生物多样性 ›› 2018, Vol. 26 ›› Issue (12): 1296-1307. DOI: 10.17520/biods.2018245
所属专题: 土壤生物与土壤健康
张宇1, 肖正高1, 蒋林惠1, 钱蕾2, 陈小云1, 陈法军2, 胡锋1, 刘满强1,*()
收稿日期:
2018-09-12
接受日期:
2018-11-19
出版日期:
2018-12-20
发布日期:
2019-02-11
通讯作者:
刘满强
作者简介:
# 共同第一作者
基金资助:
Yu Zhang1, Zhenggao Xiao1, Linhui Jiang1, Lei Qian2, Xiaoyun Chen1, Fajun Chen2, Feng Hu1, Manqiang Liu1,*()
Received:
2018-09-12
Accepted:
2018-11-19
Online:
2018-12-20
Published:
2019-02-11
Contact:
Liu Manqiang
About author:
# 同等贡献作者 Contributed equally to this work
摘要:
过量施用氮肥不仅导致严重的生态环境问题, 还会限制土壤生物驱动的生态系统服务功能。蚯蚓的取食和掘穴等活动可以促进土壤肥力和植物生长, 进而影响植物与病虫害的关系。了解氮肥与害虫作用下蚯蚓对植物抗虫性的影响, 有助于揭示土壤动物的生态功能调控机制。采用蚯蚓(威廉腔环蚓Metaphire guillelmi)、西花蓟马(Frankliniella occidentalis)和氮肥用量的三因子完全交互设计, 利用番茄(Lycopersicon esculentum)盆栽实验探索了不同氮水平下蚯蚓对番茄生长及对植食者抗性的影响。结果表明, 在低氮条件下蚯蚓显著降低了番茄茎叶干生物量、根系干生物量及茎叶可溶性糖含量, 而茎叶的茉莉酸和水杨酸含量分别是无蚯蚓对照的6倍和3倍, 且伴随着西花蓟马数量下降了58%。在高氮水平时, 蚯蚓未影响番茄茎叶茉莉酸、茎叶水杨酸含量及西花蓟马数量。蚯蚓介导的番茄营养物质(茎叶可溶性糖和茎叶全氮)和防御信号物质(茎叶茉莉酸和茎叶水杨酸)含量分别与西花蓟马数量呈显著的正相关和负相关。总之, 氮肥施用改变的土壤氮有效性通过改变植物资源和防御物质含量转变了蚯蚓介导的植物抗虫性响应; 全面了解土壤生物对植物生长的影响需要综合考虑土壤管理-土壤动物-植物病原物三者之间的关系。
张宇, 肖正高, 蒋林惠, 钱蕾, 陈小云, 陈法军, 胡锋, 刘满强 (2018) 施氮水平影响蚯蚓介导的番茄生长及抗虫性. 生物多样性, 26, 1296-1307. DOI: 10.17520/biods.2018245.
Yu Zhang, Zhenggao Xiao, Linhui Jiang, Lei Qian, Xiaoyun Chen, Fajun Chen, Feng Hu, Manqiang Liu (2018) Nitrogen levels modify earthworm-mediated tomato growth and resistance to pests. Biodiversity Science, 26, 1296-1307. DOI: 10.17520/biods.2018245.
处理 Treatments | 接种时 Inoculation time | 采样时 Sampling time | 蚯蚓失重率 Weight loss of the earthworm (%) | |||
---|---|---|---|---|---|---|
数量 Number | 生物量 Biomass (g) | 数量 Number | 生物量 Biomass (g) | |||
无西花蓟马 -WFT | 低氮 Low N 高氮 High N | 3 | 10.49 ± 0.27 | 3 | 9.19 ± 0.34 | 12.39 |
3 | 10.35 ± 0.24 | 3 | 8.63 ± 0.47 | 16.62 | ||
接种西花蓟马 +WFT | 低氮 Low N 高氮 High N | 3 | 10.19 ± 0.19 | 3 | 8.52 ± 0.22 | 16.39 |
3 | 10.27 ± 0.26 | 3 | 7.85 ± 0.66 | 23.56 |
表1 不同处理下威廉腔环蚓的数量及生物量变化
Table 1 Changes in biomass and number of Metaphire guillelmi under different treatments
处理 Treatments | 接种时 Inoculation time | 采样时 Sampling time | 蚯蚓失重率 Weight loss of the earthworm (%) | |||
---|---|---|---|---|---|---|
数量 Number | 生物量 Biomass (g) | 数量 Number | 生物量 Biomass (g) | |||
无西花蓟马 -WFT | 低氮 Low N 高氮 High N | 3 | 10.49 ± 0.27 | 3 | 9.19 ± 0.34 | 12.39 |
3 | 10.35 ± 0.24 | 3 | 8.63 ± 0.47 | 16.62 | ||
接种西花蓟马 +WFT | 低氮 Low N 高氮 High N | 3 | 10.19 ± 0.19 | 3 | 8.52 ± 0.22 | 16.39 |
3 | 10.27 ± 0.26 | 3 | 7.85 ± 0.66 | 23.56 |
变量 Variables | 蚯蚓 Earthworm (E) (df = 1) | 氮素 Nitrogen (N) (df = 1) | 西花蓟马 Thrips (WFT) (df = 1) | E × N (df = 1) | E × WFT (df = 1) | N × WFT (df = 1) | E × N × WFT (df = 1) |
---|---|---|---|---|---|---|---|
硝态氮 NO3--N | 18.49*** | 87.43*** | 8.21** | 18.02*** | 3.51 | 6.67* | 3.68 |
铵态氮 NH4+-N | 4.07 | 2.06 | 10.82** | 1.91 | 27.26*** | 0.00 | 0.28 |
微生物生物量碳 Microbial biomass carbon | 10.35** | 1.00 | 60.26*** | 2.66 | 0.99 | 15.51*** | 2.00 |
微生物生物量氮 Microbial biomass nitrogen | 11.94** | 0.38 | 2.69 | 0.84 | 3.90 | 2.44 | 23.70*** |
表2 蚯蚓、氮素及植食者因素对土壤硝态氮、铵态氮、微生物生物量碳含量和微生物生物量氮含量影响的方差分析结果
Table 2 ANOVA results showing the effects of earthworm, nitrogen and herbivore on the contents of NO3--N, NH4+-N, microbial biomass carbon and microbial biomass nitrogen in soils
变量 Variables | 蚯蚓 Earthworm (E) (df = 1) | 氮素 Nitrogen (N) (df = 1) | 西花蓟马 Thrips (WFT) (df = 1) | E × N (df = 1) | E × WFT (df = 1) | N × WFT (df = 1) | E × N × WFT (df = 1) |
---|---|---|---|---|---|---|---|
硝态氮 NO3--N | 18.49*** | 87.43*** | 8.21** | 18.02*** | 3.51 | 6.67* | 3.68 |
铵态氮 NH4+-N | 4.07 | 2.06 | 10.82** | 1.91 | 27.26*** | 0.00 | 0.28 |
微生物生物量碳 Microbial biomass carbon | 10.35** | 1.00 | 60.26*** | 2.66 | 0.99 | 15.51*** | 2.00 |
微生物生物量氮 Microbial biomass nitrogen | 11.94** | 0.38 | 2.69 | 0.84 | 3.90 | 2.44 | 23.70*** |
图1 不同氮素条件下, 蚯蚓在西花蓟马(WFT)有无时对土壤硝态氮、铵态氮、微生物生物量碳和微生物生物量氮含量(平均值 ± 标准差, n = 6)的影响。-WFT和+WFT分别表示无西花蓟马和有西花蓟马。不同小写字母表示各处理间差异显著(Fisher’s LSD检验, P < 0.05)。
Fig. 1 Effects of earthworm Metaphire guillelmi on the contents of soil NO3 --N, NH4+-N, microbial biomass carbon and microbial biomass nitrogen in the absence or presence of western flower thrips (WFT) under low and high N inputs (mean ± SD, n = 6). In the figure, -WFT and +WFT indicate without and with western flower thrips, respectively. Means with different letters indicate significant difference among treatments (Fisher’s LSD test, P < 0.05). Error bars are standard errors.
变量 Variables | 蚯蚓 Earthworm (E) (df = 1) | 氮素 Nitrogen (N) (df = 1) | 西花蓟马 Thrips (WFT) (df = 1) | E × N (df = 1) | E × WFT (df = 1) | N × WFT (df = 1) | E × N × WFT (df = 1) |
---|---|---|---|---|---|---|---|
茎叶干生物量 Shoot dry biomass | 22.49*** | 117.88*** | 10.36** | 2.39 | 1.64 | 5.86* | 0.05 |
根系干生物量 Root dry biomass | 13.77*** | 2.08 | 0.20 | 11.47** | 0.00 | 0.22 | 1.68 |
茎叶可溶性糖 Shoot soluble sugar | 25.21*** | 2.09 | 15.47*** | 17.79*** | 2.01 | 0.03 | 0.03 |
根系可溶性糖 Root soluble sugar | 0.01 | 0.71 | 2.68 | 2.17 | 3.69 | 1.39 | 13.09*** |
茎叶全氮 Shoot total nitrogen | 12.21** | 182.83*** | 1.19 | 3.10 | 0.00 | 0.07 | 1.70 |
根系全氮 Root total nitrogen | 20.37*** | 246.77*** | 15.21*** | 0.06 | 11.12** | 2.79 | 2.11 |
茎叶游离氨基酸 Shoot amino acid | 0.97 | 20.43*** | 7.57** | 0.73 | 0.28 | 26.10*** | 8.31** |
根系游离氨基酸 Root amino acid | 46.10*** | 43.08*** | 7.38** | 21.88*** | 14.80*** | 32.87*** | 0.96 |
茎叶酚 Shoot phenolics | 2.36 | 36.23*** | 4.75* | 1.50 | 2.26 | 0.31 | 29.01*** |
根系酚 Root phenolics | 3.61 | 0.01 | 51.47*** | 9.75** | 0.00 | 0.01 | 33.56*** |
茎叶水杨酸 Shoot salicylic acid | 49.52*** | 0.08 | 0.11 | 72.61*** | 80.09*** | 18.73*** | 95.11*** |
茎叶茉莉酸 Shoot jasmonic acid | 156.85*** | 3.54 | 26.94*** | 38.62*** | 83.52*** | 64.95*** | 116.73*** |
表3 蚯蚓、氮素、植食者因素及其交互作用对番茄茎叶及根系营养和化学防御性状的影响
Table 3 Effects of earthworm, nitrogen, herbivore and their interactions on the nutrients and chemical traits of tomato shoots and roots
变量 Variables | 蚯蚓 Earthworm (E) (df = 1) | 氮素 Nitrogen (N) (df = 1) | 西花蓟马 Thrips (WFT) (df = 1) | E × N (df = 1) | E × WFT (df = 1) | N × WFT (df = 1) | E × N × WFT (df = 1) |
---|---|---|---|---|---|---|---|
茎叶干生物量 Shoot dry biomass | 22.49*** | 117.88*** | 10.36** | 2.39 | 1.64 | 5.86* | 0.05 |
根系干生物量 Root dry biomass | 13.77*** | 2.08 | 0.20 | 11.47** | 0.00 | 0.22 | 1.68 |
茎叶可溶性糖 Shoot soluble sugar | 25.21*** | 2.09 | 15.47*** | 17.79*** | 2.01 | 0.03 | 0.03 |
根系可溶性糖 Root soluble sugar | 0.01 | 0.71 | 2.68 | 2.17 | 3.69 | 1.39 | 13.09*** |
茎叶全氮 Shoot total nitrogen | 12.21** | 182.83*** | 1.19 | 3.10 | 0.00 | 0.07 | 1.70 |
根系全氮 Root total nitrogen | 20.37*** | 246.77*** | 15.21*** | 0.06 | 11.12** | 2.79 | 2.11 |
茎叶游离氨基酸 Shoot amino acid | 0.97 | 20.43*** | 7.57** | 0.73 | 0.28 | 26.10*** | 8.31** |
根系游离氨基酸 Root amino acid | 46.10*** | 43.08*** | 7.38** | 21.88*** | 14.80*** | 32.87*** | 0.96 |
茎叶酚 Shoot phenolics | 2.36 | 36.23*** | 4.75* | 1.50 | 2.26 | 0.31 | 29.01*** |
根系酚 Root phenolics | 3.61 | 0.01 | 51.47*** | 9.75** | 0.00 | 0.01 | 33.56*** |
茎叶水杨酸 Shoot salicylic acid | 49.52*** | 0.08 | 0.11 | 72.61*** | 80.09*** | 18.73*** | 95.11*** |
茎叶茉莉酸 Shoot jasmonic acid | 156.85*** | 3.54 | 26.94*** | 38.62*** | 83.52*** | 64.95*** | 116.73*** |
图2 不同氮素条件下, 蚯蚓在西花蓟马(WFT)有无时对番茄茎叶干生物量、根系干生物量、茎叶可溶性糖、根系可溶性糖、茎叶游离氨基酸、根系游离氨基酸、茎叶全氮和根系全氮(平均值 ± 标准差, n = 6)的影响。-WFT和+WFT分别表示无西花蓟马和接种西花蓟马。不同小写字母表示各处理间差异显著(Fisher’s LSD检验, P < 0.05)。
Fig. 2 Effects of earthworm Metaphire guillelmi on the contents of tomato shoot dry biomass, root dry biomass, shoot soluble sugar, root soluble sugar, shoot amino acid, root amino acid, shoot total nitrogen and root total nitrogen in the absence or presence of western flower thrips under low and high N inputs (mean ± SD, n = 6). In the figure, -WFT and +WFT indicate without and with western flower thrips, respectively. Means with different letters indicate significant difference among treatments (Fisher’s LSD test, P < 0.05). Error bars are standard errors.
图3 不同氮素条件下, 蚯蚓在西花蓟马(WFT)有无时对番茄茎叶酚、根系酚、茎叶水杨酸和茎叶茉莉酸(平均值 ± 标准差, n = 6)的影响。-WFT和+WFT分别表示无西花蓟马和接种西花蓟马。不同小写字母表示各处理间差异显著(Fisher’s LSD检验, P < 0.05)。
Fig. 3 Effects of earthworm Metaphire guillelmi on the contents of tomato shoot phenolics, root phenolics, shoot jasmonic acid and shoot salicylic acid in the absence or presence of western flower thrips (WFT) under low and high N inputs (mean ± SD, n = 6). In the figure, -WFT and +WFT indicate without and with western flower thrips, respectively. Means with different letters indicate significant difference among treatments (Fisher’s LSD test, P < 0.05). Error bars are standard errors.
图4 蚯蚓和氮素水平对植食者西花蓟马(WFT)种群数量(平均值 ± 标准差, n = 6)的影响。不同小写字母表示各处理间差异显著(Fisher’s LSD检验, P < 0.05)。
Fig. 4 Effects of earthworm and nitrogen level on the abundance of western flower thrips (WFT) (mean ± SD, n = 6). Means with different letters indicate significant difference among treatments (Fisher’s LSD test, P < 0.05). Error bars are standard errors.
图5 蚯蚓介导的番茄营养物质(茎叶可溶性糖和茎叶全氮)及信号物质(茎叶茉莉酸和茎叶水杨酸)与西花蓟马数量(WFT)的关系
Fig. 5 Regressions between western flower thrips (WFT) abundance and contents of tomato shoot soluble sugar, shoot total nitrogen, shoot salicylic acid and shoot jasmonic acid.
1 | Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols, 2, 875-877. |
2 | Andriuzzi WS, Schmidt O, Brussaard L, Faber JH, Bolger T (2016) Earthworm functional traits and interspecific interactions affect plant nitrogen acquisition and primary production. Applied Soil Ecology, 104, 148-156. |
3 | Aurélien R, Michael G, Sergio R, Sanders IR (2013) Identity and combinations of arbuscular mycorrhizal fungal isolates influence plant resistance and insect preference. Ecological Entomology, 38, 330-338. |
4 | Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511. |
5 | Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology and Evolution, 31, 440-452. |
6 | Bertrand M, Barot S, Blouin M, Whalen J, de Oliveira T, Roger-Estrade J (2015) Earthworm services for cropping systems: A review. Agronomy for Sustainable Development, 35, 553-567. |
7 | Blouin M, Zuily-Fodil Y, Pham-Thi AT, Laffray D, Reversat G, Pando A, Tondoh JE, Lavelle P (2005) Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecology Letters, 8, 202-208. |
8 | Bogaert F, Chesnais Q, Catterou M, Rambaud C, Geraldine D, Ameline A (2017) How the use of nitrogen fertiliser may switch plant suitability for aphids: The case of Miscanthus, a promising biomass crop and the aphid pest Rhopalosiphum maidis. Pest Management Science, 73, 1648-1654. |
9 | Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: Harnessing ecosystem services for food security. Trends in Ecology and Evolution, 28, 230-238. |
10 | Brown GG, Edwards CA, Brussaard L (2004) How earthworms affect plant growth: Burrowing into the mechanisms. Earthworm Ecology, 2, 13-49. |
11 | Burghardt KT (2016) Nutrient supply alters goldenrod’s induced response to herbivory. Functional Ecology, 30, 1769-1778. |
12 | Caarls L, Pieterse CM, van Wees S (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science, 6, 170. |
13 | Dalby P, Baker G, Smith S (1996) “Filter paper method” to remove soil from earthworm intestines and to standardise the water content of earthworm tissue. Soil Biology and Biochemistry, 28, 685-687. |
14 | Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Science, 207, 79-87. |
15 | Eisenhauer N, Hoersch V, Moeser J, Scheu S (2010) Synergistic effects of microbial and animal decomposers on plant and herbivore performance. Basic and Applied Ecology, 11, 23-34. |
16 | Fu SL (2007) A review and perspective on soil biodiversity research. Biodiversity Science, 15, 109-115. (in Chinese with English abstract) |
[傅声雷 (2007) 土壤生物多样性的研究概况与发展趋势. 生物多样性, 15, 109-115.] | |
17 | Gong X, Jiang YY, Zheng Y, Chen XY, Li HX, Hu F, Liu MQ, Scheu S (2018) Earthworms differentially modify the microbiome of arable soils varying in residue management. Soil Biology and Biochemistry, 121, 120-129. |
18 | Hettenhausen C, Baldwin IT, Wu J (2013) Nicotiana attenuata MPK4 suppresses a novel jasmonic acid (JA) signaling- independent defense pathway against the specialist insect Manduca sexta, but is not required for the resistance to the generalist Spodoptera littoralis. New Phytologist, 199, 787-799. |
19 | Jana U, Barot S, Blouin M, Lavelle P, Laffray D, Repellin A (2010) Earthworms influence the production of above- and belowground biomass and the expression of genes involved in cell proliferation and stress responses in Arabidopsis thaliana. Soil Biology and Biochemistry, 42, 244-252. |
20 | Jarzomski CM, Stamp NE, Bowers MD (2000) Effects of plant phenology, nutrients and herbivory on growth and defensive chemistry of plantain, Plantago lanceolata. Oikos, 88, 371-379. |
21 | Kaplan I, Pineda A, Bezemer M (2018) Application and theory of plant-soil feedbacks on aboveground herbivores. In: Aboveground-Belowground Community Ecology (eds Ohgushi T, Wurst S, Johnson SN), pp. 319-343. Springer International Publishing, West Lafayette. |
22 | Kempel A, Brandl R, Schadler M (2009) Symbiotic soil microorganisms as players in aboveground plant-herbivore interactions—the role of rhizobia. Oikos, 118, 634-640. |
23 | Kempel A, Schaedler M, Chrobock T, Fischer M, van Kleunen M (2011) Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proceedings of the National Academy of Sciences, USA, 108, 5685-5689. |
24 | Korres NE, Norsworthy JK, Tehranchian P, Gitsopoulos TK, Loka DA, Oosterhuis DM, Gealy DR, Moss SR, Burgos NR, Miller MR, Palhano M (2016) Cultivars to face climate change effects on crops and weeds: A review. Agronomy for Sustainable Development, 36, 1-22. |
25 | Larbat R, Olsen KM, Slimestad R, Lovdal T, Benard C, Verheul M, Bourgaud F, Robin C, Lillo C (2012) Influence of repeated short-term nitrogen limitations on leaf phenolics metabolism in tomato. Phytochemistry, 77, 119-128. |
26 | Li H, Li XL, Zhang JL, Gai JP, Wang C, Xiang D (2011) Interaction between earthworm and AM fungi and their effects on plant performance. Acta Pedologica Sinica, 48, 847-855. (in Chinese with English abstract) |
[李欢, 李晓林, 张俊伶, 盖京苹, 王冲, 向丹 (2011) 蚯蚓与丛枝菌根真菌的相互作用及其对植物的影响. 土壤学报, 48, 847-855.] | |
27 | Lohmann M, Scheu S, Muller C (2009) Decomposers and root feeders interactively affect plant defence in Sinapis alba. Oecologia, 160, 289-298. |
28 | Loranger-Merciris G, Cabidoche YM, Delone B, Queneherve P, Ozier-Lafontaine H (2012) How earthworm activities affect banana plant response to nematodes parasitism. Applied Soil Ecology, 52, 1-8. |
29 | Lu RK (2000) Analysis Method of Soil Agricultural Chemistry. China Agricultural Science and Technology Press, Beijing. (in Chinese) |
[鲁如坤 (2000) ,土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
30 | Lü YB, Zhang ZJ, Wu QJ, Du YZ, Zhang HR, Yu Y, Wang ED, Wang MH, Wang MQ, Tong XL, Lü LH, Tan XQ, Fu WD (2011) Research progress of the monitoring, forecast and sustainable management of invasive alien pest Frankliniella occidentalis in China. Chinese Journal of Applied Entomology, 48, 488-496. (in Chinese with English abstract) |
[吕要斌, 张治军, 吴青君, 杜予州, 张宏瑞, 于毅, 王恩东, 王鸣华, 王满囷, 童晓立, 吕利华, 谭新球, 付卫东 (2011) 外来入侵害虫西花蓟马防控技术研究与示范. 应用昆虫学报, 48, 488-496.] | |
31 | Morris WF, Traw MB, Bergelson J (2006) On testing for a tradeoff between constitutive and induced resistance. Oikos, 112, 102-110. |
32 | Mundim FM, Alborn HT, Vieira-Neto EHM, Bruna EM (2017) A whole-plant perspective reveals unexpected impacts of above- and belowground herbivores on plant growth and defense. Ecology, 98, 70-78. |
33 | Pan KW, Zhang L, Shao YH, Fu SL (2016) Thematic monitoring network of soil fauna diversity in China: Exploring the mystery of soil. Biodiversity Science, 24, 1234-1239. (in Chinese with English abstract) |
[潘开文, 张林, 邵元虎, 傅声雷 (2016) 中国土壤动物多样性监测: 探知土壤中的奥秘. 生物多样性, 24, 1234-1239.] | |
34 | Paudel S, Longcore T, MacDonald B, Mccormick MK, Szlavecz K, Wilson GWT, Loss SR (2016) Belowground interactions with aboveground consequences: Invasive earthworms and arbuscular mycorrhizal fungi. Ecology, 97, 605-614. |
35 | Pineda A, Soler R, Pozo MJ, Rasmann S, Turlings TCJ (2015) Above-belowground interactions involving plants, microbes and insects. Frontiers in Plant Science, 6, 318. |
36 | Poveda K, Steffan-Dewenter I, Scheu S, Tscharntke T (2005) Effects of decomposers and herbivores on plant performance and aboveground plant-insect interactions. Oikos, 108, 503-510. |
37 | Puga-Freitas R, Blouin M (2015) A review of the effects of soil organisms on plant hormone signalling pathways. Environmental and Experimental Botany, 114, 104-116. |
38 | Schädler M, Ballhorn DJ (2017) Beneficial soil microbiota as mediators of the plant defensive phenotype and aboveground plant-herbivore interactions. In: Progress in Botany (eds Cánovas FM, Lüttge U, Matyssek R), pp. 305-343. Springer International Publishing, Berlin. |
39 | Scheu S (2003) Effects of earthworms on plant growth: Patterns and perspectives. Pedobiologia, 47, 846-856. |
40 | Shekoofa A, Emam Y (2008) Effects of nitrogen fertilization and plant growth regulators (PGRs) on yield of wheat (Triticum aestivum L.) cv. Shiraz. Journal of Agricultural Science and Technology, 10, 101-108. |
41 | Staley JT, Stewartjones A, Pope TW, Wright DJ, Leather SR, Hadley P, Rossiter JT, van Emden HF, Poppy GM (2010) Varying responses of insect herbivores to altered plant chemistry under organic and conventional treatments. Proceedings of the Royal Society B: Biological Sciences, 277, 779-786. |
42 | Tao L, Ahmad A, Roode JC, Hunter MD (2016) Arbuscular mycorrhizal fungi affect plant tolerance and chemical defences to herbivory through different mechanisms. Journal of Ecology, 104, 561-571. |
43 | Tsiafouli MA, Thebault E, Sgardelis SP, Deruiter PC, van der Putten WH, Birkhofer RD, Hemerik L, de Vries FT, Bargett RD, Brady MV, Bjornlund L, Jorgensen HB, Christensen S, Hertefeldt TD, Hotes S, Hol WHG, Frouz J, Liiri M, Mortimer SR, Setala H, Tzanopoulos J, Uteseny K, Pizl V, Stary J, Wolters V, Hedlund K (2015) Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 21, 973-985. |
44 | van Groenigen JW, Lubbers IM, Vos HM, Brown GG, Deyn GB, van Groenigen KJ (2014) Earthworms increase plant production: A meta-analysis. Scientific Reports, 4, 6365. |
45 | Wang SJ, Ruan HH (2008) Feedback mechanisms of soil biota to aboveground biology in terrestrial ecosystems. Biodiversity Science, 16, 407-416. (in Chinese with English abstract) |
[王邵军, 阮宏华 (2008) 土壤生物对地上生物的反馈作用及其机制. 生物多样性, 16, 407-416.] | |
46 | Wu JH, Song CY, Chen JK (2007) Effect of microbivorous nematodes on plant growth and soil nutrient cycling: A review. Biodiversity Science, 15, 124-133. (in Chinese with English abstract) |
[吴纪华, 宋慈玉, 陈家宽 (2007) 食微线虫对植物生长及土壤养分循环的影响. 生物多样性, 15, 124-133.] | |
47 | Wu YP, Lü LY, Bi YM, Zhang Y, Sun ZJ (2013) Effects of earthworm inoculation on saline-alkali soil nutrient, soil organisms and plant cultivation. Journal of China Agricultural University, 18, 45-51. (in Chinese with English abstract) |
[伍玉鹏, 吕丽媛, 毕艳孟, 张一, 孙振钧 (2013) 接种蚯蚓对盐碱土养分、土壤生物及植被的影响. 中国农业大学学报, 18, 45-51.] | |
48 | Wurst S (2013) Plant-mediated links between detritivores and aboveground herbivores. Frontiers in Plant Science, 4, 380. |
49 | Wurst S, Dugassa-Gobena D, Langel R, Bonkowski M, Scheu S (2004) Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance. New Phytologist, 163, 169-176. |
50 | Wurst S, Wagenaar R, Biere A, van der Putten WH (2010) Microorganisms and nematodes increase levels of secondary metabolites in roots and root exudates of Plantago lanceolata. Plant and Soil, 329, 117-126. |
51 | Wurst S, Forstreuter M (2010) Colonization of Tanacetum vulgare by aphids is reduced by earthworms. Entomologia Experimentalis et Applicata, 137, 86-92. |
52 | Xiao ZG, Wang X, Koricheva J, Kergunteuil A, Le Bayon R, Liu MQ, Hu F, Rasmann S (2018) Earthworms affect plant growth and resistance against herbivores: A meta-analysis. Functional Ecology, 32, 150-160. |
53 | Xu W, Ma ZY, Jing X, He JS (2016) Biodiversity and ecosystem multifunctionality: Advances and perspectives. Biodiversity Science, 24, 55-71. (in Chinese with English abstract) |
[徐炜, 马志远, 井新, 贺金生 (2016) 生物多样性与生态系统多功能性: 进展与展望. 生物多样性, 24, 55-71.] | |
54 | Zhang N, Liao Y, Sun FL, Wang C, Sun ZJ (2012) Earthworm population characteristics in soils different in land use and their relationships with biological fertility of the soils. Acta Pedologica Sinica, 49, 364-372. (in Chinese with English abstract) |
[张宁, 廖燕, 孙福来, 王冲, 孙振钧 (2012) 不同土地利用方式下的蚯蚓种群特征及其与土壤生物肥力的关系. 土壤学报, 49, 364-372.] | |
55 | Zhang SJ, Chao Y, Zhang CL, Cheng J, Li J, Ma N (2010) Earthworms enhanced winter oilseed rape (Brassica napus L.) growth and nitrogen uptake. Agriculture Ecosystems and Environment, 139, 463-468. |
56 | Zhang WX, Chen DM, Zhao CC (2007) Functions of earthworm in ecosystem. Biodiversity Science, 15, 142-153. (in Chinese with English abstract) |
[张卫信, 陈迪马, 赵灿灿 (2007) 蚯蚓在生态系统中的作用. 生物多样性, 15, 142-153.] | |
57 | Zheng Y, Wang S, Bonkowski M, Chen XY, Griffiths B, Hu F, Liu MQ (2018) Litter chemistry influences earthworm effects on soil carbon loss and microbial carbon acquisition. Soil Biology and Biochemistry, 123, 105-114. |
58 | Züst T, Agrawal AA (2017) Trade-offs between plant growth and defense against insect herbivory: An emerging mechanistic synthesis. Annual Review of Plant Biology, 68, 513-534. |
[1] | 杨俊毅, 关潇, 李俊生, 刘晶晶, 郝颢晶, 王槐睿. 乌江流域生物多样性与生态系统服务的空间格局及相互关系[J]. 生物多样性, 2023, 31(7): 23061-. |
[2] | 谢致敬, 刘相钰, 孙晓铭, 刘继亮, 刘占锋, 张晓珂, 陈军, 杨效东, 朱波, 柯欣, 吴东辉. 中国土壤动物多样性监测网络建设、进展与展望[J]. 生物多样性, 2023, 31(12): 23365-. |
[3] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[4] | 吴杨, 田瑜, 戴逢斌, 李子圆. “自然对人类的贡献”的实现、发展趋势和启示[J]. 生物多样性, 2022, 30(5): 21549-. |
[5] | 胡官正, 曾维华, 马冰然. 保护地区域经济建设与生态保护协同发展路线图: 以三江源地区为例[J]. 生物多样性, 2022, 30(2): 21225-. |
[6] | 潘雪, 刘冬. 2020-2021年世界甲螨亚目新分类单元和近15年中国发表新种概况——纪念中国甲螨学开创100周年[J]. 生物多样性, 2022, 30(12): 22193-. |
[7] | 王军, 赵超. 中国菌食性管蓟马物种多样性及分布格局[J]. 生物多样性, 2022, 30(12): 22128-. |
[8] | 李帆, 王党军, 林小元, 纪康, 叶露萍, 黄超, 郑勇, Zhun Mao, 左娟. 八大公山亚热带森林木质残体中大型无脊椎动物群落特征[J]. 生物多样性, 2022, 30(12): 21476-. |
[9] | 刘厶瑶, 李柱, 柯欣, 孙丽娜, 吴龙华, 赵杰杰. 贵州省典型汞铊矿区周边农田土壤跳虫群落特征[J]. 生物多样性, 2022, 30(12): 22265-. |
[10] | 冯怡琳, 王永珍, 林永一, 赵文智, 高俊伟, 刘继亮. 戈壁生态系统蚁穴微生境对大型土壤动物多样性的影响[J]. 生物多样性, 2022, 30(12): 22282-. |
[11] | 徐聪, 张飞宇, 俞道远, 孙新, 张峰. 土壤动物的分子分类预测策略评估[J]. 生物多样性, 2022, 30(12): 22252-. |
[12] | 程建伟, 王亚东, 王桠楠, 李莹, 郭颖, 白正, 刘新民, 李永宏. 半干旱草原大中型土壤动物在畜粪分解中的作用[J]. 生物多样性, 2022, 30(12): 22575-. |
[13] | 姚海凤, 张赛超, 上官华媛, 李志鹏, 孙新. 城市化对土壤动物群落结构和多样性的影响[J]. 生物多样性, 2022, 30(12): 22547-. |
[14] | 徐靖, 王金洲, 李俊生. 商业界参与生物多样性主流化的进展、路径与建议[J]. 生物多样性, 2022, 30(11): 22078-. |
[15] | 傅声雷, 刘满强, 张卫信, 邵元虎. 土壤动物多样性的地理分布及其生态功能研究进展[J]. 生物多样性, 2022, 30(10): 22435-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn