中的资源配置通常在花发育的时间或者位置上存在差异。植物的化学性状在自身生长发育以及植物与环境的相互作用中发挥重要作用, 但是化学性状是否存在花序内的差异, 目前还不清楚。为了解花序中不同位置上花报酬(花粉和花蜜)化学性状的差异, 本文以总状花序的中甸乌头(Aconitum piepunense)为研究对象, 从下往上, 将花序中不同位置的花分为基部花、中部花和顶部花, 观察传粉者在花序中的访问特点, 测量不同位置花的花蜜体积和糖浓度, 分别检测分析不同位置花的花粉和花蜜的化学物质的种类和相对含量。结果表明: 中甸乌头的传粉者弗里熊蜂(Bombus friseanus)和圣熊蜂(B. religiosus)通常由基部到顶部进行访花, 对不同位置花的单花访问时间和访花频率不存在显著性差异。基部花的花蜜体积高于中部花、顶部花, 3个位置的花蜜糖浓度不存在显著差异。花粉和花蜜中次级代谢物的相对含量和种类数都显著高于初级代谢物的相对含量和种类, 花粉中初级代谢物和次级代谢物的相对含量和种类数都显著高于花蜜。花粉和花蜜中的绝大部分的化学物质的相对含量和种类数在花序中的3个位置整体上不存在显著性差异。研究表明熊蜂为主要传粉者的中甸乌头, 其总状花序内上、中、下3个位置花的花粉和花蜜的化学性状不存在明显的结构效应。
吕晓琴, 李杨, 王顺雨, 姚仁秀, 王晓月 (2024) 中甸乌头总状花序不同位置花粉和花蜜的化学性状没有显著差异. 生物多样性, 32, 23371. DOI: 10.17520/biods.2023371.
Xiaoqin Lü, Yang Li, Shunyu Wang, Renxiu Yao, Xiaoyue Wang (2024) No significant differences found in chemical traits of pollen and nectar located in different positions across Aconitum piepunense racemes. Biodiversity Science, 32, 23371. DOI: 10.17520/biods.2023371.
图1 中甸乌头总状花序中基部花、中部花和顶部花的分布(A); 弗里熊蜂(B)和圣熊蜂(D)访花, 主要吸取乌头的花蜜并进行有效传粉; 隧蜂访花(C), 主要取食乌头的花粉(红色箭头标记); 乌头饱满的果实(E)。
Fig. 1 Distribution of basal, middle and distal flowers in the raceme of Aconitum piepunense (A); Bombus friseanus (B) and B. religiosus (D) were visiting flowers of A. piepunense, mainly absorbing nectar and pollinating efficiently; The solitary bees mainly foraged on the pollen (C, marked with red arrow); The full fruit of A. piepunense (E).
图2 中甸乌头总状花序中基部花、中部花、顶部花的单花访问时间(A)和访花频率(B)的比较(平均值 ± 标准误)。相同字母表示弗里熊蜂或者圣熊蜂对不同位置间的单花访问时间或者访问频率不存在显著差异(P > 0.05)。
Fig. 2 Comparison of single flower visit time (A) and flower visit frequency (B) among the basal, middle and distal flowers in the raceme of Aconitum piepunense (mean ± SE). The same letter indicates that there is no significant difference among different positions (P > 0.05).
化学性状 Chemical properties | 花粉 Pollen | 花蜜 Nectar | ||||
---|---|---|---|---|---|---|
相对含量 Relative content (× 104) | 占比 Proportion (%) | 种类数 No. of compounds | 相对含量 Relative content (× 104) | 占比 Proportion (%) | 种类数 No. of compounds | |
初级代谢物 Primary metabolites | ||||||
蛋白质类 Protein | 531.43 ± 71.40 | 11.801 | 21 ± 2 | 0.21± 0.07 | 0.091 | 3 ± 1 |
脂类 Lipid | 12.35 ± 16.23 | 0.274 | 1 ± 1 | |||
核酸类 Nucleic acid | 82.68 ± 11.80 | 1.836 | 12 ± 1 | 1.69 ± 1.72 | 0.721 | 4 ± 1 |
糖类 Carbohydrate | 0.26 ± 0.14 | 0.006 | 2 ± 1 | 3.21 ± 1.36 | 1.373 | 5 ± 0 |
次级代谢物 Secondary metabolites | ||||||
生物碱类 Alkaloid | 1,629.39 ± 580.33 | 36.182 | 195 ± 11 | 57.74 ± 11.53 | 24.685 | 92 ± 6 |
酚类 Phenol | 1,483.18 ± 324.16 | 32.935 | 379 ± 13 | 117.72 ± 8.48 | 50.324 | 183 ± 10 |
萜类 Terpenoid | 764.00 ± 253.51 | 16.965 | 440 ± 14 | 53.35 ± 4.51 | 22.806 | 214 ± 15 |
表1 中甸乌头花粉和花蜜中化学性状的相对含量(平均值 ± 标准误)及其所占代谢物总相对含量的百分比和相应代谢物的种类数(平均值 ± 标准误)
Table 1 The relative content of chemical profiles (mean ± SE) in the pollen and nectar of Aconitum piepunense, and the percent of response value of one chemical class to the total response values of all chemical classes, and the classes of chemical profiles (mean ± SE)
化学性状 Chemical properties | 花粉 Pollen | 花蜜 Nectar | ||||
---|---|---|---|---|---|---|
相对含量 Relative content (× 104) | 占比 Proportion (%) | 种类数 No. of compounds | 相对含量 Relative content (× 104) | 占比 Proportion (%) | 种类数 No. of compounds | |
初级代谢物 Primary metabolites | ||||||
蛋白质类 Protein | 531.43 ± 71.40 | 11.801 | 21 ± 2 | 0.21± 0.07 | 0.091 | 3 ± 1 |
脂类 Lipid | 12.35 ± 16.23 | 0.274 | 1 ± 1 | |||
核酸类 Nucleic acid | 82.68 ± 11.80 | 1.836 | 12 ± 1 | 1.69 ± 1.72 | 0.721 | 4 ± 1 |
糖类 Carbohydrate | 0.26 ± 0.14 | 0.006 | 2 ± 1 | 3.21 ± 1.36 | 1.373 | 5 ± 0 |
次级代谢物 Secondary metabolites | ||||||
生物碱类 Alkaloid | 1,629.39 ± 580.33 | 36.182 | 195 ± 11 | 57.74 ± 11.53 | 24.685 | 92 ± 6 |
酚类 Phenol | 1,483.18 ± 324.16 | 32.935 | 379 ± 13 | 117.72 ± 8.48 | 50.324 | 183 ± 10 |
萜类 Terpenoid | 764.00 ± 253.51 | 16.965 | 440 ± 14 | 53.35 ± 4.51 | 22.806 | 214 ± 15 |
化学性状 Chemical properties | 基部花 Basal flower | 中部花 Middle flower | 顶部花 Distal flower | Wald χ2 | df | P | |
---|---|---|---|---|---|---|---|
相对含量 Relative content (× 104) | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 511.49 ± 42.34a | 552.74 ± 124.82a | 530.06 ± 41.72a | 0.402 | 2 | 0.818 | |
脂类 Lipid | 18.26 ± 12.97a | 15.03 ± 26.00a | 3.77± 6.00a | 1.183 | 2 | 0.553 | |
核酸类 Nucleic acid | 82.42 ± 7.98a | 78.04 ± 20.35a | 87.58 ± 3.25a | 0.840 | 2 | 0.657 | |
糖类 Carbohydrate | 0.24 ± 0.13a | 0.24 ± 0.22a | 0.29 ± 0.11a | 0.176 | 2 | 0.916 | |
次级代谢物 Secondary metabolites | |||||||
生物碱类 Alkaloid | 生物碱 Alkaloid | 1,511.92 ± 382.731a | 1,955.34 ± 722.05a | 1,420.90 ± 658.81a | 1.336 | 2 | 0.513 |
酚类 Phenol | 黄酮类 Flavonoid | 764.42 ± 69.01a | 891.47 ± 316.12a | 1,015.04 ± 230.25a | 1.792 | 2 | 0.408 |
醌类 Quinone | 364.93 ± 23.91a | 386.44 ± 128.43a | 390.26 ± 61.44a | 0.161 | 2 | 0.923 | |
苯丙烷类 Phenylpropanoid | 128.98 ± 6.70a | 186.97 ± 51.13a | 220.84 ± 78.17a | 4.430 | 2 | 0.109 | |
酚类 Phenol | 24.72 ± 0.29b | 28.96 ± 0.74a | 28.57 ± 2.49a | 14.461 | 2 | < 0.001 | |
鞣质类 Tannin | 4.45 ± 1.30a | 7.01 ± 0.68a | 6.46 ± 3.46a | 2.317 | 2 | 0.314 | |
萜类Terpenoid | 萜类 Terpenoid | 580.16 ± 75.67a | 619.22 ± 321.59a | 586.63 ± 289.76a | 0.041 | 2 | 0.980 |
甾体类 Steroid | 148.13 ± 41.41a | 171.98 ± 61.02a | 185.87 ± 25.71a | 1.075 | 2 | 0.584 | |
种类数 No. of compounds | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 21 ± 2a | 21 ± 4a | 20 ± 1a | 0.039 | 2 | 0.981 | |
脂类 Lipid | 1 ± 0a | 1 ± 1a | 1 ± 1a | 3.000 | 2 | 0.223 | |
核酸类 Nucleic acid | 11 ± 1a | 12 ± 0a | 11 ± 1a | 1.200 | 2 | 0.549 | |
糖类 Carbohydrate | 2 ± 1a | 2 ± 1a | 2 ± 1a | 0.286 | 2 | 0.867 | |
次级代谢物 Secondary metabolites | |||||||
生物碱类 Alkaloid | 生物碱 Alkaloid | 202 ± 2a | 188 ± 12a | 194 ± 13a | 2.501 | 2 | 0.286 |
酚类 Phenol | 黄酮类 Flavonoid | 158 ± 9a | 151 ± 11a | 156 ± 6a | 0.757 | 2 | 0.685 |
醌类 Quinone | 33 ± 0a | 33 ± 5a | 35 ± 3a | 0.686 | 2 | 0.710 | |
苯丙烷类 Phenylpropanoid | 147 ± 3a | 148 ± 4a | 139 ± 4b | 8.807 | 2 | 0.012 | |
酚类 Phenol | 39 ± 1a | 37 ± 2a | 39 ± 2a | 1.313 | 2 | 0.519 | |
鞣质类 Tannin | 6 ± 1a | 7 ± 3a | 7 ± 1a | 1.282 | 2 | 0.527 | |
萜类 Terpenoid | 萜类 Terpenoid | 284 ± 5a | 288 ± 12a | 292 ± 9a | 1.043 | 2 | 0.593 |
甾体类 Steroid | 158 ± 6a | 148 ± 11a | 150 ± 1a | 3.202 | 2 | 0.202 |
表2 基于广义线性模型比较中甸乌头总状花序中基部花、中部花、顶部花的花粉中化学物质的相对含量和种类数(平均值 ±标准误)。同一行中不同的小写字母表示该类化学物质的相对含量或种类数在不同位置的花之间有显著性差异, 该类化学物质名称字体加粗表示。
Table 2 Comparison of chemical relative content and classes (mean ± SE) among the pollen of basal, middle and distal flowers in the racemeof Aconitum piepunense (generalized linear model, GLM). Different lowercase letters indicate that the relative content or number of species of the chemical species is significantly different between the flowers at different positions, and the chemical name of the chemical class is indicated in bold font.
化学性状 Chemical properties | 基部花 Basal flower | 中部花 Middle flower | 顶部花 Distal flower | Wald χ2 | df | P | |
---|---|---|---|---|---|---|---|
相对含量 Relative content (× 104) | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 511.49 ± 42.34a | 552.74 ± 124.82a | 530.06 ± 41.72a | 0.402 | 2 | 0.818 | |
脂类 Lipid | 18.26 ± 12.97a | 15.03 ± 26.00a | 3.77± 6.00a | 1.183 | 2 | 0.553 | |
核酸类 Nucleic acid | 82.42 ± 7.98a | 78.04 ± 20.35a | 87.58 ± 3.25a | 0.840 | 2 | 0.657 | |
糖类 Carbohydrate | 0.24 ± 0.13a | 0.24 ± 0.22a | 0.29 ± 0.11a | 0.176 | 2 | 0.916 | |
次级代谢物 Secondary metabolites | |||||||
生物碱类 Alkaloid | 生物碱 Alkaloid | 1,511.92 ± 382.731a | 1,955.34 ± 722.05a | 1,420.90 ± 658.81a | 1.336 | 2 | 0.513 |
酚类 Phenol | 黄酮类 Flavonoid | 764.42 ± 69.01a | 891.47 ± 316.12a | 1,015.04 ± 230.25a | 1.792 | 2 | 0.408 |
醌类 Quinone | 364.93 ± 23.91a | 386.44 ± 128.43a | 390.26 ± 61.44a | 0.161 | 2 | 0.923 | |
苯丙烷类 Phenylpropanoid | 128.98 ± 6.70a | 186.97 ± 51.13a | 220.84 ± 78.17a | 4.430 | 2 | 0.109 | |
酚类 Phenol | 24.72 ± 0.29b | 28.96 ± 0.74a | 28.57 ± 2.49a | 14.461 | 2 | < 0.001 | |
鞣质类 Tannin | 4.45 ± 1.30a | 7.01 ± 0.68a | 6.46 ± 3.46a | 2.317 | 2 | 0.314 | |
萜类Terpenoid | 萜类 Terpenoid | 580.16 ± 75.67a | 619.22 ± 321.59a | 586.63 ± 289.76a | 0.041 | 2 | 0.980 |
甾体类 Steroid | 148.13 ± 41.41a | 171.98 ± 61.02a | 185.87 ± 25.71a | 1.075 | 2 | 0.584 | |
种类数 No. of compounds | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 21 ± 2a | 21 ± 4a | 20 ± 1a | 0.039 | 2 | 0.981 | |
脂类 Lipid | 1 ± 0a | 1 ± 1a | 1 ± 1a | 3.000 | 2 | 0.223 | |
核酸类 Nucleic acid | 11 ± 1a | 12 ± 0a | 11 ± 1a | 1.200 | 2 | 0.549 | |
糖类 Carbohydrate | 2 ± 1a | 2 ± 1a | 2 ± 1a | 0.286 | 2 | 0.867 | |
次级代谢物 Secondary metabolites | |||||||
生物碱类 Alkaloid | 生物碱 Alkaloid | 202 ± 2a | 188 ± 12a | 194 ± 13a | 2.501 | 2 | 0.286 |
酚类 Phenol | 黄酮类 Flavonoid | 158 ± 9a | 151 ± 11a | 156 ± 6a | 0.757 | 2 | 0.685 |
醌类 Quinone | 33 ± 0a | 33 ± 5a | 35 ± 3a | 0.686 | 2 | 0.710 | |
苯丙烷类 Phenylpropanoid | 147 ± 3a | 148 ± 4a | 139 ± 4b | 8.807 | 2 | 0.012 | |
酚类 Phenol | 39 ± 1a | 37 ± 2a | 39 ± 2a | 1.313 | 2 | 0.519 | |
鞣质类 Tannin | 6 ± 1a | 7 ± 3a | 7 ± 1a | 1.282 | 2 | 0.527 | |
萜类 Terpenoid | 萜类 Terpenoid | 284 ± 5a | 288 ± 12a | 292 ± 9a | 1.043 | 2 | 0.593 |
甾体类 Steroid | 158 ± 6a | 148 ± 11a | 150 ± 1a | 3.202 | 2 | 0.202 |
化学性状 Chemical properties | 基部花 Basal flower | 中部花 Middle flower | 顶部花 Distal flower | Wald χ2 | df | P | |
---|---|---|---|---|---|---|---|
相对含量 Relative content (× 104) | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 0.22 ± 0.11a | 0.18 ± 0.01a | 0.22 ± 0.04a | 0.365 | 2 | 0.833 | |
核酸类 Nucleic acid | 2.15 ± 2.93a | 0.66 ± 0.05a | 1.91 ± 0.51a | 0.823 | 2 | 0.663 | |
糖类 Carbohydrate | 4.59 ± 1.38a | 2.31 ± 0.14b | 2.43 ± 0.07b | 11.914 | 2 | 0.003 | |
次级代谢物 Secondary metabolites | |||||||
生物碱 Alkaloids | 生物碱 Alkaloid | 64.41 ± 6.54a | 52.49 ± 14.55a | 54.57 ± 14.39a | 1.539 | 2 | 0.463 |
酚类 Phenol | 黄酮类 Flavonoid | 72.34 ± 12.70a | 65.80 ± 1.58a | 62.16 ± 1.887a | 2.391 | 2 | 0.303 |
醌类 Quinone | 16.74 ± 1.61a | 20.33 ± 2.13a | 19.53 ± 1.92a | 5.500 | 2 | 0.064 | |
苯丙烷类 Phenylpropanoid | 25.25 ± 0.29a | 22.90 ± 0.00b | 21.96 ± 0.73b | 69.09 | 2 | < 0.001 | |
酚类 Phenol | 9.13 ± 1.43a | 7.45 ± 0.67a | 8.43 ± 1.22a | 2.227 | 2 | 0.328 | |
鞣质类 Tannin | 0.31 ± 0.06a | 0.29 ± 0.08a | 0.21 ± 0.05a | 4.454 | 2 | 0.108 | |
萜类 Terpenoid | 萜类 Terpenoid | 40.84 ± 3.63a | 36.45 ± 1.94a | 38.23 ± 0.75a | 3.909 | 2 | 0.142 |
甾体类 Steroid | 16.64 ± 0.13a | 12.55 ± 1.07b | 13.89 ± 1.93b | 12.992 | 2 | 0.002 | |
种类数 No. of compounds | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 3 ± 1a | 3 ± 1a | 4 ± 0a | 6.000 | 2 | 0.050 | |
核酸类 Nucleic acid | 3 ± 1b | 5 ± 0a | 5 ± 1a | 9.375 | 2 | 0.009 | |
糖类 Carbohydrate | 5 ± 0a | 5 ± 1a | 5 ± 1a | 1.429 | 2 | 0.490 | |
次级代谢物 Secondary metabolites | |||||||
生物碱类 Alkaloid | 生物碱 Alkaloid | 94 ± 9a | 94 ± 2a | 89 ± 5a | 1.200 | 2 | 0.549 |
酚类 Phenol | 黄酮类 Flavonoid | 61 ± 2a | 55 ± 0a | 60 ± 7a | 1.994 | 2 | 0.369 |
醌类 Quinone | 14 ± 4a | 16 ± 1a | 14 ± 1a | 0.798 | 2 | 0.671 | |
苯丙烷类 Phenylpropanoid | 87 ± 5a | 81 ± 1a | 78 ± 8a | 3.861 | 2 | 0.145 | |
酚类 Phenol | 26 ± 2a | 24 ± 4a | 25 ± 1a | 2.095 | 2 | 0.351 | |
鞣质类 Tannin | 3 ± 1a | 2 ± 1a | 2 ± 1a | 0.813 | 2 | 0.666 | |
萜类 Terpenoid | 萜类 Terpenoid | 160 ± 6a | 142 ± 4b | 145 ± 4b | 20.518 | 2 | < 0.001 |
甾体类 Steroid | 72 ± 3a | 63 ± 4b | 60 ± 6b | 12.868 | 2 | 0.002 |
表3 基于广义线性模型比较中甸乌头总状花序中基部花、中部花、顶部花的花蜜中化学物质的相对含量和种类数(平均值 ±标准误)。同一行中不同的小写字母表示该类化学物质的相对含量或种类数在不同位置的花之间有显著性差异, 该类化学物质名称字体加粗表示。
Table 3 Comparison of chemical relative content and classes (mean ± SE) among the nectar of basal, middle and distal flowers in the raceme of Aconitum piepunense (generalized linear model, GLM). Different lowercase letters indicate that the relative content or number of species of the chemical species is significantly different between the flowers at different positions, and the chemical name of the chemical class is indicated in bold font.
化学性状 Chemical properties | 基部花 Basal flower | 中部花 Middle flower | 顶部花 Distal flower | Wald χ2 | df | P | |
---|---|---|---|---|---|---|---|
相对含量 Relative content (× 104) | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 0.22 ± 0.11a | 0.18 ± 0.01a | 0.22 ± 0.04a | 0.365 | 2 | 0.833 | |
核酸类 Nucleic acid | 2.15 ± 2.93a | 0.66 ± 0.05a | 1.91 ± 0.51a | 0.823 | 2 | 0.663 | |
糖类 Carbohydrate | 4.59 ± 1.38a | 2.31 ± 0.14b | 2.43 ± 0.07b | 11.914 | 2 | 0.003 | |
次级代谢物 Secondary metabolites | |||||||
生物碱 Alkaloids | 生物碱 Alkaloid | 64.41 ± 6.54a | 52.49 ± 14.55a | 54.57 ± 14.39a | 1.539 | 2 | 0.463 |
酚类 Phenol | 黄酮类 Flavonoid | 72.34 ± 12.70a | 65.80 ± 1.58a | 62.16 ± 1.887a | 2.391 | 2 | 0.303 |
醌类 Quinone | 16.74 ± 1.61a | 20.33 ± 2.13a | 19.53 ± 1.92a | 5.500 | 2 | 0.064 | |
苯丙烷类 Phenylpropanoid | 25.25 ± 0.29a | 22.90 ± 0.00b | 21.96 ± 0.73b | 69.09 | 2 | < 0.001 | |
酚类 Phenol | 9.13 ± 1.43a | 7.45 ± 0.67a | 8.43 ± 1.22a | 2.227 | 2 | 0.328 | |
鞣质类 Tannin | 0.31 ± 0.06a | 0.29 ± 0.08a | 0.21 ± 0.05a | 4.454 | 2 | 0.108 | |
萜类 Terpenoid | 萜类 Terpenoid | 40.84 ± 3.63a | 36.45 ± 1.94a | 38.23 ± 0.75a | 3.909 | 2 | 0.142 |
甾体类 Steroid | 16.64 ± 0.13a | 12.55 ± 1.07b | 13.89 ± 1.93b | 12.992 | 2 | 0.002 | |
种类数 No. of compounds | |||||||
初级代谢物 Primary metabolites | |||||||
蛋白质类 Protein | 3 ± 1a | 3 ± 1a | 4 ± 0a | 6.000 | 2 | 0.050 | |
核酸类 Nucleic acid | 3 ± 1b | 5 ± 0a | 5 ± 1a | 9.375 | 2 | 0.009 | |
糖类 Carbohydrate | 5 ± 0a | 5 ± 1a | 5 ± 1a | 1.429 | 2 | 0.490 | |
次级代谢物 Secondary metabolites | |||||||
生物碱类 Alkaloid | 生物碱 Alkaloid | 94 ± 9a | 94 ± 2a | 89 ± 5a | 1.200 | 2 | 0.549 |
酚类 Phenol | 黄酮类 Flavonoid | 61 ± 2a | 55 ± 0a | 60 ± 7a | 1.994 | 2 | 0.369 |
醌类 Quinone | 14 ± 4a | 16 ± 1a | 14 ± 1a | 0.798 | 2 | 0.671 | |
苯丙烷类 Phenylpropanoid | 87 ± 5a | 81 ± 1a | 78 ± 8a | 3.861 | 2 | 0.145 | |
酚类 Phenol | 26 ± 2a | 24 ± 4a | 25 ± 1a | 2.095 | 2 | 0.351 | |
鞣质类 Tannin | 3 ± 1a | 2 ± 1a | 2 ± 1a | 0.813 | 2 | 0.666 | |
萜类 Terpenoid | 萜类 Terpenoid | 160 ± 6a | 142 ± 4b | 145 ± 4b | 20.518 | 2 | < 0.001 |
甾体类 Steroid | 72 ± 3a | 63 ± 4b | 60 ± 6b | 12.868 | 2 | 0.002 |
生物碱类 Alkaloids | 化学式 Chemical formula | 基部花 Basal flower (%) | 中部花 Middle flower (%) | 顶部花 Distal flower (%) |
---|---|---|---|---|
卡米车灵(多根乌头碱) Carmichaeline | C22H35NO4 | 51.77 | 59.10 | 40.59 |
塔拉萨敏 Talatisamine | C24H39NO5 | 14.50 | 13.74 | 12.67 |
去氢胡椒杀虫胺 Dehydropepper insecticide | C22H31NO3 | 5.58 | 6.45 | 3.38 |
N-氧-对叶百部碱 N-oxy-tuberostemonine | C22H33NO5 | 3.95 | - | 9.39 |
荜茇壬二烯哌啶 Pipernonaline | C21H27NO3 | 2.30 | 2.11 | 1.88 |
Zanthosimuline | C20H23NO2 | 1.53 | 1.44 | 1.28 |
Acsonine | C31H41NO8 | 1.51 | 0.63 | - |
半边莲碱(山梗菜碱) Lobeline | C22H27NO2 | 1.39 | 1.35 | 0.60 |
裸翠雀亭 Denudatine | C22H33NO2 | 1.13 | 0.76 | 2.01 |
高乌宁碱 Lappaconine | C23H37NO6 | 0.93 | 0.59 | 0.76 |
平贝碱丙 Pingbeimine C | C27H43NO6 | 0.90 | 1.17 | 1.22 |
苦木碱A 1-(ethoxycarbonyl)-β-carboline | C28H24N4O2 | 0.74 | 0.47 | - |
大叶桉亭 Robustine | C12H9NO3 | 0.48 | 0.48 | - |
1-甲酯基-β-咔啉 1-carbomethoxy-β-carboline | C13H10N2O2 | 0.35 | 0.24 | - |
几内亚胡椒碱 (2E,4E,12E)-13-(benzo[d][1,3]dioxol-5-yl)-N- isobutyltrideca-2,4,12-trienamide | C24H33NO3 | 0.29 | 0.31 | - |
麦角辛 Ergosine | C30H37N5O5 | 0.25 | 0.42 | - |
囊翠碱甲 Delbruine | C25H39NO7 | 0.23 | 0.25 | - |
异脱氢对叶百部碱 Isodidehydrotuberostemonine | C22H29NO4 | 0.18 | - | - |
麻黄新碱C Ephedradine C | C30H40N4O5 | 0.11 | 0.12 | - |
木兰花碱(木兰碱) Magnoflorine | C20H23NO4 | 0.11 | 0.14 | 0.35 |
山梗菜醇碱 2,2°-(1-methyl-2,6-piperidinediyl) diacetophenon | C22H29NO2 | - | 0.16 | - |
次乌头碱 Hypaconitine | C33H45NO10 | - | 0.12 | - |
囊距翠雀灵 Delbruline | C26H41NO7 | - | - | 1.80 |
对叶百部烯酮 Tuberostemoenone | C22H29NO5 | - | - | 1.60 |
平贝碱甲 Cevane-3,6,14,16,20-pentol, (3β,5α,6α,16β)- | C27H45NO5 | - | - | 1.59 |
蝙蝠葛任碱 Menisperine | C21H25NO4 | - | - | 0.90 |
帽柱木酸 Mitraphyllic acid | C20H22N2O4 | - | - | 0.58 |
麦角新碱 Ergonovine | C31H39N5O5 | - | - | 0.43 |
1-甲基-2-[(4Z,7Z)-4,7-十三烷二烯基]-4(1H)喹诺酮1-methyl-2- [(4Z,7Z)-4,7-tridecadienyl]-4(1H) quinolone | C23H31NO | - | - | 0.38 |
番木鳖次碱 Vomicine | C22H24N2O4 | - | - | 0.31 |
对叶百部酮 Tuberostemonone | C22H31NO6 | - | - | 0.29 |
总占比 Total proportion (%) | 88.24 | 90.04 | 82.00 |
表4 中甸乌头总状花序中基部花、中部花和顶部花的花粉中含量最高的前20种生物碱物质及其占总生物碱类物质相对含量的百分比(%)
Table 4 The top 20 alkaloids with the highest relative contents and its percentage of the total relative content of alkaloids (%) in the pollen of basal, middle and distal flowers of the raceme of Aconitum piepunense
生物碱类 Alkaloids | 化学式 Chemical formula | 基部花 Basal flower (%) | 中部花 Middle flower (%) | 顶部花 Distal flower (%) |
---|---|---|---|---|
卡米车灵(多根乌头碱) Carmichaeline | C22H35NO4 | 51.77 | 59.10 | 40.59 |
塔拉萨敏 Talatisamine | C24H39NO5 | 14.50 | 13.74 | 12.67 |
去氢胡椒杀虫胺 Dehydropepper insecticide | C22H31NO3 | 5.58 | 6.45 | 3.38 |
N-氧-对叶百部碱 N-oxy-tuberostemonine | C22H33NO5 | 3.95 | - | 9.39 |
荜茇壬二烯哌啶 Pipernonaline | C21H27NO3 | 2.30 | 2.11 | 1.88 |
Zanthosimuline | C20H23NO2 | 1.53 | 1.44 | 1.28 |
Acsonine | C31H41NO8 | 1.51 | 0.63 | - |
半边莲碱(山梗菜碱) Lobeline | C22H27NO2 | 1.39 | 1.35 | 0.60 |
裸翠雀亭 Denudatine | C22H33NO2 | 1.13 | 0.76 | 2.01 |
高乌宁碱 Lappaconine | C23H37NO6 | 0.93 | 0.59 | 0.76 |
平贝碱丙 Pingbeimine C | C27H43NO6 | 0.90 | 1.17 | 1.22 |
苦木碱A 1-(ethoxycarbonyl)-β-carboline | C28H24N4O2 | 0.74 | 0.47 | - |
大叶桉亭 Robustine | C12H9NO3 | 0.48 | 0.48 | - |
1-甲酯基-β-咔啉 1-carbomethoxy-β-carboline | C13H10N2O2 | 0.35 | 0.24 | - |
几内亚胡椒碱 (2E,4E,12E)-13-(benzo[d][1,3]dioxol-5-yl)-N- isobutyltrideca-2,4,12-trienamide | C24H33NO3 | 0.29 | 0.31 | - |
麦角辛 Ergosine | C30H37N5O5 | 0.25 | 0.42 | - |
囊翠碱甲 Delbruine | C25H39NO7 | 0.23 | 0.25 | - |
异脱氢对叶百部碱 Isodidehydrotuberostemonine | C22H29NO4 | 0.18 | - | - |
麻黄新碱C Ephedradine C | C30H40N4O5 | 0.11 | 0.12 | - |
木兰花碱(木兰碱) Magnoflorine | C20H23NO4 | 0.11 | 0.14 | 0.35 |
山梗菜醇碱 2,2°-(1-methyl-2,6-piperidinediyl) diacetophenon | C22H29NO2 | - | 0.16 | - |
次乌头碱 Hypaconitine | C33H45NO10 | - | 0.12 | - |
囊距翠雀灵 Delbruline | C26H41NO7 | - | - | 1.80 |
对叶百部烯酮 Tuberostemoenone | C22H29NO5 | - | - | 1.60 |
平贝碱甲 Cevane-3,6,14,16,20-pentol, (3β,5α,6α,16β)- | C27H45NO5 | - | - | 1.59 |
蝙蝠葛任碱 Menisperine | C21H25NO4 | - | - | 0.90 |
帽柱木酸 Mitraphyllic acid | C20H22N2O4 | - | - | 0.58 |
麦角新碱 Ergonovine | C31H39N5O5 | - | - | 0.43 |
1-甲基-2-[(4Z,7Z)-4,7-十三烷二烯基]-4(1H)喹诺酮1-methyl-2- [(4Z,7Z)-4,7-tridecadienyl]-4(1H) quinolone | C23H31NO | - | - | 0.38 |
番木鳖次碱 Vomicine | C22H24N2O4 | - | - | 0.31 |
对叶百部酮 Tuberostemonone | C22H31NO6 | - | - | 0.29 |
总占比 Total proportion (%) | 88.24 | 90.04 | 82.00 |
[1] |
Adler LS (2000) The ecological significance of toxic nectar. Oikos, 91, 409-420.
DOI URL |
[2] |
Adler LS, Irwin RE (2012) Nectar alkaloids decrease pollination and female reproduction in a native plant. Oecologia, 168, 1033-1041.
DOI PMID |
[3] |
Arnold SEJ, Idrovo MEP, Arias LJL, Belmain SR, Stevenson PC (2014) Herbivore defence compounds occur in pollen and reduce bumblebee colony fitness. Journal of Chemical Ecology, 40, 878-881.
DOI PMID |
[4] |
Ashman TL, Hitchens MS (2000) Dissecting the causes of variation in intra-inflorescence allocation in a sexually polymorphic species, Fragaria virginiana (Rosaceae). American Journal of Botany, 87, 197-204.
PMID |
[5] |
Baker HG (1977) Non-sugar chemical constituents of nectar. Apidologie, 8, 349-356.
DOI URL |
[6] |
Barlow SE, Wright GA, Ma C, Barberis M, Farrell IW, Marr EC, Brankin A, Pavlik BM, Stevenson PC (2017) Distasteful nectar deters floral robbery. Current Biology, 27, 2552-2558.
DOI PMID |
[7] |
Brochu KK, van Dyke MT, Milano NJ, Petersen JD, McArt SH, Nault BA, Kessler A, Danforth BN (2020) Pollen defenses negatively impact foraging and fitness in a generalist bee (Bombus impatiens: Apidae). Scientific Reports, 10, 3112-3112.
DOI PMID |
[8] |
Brunet J, Charlesworth D (1995) Floral sex allocation in sequentially blooming plants. Evolution, 49, 70-79.
DOI PMID |
[9] | Buchanan BB, Gruissem W, Jones RL (translated by Qu LJ, Gu HY, Bai SN, Zhao JD, Chen ZL (2003) Biochemistry & Molecular Biology of Plants, pp. 1026-1082. Science Press, Beijing. (in Chinese) |
[瞿礼嘉, 顾红雅, 白书农, 赵进东, 陈章良 译 (2003) 植物生物化学与分子生物学. 科学出版社, 北京.] | |
[10] |
Cane JH, Gardner DR, Weber M (2020) Neurotoxic alkaloid in pollen and nectar excludes generalist bees from foraging at death-camas, Toxicoscordion paniculatum (Melanthiaceae). Biological Journal of the Linnean Society, 131, 927-935.
DOI URL |
[11] |
Carlson JE, Harms KE (2006) The evolution of gender-biased nectar production in hermaphroditic plants. The Botanical Review, 72, 179-205.
DOI URL |
[12] |
Cook D, Manson JS, Gardner DR, Welch KD, Irwin RE (2013) Norditerpene alkaloid concentrations in tissues and floral rewards of larkspurs and impacts on pollinators. Biochemical Systematics and Ecology, 48, 123-131.
DOI URL |
[13] | De-Melo AAM, de Almeida-Muradian LB (2017) Chemical composition of bee pollen. In: Bee Products—Chemical and Biological Properties (ed. Alvarez-Suarez JM), pp. 221-259. Springer, Cham (Switzerland). |
[14] | Diggle PK (1995) Architectural effects and the interpretation of patterns of fruit and seed development. Annual Review of Ecology, Evolution, and Systematics, 26, 531-552. |
[15] |
Dübecke A, Beckh G, Lüllmann C (2011) Pyrrolizidine alkaloids in honey and bee pollen. Food Additives and Contaminants: Part A, 28, 348-358.
DOI URL |
[16] |
Erb M, Kliebenstein DJ (2020) Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiology, 184, 39-52.
DOI PMID |
[17] |
Fisogni A, Cristofolini G, Rossi M, Galloni M (2011) Pollinator directionality as a response to nectar gradient: Promoting outcrossing while avoiding geitonogamy. Plant Biology, 13, 848-856.
DOI PMID |
[18] |
Flamini G, Cioni PL, Morelli I (2003) Use of solid-phase micro-extraction as a sampling technique in the determination of volatiles emitted by flowers, isolated flower parts and pollen. Journal of Chromatography A, 998, 229-233.
PMID |
[19] |
Ge XYM, Lu HS, Tian H, Wu Y, Zhang DY, Liao WJ (2022) Male-biased sex allocation in late-blooming flowers driven by resource limitation in the clonal perennial Aconitum kusnezoffii (Ranunculaceae). Journal of Systematics and Evolution, 60, 1393-1404.
DOI URL |
[20] |
Gosselin M, Michez D, Vanderplanck M, Roelants D, Glauser G, Rasmont P (2013) Does Aconitum septentrionale chemically protect floral rewards to the advantage of specialist bumblebees? Ecological Entomology, 38, 400-407.
DOI URL |
[21] |
Heiling JM, Cook D, Lee ST, Irwin RE (2019) Pollen and vegetative secondary chemistry of three pollen-rewarding lupines. American Journal of Botany, 106, 643-655.
DOI PMID |
[22] | Huang SQ, Tang LL, Yu Q, Guo YH (2004) Temporal floral sex allocation in protogynous Aquilegia yabeana contrasts with protandrous species: Support for the mating environment hypothesis. Evolution, 58, 1131-1134. |
[23] |
Jacquemart AL, Buyens C, Hérent MF, Quetin-Leclercq J, Lognay G, Hance T, Quinet M (2019) Male flowers of Aconitum compensate for toxic pollen with increased floral signals and rewards for pollinators. Scientific Reports, 9, 16498.
DOI PMID |
[24] |
Liu CQ, Huang SQ (2012) Does the relative importance of resource competition and architectural effect in floral variation vary with stages of floral ontogeny? Journal of Systematics and Evolution, 50, 119-124.
DOI URL |
[25] |
Mazer SJ, Dawson KA (2001) Size-dependent sex allocation within flowers of the annual herb Clarkia unguiculata (Onagraceae): Ontogenetic and among-plant variation. American Journal of Botany, 88, 819-831.
PMID |
[26] | Nicolson SW, Nepi M, Pacini E (2007) Nectaries and nectar. In: Nectar Chemistry (eds Nicolson SW, Thornburg RW), pp. 215-264. Springer, Dordrecht. |
[27] | Palmer-Young EC, Farrell IW, Adler LS, Milano NJ, Stevenson PC (2019) Chemistry of floral rewards: Intra- and interspecific variability of nectar and pollen secondary metabolites across taxa. Ecological Monographs, 89, e01335. |
[28] |
Pyke GH (1978) Optimal foraging: Movement patterns of bumblebees between inflorescences. Theoretical Population Biology, 13, 72-98.
PMID |
[29] |
Ritmejerytė E, Boughton BA, Bayly MJ, Miller RE (2020) Unique and highly specific cyanogenic glycoside localization in stigmatic cells and pollen in the genus Lomatia (Proteaceae). Annals of Botany, 126, 387-400.
DOI PMID |
[30] | Sharma A, Sharma S, Kumar A, Kumar V, Sharma AK (2022) Plant secondary metabolites:An introduction of their chemistry and biological significance with physicochemical aspect. In: Plant Secondary Metabolites (eds Sharma AK, Sharma A), pp. 1-45. Springer, Singapore. |
[31] |
Solomon BP (1985) Environmentally influenced changes in sex expression in an andromonoecious plant. Ecology, 66, 1321-1332.
DOI URL |
[32] |
Solomon BP (1988) Patterns of pre- and postfertilization resource allocation within an inflorescence: Evidence for interovary competition. American Journal of Botany, 75, 1074-1079.
DOI URL |
[33] |
Stevenson PC (2020) For antagonists and mutualists: The paradox of insect toxic secondary metabolites in nectar and pollen. Phytochemistry Reviews, 19, 603-614.
DOI |
[34] |
Stevenson PC, Nicolson SW, Wright GA (2017) Plant secondary metabolites in nectar: Impacts on pollinators and ecological functions. Functional Ecology, 31, 65-75.
DOI URL |
[35] |
Thorp RW (2000) The collection of pollen by bees. Plant Systematics and Evolution, 222, 211-223.
DOI URL |
[36] |
Wang H, Zhang ZQ, Zhang B, Wang LP, Guo W, Fang Y, Li QJ (2022) Architectural effects regulate resource allocation within the inflorescences with nonlinear blooming patterns. American Journal of Botany, 109, 1191-1202.
DOI PMID |
[37] |
Wang XY, Tang J, Wu T, Wu D, Huang SQ (2019) Bumblebee rejection of toxic pollen facilitates pollen transfer. Current Biology, 29, 1401-1406.
DOI URL |
[38] |
Wright GA, Baker DD, Palmer MJ, Stabler D, Mustard JA, Power EF, Borland AM, Stevenson PC (2013) Caffeine in floral nectar enhances a pollinator’s memory of reward. Science, 339, 1202-1204.
DOI PMID |
[39] | Yan XF, Wang Y, Li YM (2007) Plant secondary metabolism and its response to environment. Acta Ecologica Sinica, 27, 2554-2562. (in Chinese with English abstract) |
[阎秀峰, 王洋, 李一蒙 (2007) 植物次生代谢及其与环境的关系. 生态学报, 27, 2554-2562.] | |
[40] |
Zangerl AR, Rutledge CE (1996) The probability of attack and patterns of constitutive and induced defense: A test of optimal defense theory. The American Naturalist, 147, 599-608.
DOI URL |
[41] |
Zhao ZG, Du GZ, Huang SQ (2010) The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant. BMC Plant Biology, 10, 91.
DOI |
[42] |
Zhao ZG, Lu NN, Conner JK (2016) Adaptive pattern of nectar volume within inflorescences: Bumblebee foraging behavior and pollinator-mediated natural selection. Scientific Reports, 6, 34499.
DOI PMID |
[1] | 巴苏艳, 赵春艳, 刘媛, 方强. 通过虫体花粉识别构建植物‒传粉者网络: 人工模型与AI模型高度一致[J]. 生物多样性, 2024, 32(6): 24088-. |
[2] | 文诗嘉, 邓敏学, 吴丁, 王志勇, 任宗昕. 獐牙菜属四种植物花蜜特征的比较[J]. 生物多样性, 2024, 32(1): 23297-. |
[3] | 张飞飞, 杨天凤, 陈莉荣, 刘冬梅, 杨柳园, 杨杜宇, 鞠鹏, 陆露. 被子植物花粉颜色多样性及应用研究进展[J]. 生物多样性, 2024, 32(1): 23346-. |
[4] | 吴帆, 刘深云, 江虎强, 王茜, 陈开威, 李红亮. 中华蜜蜂和意大利蜜蜂秋冬期传粉植物多样性比较[J]. 生物多样性, 2023, 31(5): 22528-. |
[5] | 胡德美, 姚仁秀, 陈燕, 游贤松, 王顺雨, 汤晓辛, 王晓月. 青篱柴通过促进亲和花粉生长而提高传粉精确性[J]. 生物多样性, 2021, 29(7): 887-896. |
[6] | 都业勤, 张迪, 王赛, 王磊, 闫兴富, 唐占辉. 湿地植物大花百合种群的性系统特征[J]. 生物多样性, 2021, 29(10): 1321-1335. |
[7] | 唐敏, 邹怡, 苏秦之, 周欣. 洞察景观环境影响蜜蜂之新视角: 肠道微生物[J]. 生物多样性, 2019, 27(5): 516-525. |
[8] | 土艳丽,王力平,王喜龙,王林林,段元文. 利用昆虫携带的花粉初探西藏入侵植物印加孔雀草在当地传粉网络中的地位[J]. 生物多样性, 2019, 27(3): 306-313. |
[9] | 王晓月,朱鑫鑫,杨娟,刘云静,汤晓辛. 梅花个体内花柱长度的变异及其对繁殖成功的影响[J]. 生物多样性, 2019, 27(2): 159-167. |
[10] | 吉乃提汗·马木提, 成小军, 谭敦炎. 荒漠短命植物异喙菊的小花异形性及繁殖特性[J]. 生物多样性, 2018, 26(5): 498-509. |
[11] | 郎丹丹, 唐敏, 周欣. 传粉网络构建的定性定量分子研究: 应用与展望[J]. 生物多样性, 2018, 26(5): 445-456. |
[12] | 朱亚如, 龚燕兵. 风媒传粉的研究方法探讨[J]. 生物多样性, 2017, 25(8): 864-873. |
[13] | 张小龙, 杨丽华, 康明. 牛耳朵和马坝报春苣苔同域种群授粉后的生殖隔离[J]. 生物多样性, 2017, 25(6): 615-620. |
[14] | 周伟, 王红. 基于DNA分子标记的花粉流动态分析[J]. 生物多样性, 2014, 22(1): 97-108. |
[15] | 陈高, 张蕊蕊, 董坤, 公维昌, 马永鹏. 常春油麻藤有气味花蜜及其生态功能[J]. 生物多样性, 2012, 20(3): 360-367. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn