生物多样性 ›› 2024, Vol. 32 ›› Issue (12): 24261. DOI: 10.17520/biods.2024261 cstr: 32101.14.biods.2024261
王党军1,2,3,5, 谢午阳2,3, 林小元2,3, 乔秀娟2, 徐耀粘2, 田秋香2, 刘峰2, 张娅妮4, 左娟2,*(), 江明喜2
收稿日期:
2024-06-26
接受日期:
2024-12-17
出版日期:
2024-12-20
发布日期:
2025-01-19
通讯作者:
E-mail: 基金资助:
Dangjun Wang1,2,3,5, Wuyang Xie2,3, Xiaoyuan Lin2,3, Xiujuan Qiao2, Yaozhan Xu2, Qiuxiang Tian2, Feng Liu2, Yani Zhang4, Zhun Mao5, Juan Zuo2,*(), Mingxi Jiang2
Received:
2024-06-26
Accepted:
2024-12-17
Online:
2024-12-20
Published:
2025-01-19
Contact:
E-mail: Supported by:
摘要: 土壤动物是驱动凋落物分解的重要生物因子, 在促进养分循环、维持土壤结构稳定及提高生态系统功能方面发挥着不可或缺的作用。然而, 由于土壤动物具有高多样性以及复杂的物种间相互作用, 其群落特征与凋落物分解速率的关系仍未被完全阐明。与此同时, 叶经济谱作为资源获取和利用策略的权衡, 可能直接或间接地影响土壤动物群落结构和功能。为探究不同土壤动物类群对凋落物分解的作用机制, 以及叶经济谱对土壤动物群落的潜在调控作用, 本研究在湖南八大公山亚热带森林选取了20种代表性植物的凋落物, 根据其核心功能性状构建了凋落叶经济谱; 并对其开展了为期13个月的分解实验, 利用3种不同孔径的网袋(0.07 mm、2 mm和5 mm), 探究土壤动物体型对凋落物分解的作用。结果表明: 共收集土壤动物28,786头, 隶属于11纲29目, 其中螨类和弹尾目为优势类群, 两者可占土壤动物总数的80%以上。凋落物种类显著影响了土壤动物密度和丰富度, 但对Shannon-Wiener多样性指数、Gini-Simpson指数和Pielou均匀度指数均无影响。凋落物性状形成的叶经济谱与土壤动物丰度和多样性均无相关性。土壤动物显著提高了凋落物分解速率, 其对分解的贡献可达45.28%。不同体型土壤动物对凋落物分解速率的贡献不同, 中型和小型土壤动物为28.31%。在所有体型动物均参与的情况下, 凋落物分解速率与土壤动物丰度和多样性均具有显著相关性。这些研究表明, 凋落物种类影响了土壤动物丰度; 土壤动物群落特征促进了凋落物分解和转化, 其类群不同程度地调节了凋落物的分解速率。本研究有助于深入理解土壤动物与凋落物分解之间的相互作用关系, 为森林生态系统养分循环、土壤生物多样性及森林生态系统管理和保护提供科学依据。
王党军, 谢午阳, 林小元, 乔秀娟, 徐耀粘, 田秋香, 刘峰, 张娅妮, 左娟, 江明喜 (2024) 八大公山森林土壤动物群落与叶经济谱及凋落物分解速率的关系. 生物多样性, 32, 24261. DOI: 10.17520/biods.2024261.
Dangjun Wang, Wuyang Xie, Xiaoyuan Lin, Xiujuan Qiao, Yaozhan Xu, Qiuxiang Tian, Feng Liu, Yani Zhang, Zhun Mao, Juan Zuo, Mingxi Jiang (2024) Relationships between soil fauna, leaf economics spectrum, and litter decomposition rates in a subtropical forest of Badagongshan. Biodiversity Science, 32, 24261. DOI: 10.17520/biods.2024261.
物种名称 Species name | 简写 Abbreviation | 孔径 Mesh size | ||
---|---|---|---|---|
0.07 mm | 2 mm | 5 mm | ||
七叶树 Aesculus chinensis | AECH | 0.21 ± 0.01Ce | 0.26 ± 0.01Be | 0.36 ± 0.02Ajk |
华榛 Corylus chinensis | COCH | 1.40 ± 0.19Bb | 2.18 ± 0.37ABb | 2.27 ± 0.14Ade |
灯台树 Cornus controversa | COCO | 1.39 ± 0.11Bb | 2.39 ± 0.45Ab | 2.52 ± 0.21Acd |
藏刺榛 Corylus ferox | COFE | 1.19 ± 0.05Abc | 1.30 ± 0.25Ac | 1.49 ± 0.13Af |
柳杉 Cryptomeria japonica | CRJA | 0.24 ± 0.04Cef | 0.39 ± 0.03Bef | 0.54 ± 0.03Aijk |
珙桐 Davidia involucrata | DAIN | 2.02 ± 0.46Ba | 3.51 ± 0.35Aa | 3.81 ± 0.16Aa |
亮叶水青冈 Fagus lucida | FALU | 0.21 ± 0.01Be | 0.35 ± 0.04Ade | 0.32 ± 0.04Ak |
鹅掌楸 Liriodendron chinense | LICH | 1.01 ± 0.04Bbcd | 1.96 ± 0.24Ab | 2.08 ± 0.11Ae |
红柴枝 Meliosma oldhamii | MEOL | 0.32 ± 0.01Be | 0.43 ± 0.05Ade | 0.47 ± 0.01Ajk |
水杉 Metasequoia glyptostroboides | MEGL | 0.99 ± 0.02Bef | 1.24 ± 0.31Bef | 1.56 ± 0.05Ajk |
蓝果树 Nyssa sinensis | NYSI | 0.76 ± 0.05Bcde | 1.10 ± 0.14Acd | 1.31 ± 0.06Afg |
灰叶稠李 Prunus grayana | PRGR | 1.15 ± 0.11Bbc | 2.35 ± 0.43Ab | 2.81 ± 0.07Abc |
大叶杨 Populus lasiocarpa | POLA | 0.49 ± 0.08Bde | 0.81 ± 0.15ABcde | 1.05 ± 0.12Agh |
湖北枫杨 Pterocarya hupehensis | PTHU | 0.72 ± 0.13Bcde | 0.79 ± 0.09Bcde | 1.25 ± 0.09Afg |
白辛树 Pterostyrax psilophyllus | PTPS | 0.51 ± 0.04Bde | 0.92 ± 0.06Acde | 1.05 ± 0.01Agh |
瑶山梭罗 Reevesia glaucophylla | REGL | 0.47 ± 0.04Bde | 0.57 ± 0.02Bcde | 0.82 ± 0.03Ahi |
檫木 Sassafras tzumu | SATZ | 0.19 ± 0.01Be | 0.35 ± 0.03Ade | 0.41 ± 0.03Ajk |
瘿椒树 Tapiscia sinensis | TASI | 2.28 ± 0.49Ba | 3.06 ± 0.30ABa | 3.91 ± 0.19Aa |
粉椴 Tilia oliveri | TIOL | 1.26 ± 0.17Cbc | 2.23 ± 0.13Bb | 2.85 ± 0.12Ab |
香椿 Toona sinensis | TOSI | 0.22 ± 0.02Be | 0.51 ± 0.11Ade | 0.66 ± 0.02Aij |
F | 12.24*** | 20.23*** | 121.71*** |
表1 树种和土壤动物对凋落物分解速率的影响(平均值 ± 标准误)
Table 1 Effect of tree species and soil fauna on leaf litter decomposition rate (mean ± SE)
物种名称 Species name | 简写 Abbreviation | 孔径 Mesh size | ||
---|---|---|---|---|
0.07 mm | 2 mm | 5 mm | ||
七叶树 Aesculus chinensis | AECH | 0.21 ± 0.01Ce | 0.26 ± 0.01Be | 0.36 ± 0.02Ajk |
华榛 Corylus chinensis | COCH | 1.40 ± 0.19Bb | 2.18 ± 0.37ABb | 2.27 ± 0.14Ade |
灯台树 Cornus controversa | COCO | 1.39 ± 0.11Bb | 2.39 ± 0.45Ab | 2.52 ± 0.21Acd |
藏刺榛 Corylus ferox | COFE | 1.19 ± 0.05Abc | 1.30 ± 0.25Ac | 1.49 ± 0.13Af |
柳杉 Cryptomeria japonica | CRJA | 0.24 ± 0.04Cef | 0.39 ± 0.03Bef | 0.54 ± 0.03Aijk |
珙桐 Davidia involucrata | DAIN | 2.02 ± 0.46Ba | 3.51 ± 0.35Aa | 3.81 ± 0.16Aa |
亮叶水青冈 Fagus lucida | FALU | 0.21 ± 0.01Be | 0.35 ± 0.04Ade | 0.32 ± 0.04Ak |
鹅掌楸 Liriodendron chinense | LICH | 1.01 ± 0.04Bbcd | 1.96 ± 0.24Ab | 2.08 ± 0.11Ae |
红柴枝 Meliosma oldhamii | MEOL | 0.32 ± 0.01Be | 0.43 ± 0.05Ade | 0.47 ± 0.01Ajk |
水杉 Metasequoia glyptostroboides | MEGL | 0.99 ± 0.02Bef | 1.24 ± 0.31Bef | 1.56 ± 0.05Ajk |
蓝果树 Nyssa sinensis | NYSI | 0.76 ± 0.05Bcde | 1.10 ± 0.14Acd | 1.31 ± 0.06Afg |
灰叶稠李 Prunus grayana | PRGR | 1.15 ± 0.11Bbc | 2.35 ± 0.43Ab | 2.81 ± 0.07Abc |
大叶杨 Populus lasiocarpa | POLA | 0.49 ± 0.08Bde | 0.81 ± 0.15ABcde | 1.05 ± 0.12Agh |
湖北枫杨 Pterocarya hupehensis | PTHU | 0.72 ± 0.13Bcde | 0.79 ± 0.09Bcde | 1.25 ± 0.09Afg |
白辛树 Pterostyrax psilophyllus | PTPS | 0.51 ± 0.04Bde | 0.92 ± 0.06Acde | 1.05 ± 0.01Agh |
瑶山梭罗 Reevesia glaucophylla | REGL | 0.47 ± 0.04Bde | 0.57 ± 0.02Bcde | 0.82 ± 0.03Ahi |
檫木 Sassafras tzumu | SATZ | 0.19 ± 0.01Be | 0.35 ± 0.03Ade | 0.41 ± 0.03Ajk |
瘿椒树 Tapiscia sinensis | TASI | 2.28 ± 0.49Ba | 3.06 ± 0.30ABa | 3.91 ± 0.19Aa |
粉椴 Tilia oliveri | TIOL | 1.26 ± 0.17Cbc | 2.23 ± 0.13Bb | 2.85 ± 0.12Ab |
香椿 Toona sinensis | TOSI | 0.22 ± 0.02Be | 0.51 ± 0.11Ade | 0.66 ± 0.02Aij |
F | 12.24*** | 20.23*** | 121.71*** |
图1 2 mm (a)和5 mm (b)孔径网袋内土壤动物群落组成。物种缩写含义见表1。
Fig. 1 Composition of soil fauna communities in 2 mm (a) and 5 mm (b) mesh size bags. Species abbreviations are shown in Table 1.
图2 不同孔径网袋内土壤动物群落主成分分析
Fig. 2 Principal component analysis (PCA) of soil fauna community in different mesh size bags. Species abbreviations are shown in Table 1.
统计检验 Statistical tests | 凋落物种类 Litter species | 网袋孔径 Mesh size | 凋落物种类 × 网袋孔径 Litter species × mesh size | ||
---|---|---|---|---|---|
凋落物分解速率 Litter decomposition rate | F | 93.863 | 43.130 | 1.450 | |
P | < 0.001 | < 0.001 | 0.043 | ||
土壤动物密度 Soil fauna density | F | 2.411 | 1.348 | 0.625 | |
P | 0.002 | 0.248 | 0.881 | ||
丰富度 Richness | F | 2.289 | 0.205 | 0.847 | |
P | 0.004 | 0.651 | 0.647 | ||
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | F | 1.130 | 5.029 | 1.359 | |
P | 0.331 | 0.027 | 0.161 | ||
Gini-Simpson指数 Gini-Simpson index | F | 1.143 | 7.399 | 1.520 | |
P | 0.319 | 0.008 | 0.091 | ||
Pielou均匀度指数 Pielou evenness index | F | 1.469 | 7.857 | 1.874 | |
P | 0.109 | 0.006 | 0.022 |
表2 凋落物种类和网袋孔径对土壤动物群落和分解速率的影响
Table 2 Effect of litter species and mesh size on indicators of soil fauna community and decomposition rate
统计检验 Statistical tests | 凋落物种类 Litter species | 网袋孔径 Mesh size | 凋落物种类 × 网袋孔径 Litter species × mesh size | ||
---|---|---|---|---|---|
凋落物分解速率 Litter decomposition rate | F | 93.863 | 43.130 | 1.450 | |
P | < 0.001 | < 0.001 | 0.043 | ||
土壤动物密度 Soil fauna density | F | 2.411 | 1.348 | 0.625 | |
P | 0.002 | 0.248 | 0.881 | ||
丰富度 Richness | F | 2.289 | 0.205 | 0.847 | |
P | 0.004 | 0.651 | 0.647 | ||
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | F | 1.130 | 5.029 | 1.359 | |
P | 0.331 | 0.027 | 0.161 | ||
Gini-Simpson指数 Gini-Simpson index | F | 1.143 | 7.399 | 1.520 | |
P | 0.319 | 0.008 | 0.091 | ||
Pielou均匀度指数 Pielou evenness index | F | 1.469 | 7.857 | 1.874 | |
P | 0.109 | 0.006 | 0.022 |
物种 Species | t0.5 (年 year) | t0.95 (年 year) | ||||
---|---|---|---|---|---|---|
0.07 mm | 2 mm | 5 mm | 0.07 mm | 2 mm | 5 mm | |
七叶树 AECH | 3.25 | 2.63 | 1.92 | 14.06 | 11.37 | 8.30 |
华榛 COCH | 0.49 | 0.32 | 0.30 | 2.13 | 1.37 | 1.32 |
灯台树 COCO | 0.50 | 0.29 | 0.27 | 2.16 | 1.25 | 1.19 |
藏刺榛 COFE | 0.58 | 0.53 | 0.47 | 2.52 | 2.30 | 2.02 |
柳杉 CRJA | 2.93 | 1.78 | 1.29 | 12.67 | 7.71 | 5.57 |
珙桐 DAIN | 0.34 | 0.20 | 0.18 | 1.48 | 0.85 | 0.79 |
亮叶水青冈 FALU | 3.33 | 2.01 | 2.15 | 14.37 | 8.67 | 9.28 |
鹅掌楸 LICH | 0.69 | 0.35 | 0.33 | 2.97 | 1.53 | 1.44 |
红柴枝 MEOL | 2.17 | 1.61 | 1.47 | 9.38 | 6.95 | 6.36 |
水杉 MEGL | 0.70 | 0.56 | 0.44 | 3.04 | 2.42 | 1.92 |
蓝果树 NYSI | 0.92 | 0.63 | 0.53 | 3.96 | 2.73 | 2.30 |
灰叶稠李 PRGR | 0.60 | 0.30 | 0.19 | 2.61 | 1.28 | 0.83 |
大叶杨 POLA | 1.42 | 0.86 | 0.66 | 6.14 | 3.72 | 2.86 |
湖北枫杨 PTHU | 0.96 | 0.88 | 0.55 | 4.13 | 3.79 | 2.40 |
白辛树 PTPS | 1.36 | 0.75 | 0.66 | 5.89 | 3.25 | 2.85 |
瑶山梭罗 REGL | 1.47 | 1.22 | 0.85 | 6.35 | 5.28 | 3.67 |
檫木 SATZ | 3.70 | 2.01 | 1.69 | 16.00 | 8.68 | 7.32 |
瘿椒树 TASI | 0.30 | 0.23 | 0.18 | 1.32 | 0.98 | 0.77 |
粉椴 TIOL | 0.55 | 0.31 | 0.24 | 2.38 | 1.34 | 1.05 |
香椿 TOSI | 3.21 | 1.35 | 1.05 | 13.88 | 5.83 | 4.53 |
表3 Olson指数衰减模型对凋落物50%分解和95%分解时间的预测
Table 3 Predicts of the time required to decompose 50% and 95% of the litter using the Olson model
物种 Species | t0.5 (年 year) | t0.95 (年 year) | ||||
---|---|---|---|---|---|---|
0.07 mm | 2 mm | 5 mm | 0.07 mm | 2 mm | 5 mm | |
七叶树 AECH | 3.25 | 2.63 | 1.92 | 14.06 | 11.37 | 8.30 |
华榛 COCH | 0.49 | 0.32 | 0.30 | 2.13 | 1.37 | 1.32 |
灯台树 COCO | 0.50 | 0.29 | 0.27 | 2.16 | 1.25 | 1.19 |
藏刺榛 COFE | 0.58 | 0.53 | 0.47 | 2.52 | 2.30 | 2.02 |
柳杉 CRJA | 2.93 | 1.78 | 1.29 | 12.67 | 7.71 | 5.57 |
珙桐 DAIN | 0.34 | 0.20 | 0.18 | 1.48 | 0.85 | 0.79 |
亮叶水青冈 FALU | 3.33 | 2.01 | 2.15 | 14.37 | 8.67 | 9.28 |
鹅掌楸 LICH | 0.69 | 0.35 | 0.33 | 2.97 | 1.53 | 1.44 |
红柴枝 MEOL | 2.17 | 1.61 | 1.47 | 9.38 | 6.95 | 6.36 |
水杉 MEGL | 0.70 | 0.56 | 0.44 | 3.04 | 2.42 | 1.92 |
蓝果树 NYSI | 0.92 | 0.63 | 0.53 | 3.96 | 2.73 | 2.30 |
灰叶稠李 PRGR | 0.60 | 0.30 | 0.19 | 2.61 | 1.28 | 0.83 |
大叶杨 POLA | 1.42 | 0.86 | 0.66 | 6.14 | 3.72 | 2.86 |
湖北枫杨 PTHU | 0.96 | 0.88 | 0.55 | 4.13 | 3.79 | 2.40 |
白辛树 PTPS | 1.36 | 0.75 | 0.66 | 5.89 | 3.25 | 2.85 |
瑶山梭罗 REGL | 1.47 | 1.22 | 0.85 | 6.35 | 5.28 | 3.67 |
檫木 SATZ | 3.70 | 2.01 | 1.69 | 16.00 | 8.68 | 7.32 |
瘿椒树 TASI | 0.30 | 0.23 | 0.18 | 1.32 | 0.98 | 0.77 |
粉椴 TIOL | 0.55 | 0.31 | 0.24 | 2.38 | 1.34 | 1.05 |
香椿 TOSI | 3.21 | 1.35 | 1.05 | 13.88 | 5.83 | 4.53 |
图3 土壤动物对凋落物分解速率的贡献。灰色和黑色条形柱分别表示大型和中小型土壤动物对分解速率的贡献率, 误差线表示土壤动物贡献率的变异范围。物种缩写含义见表1。
Fig. 3 Contribution of soil fauna to litter decomposition rate. Gray and black bars represent the contributions of macrofauna, and micro- and mesofauna to litter decomposition rate, respectively. Error bars represent the standard errors of soil fauna contribution. Species abbreviations are shown in Table 1.
图4 叶经济谱对土壤动物群落密度和多样性的影响。小图分别表示叶经济谱与土壤动物密度(a)、丰富度(b)、Shannon-Wiener多样性指数(c)和Gini-Simpson指数(d)的关系。
Fig. 4 Effect of the leaf economics spectrum on soil fauna density and diversity. Panels represent the relationships between the leaf economics spectrum and different indicators of soil fauna community, including soil fauna density (a), richness (b), the Shannon-Wiener diversity index (c) and Gini-Simpson index (d).
图5 土壤动物群落指标与分解速率的关系。左侧小图表示在2 mm孔径网袋内分解速率与土壤动物密度(a)、丰富度(c)、Shannon-Wiener多样性指数(e)和Gini-Simpson指数(g)的关系; 右侧小图表示在5 mm孔径网袋内分解速率与土壤动物密度(b)、丰富度(d)、Shannon-Wiener多样性指数(f)和Gini-Simpson指数(h)的关系。
Fig. 5 Relationship between indicators of soil fauna community and litter decomposition rate. The left panels show the relationship between litter decomposition rate and the soil fauna density (a), richness (c), the Shannon-Wiener diversity index (e) and Gini-Simpson index (g) in 2 mm mesh size bags; the right panels show the relationship between litter decomposition rate and the soil fauna density (b), richness (d), the Shannon-Wiener diversity index (f) and Gini-Simpson index (h) in 5 mm mesh size bags.
[1] | Bakker MA, Carreño-Rocabado G, Poorter L (2011) Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Functional Ecology, 25, 473-483. |
[2] | Bardgett RD, Chan KF (1999) Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biology and Biochemistry, 31, 1007-1014. |
[3] | Bradford MA, Tordoff GM, Eggers T, Jones TH, Newington JE (2002) Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos, 99, 317-323. |
[4] | de la Riva EG, Prieto I, Villar R (2019) The leaf economic spectrum drives leaf litter decomposition in Mediterranean forests. Plant and Soil, 435, 353-366. |
[5] | Dias ATC, Cornelissen JHC, Berg MP (2017) Litter for life: Assessing the multifunctional legacy of plant traits. Journal of Ecology, 105, 1163-1168. |
[6] | Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016) The global spectrum of plant form and function. Nature, 529, 167-171. |
[7] | Felsenstein J (1985) Phylogenies and the comparative method. The American Naturalist, 125, 1-15. |
[8] | Freschet GT, Cornelissen JHC, Van Logtestijn RSP, Aerts R (2010) Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology, 98, 362-373. |
[9] |
Fu SL (2018) Strengthening the research on soil fauna diversity and their ecological functions using novel technology and field experimental facility. Biodiversity Science, 26, 1031-1033. (in Chinese)
DOI |
[傅声雷 (2018) 利用新方法和野外实验平台加强土壤动物多样性及其生态功能的研究. 生物多样性, 26, 1031-1033.]
DOI |
|
[10] | Fujii S, Berg MP, Cornelissen JHC (2020) Living litter: Dynamic trait spectra predict fauna composition. Trends in Ecology & Evolution, 35, 886-896. |
[11] | Gan M (2023) Effects of Soil Fauna on Litter Decomposition in Loess Area of Northern Shaanxi. PhD dissertation, Northwest A&F University, Yangling, Shaanxi. (in Chinese with English abstract) |
[甘淼 (2023) 土壤动物对陕北黄土区枯落物分解的影响研究. 博士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[12] |
García-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters, 16, 1045-1053.
DOI PMID |
[13] | García-Palacios P, McKie BG, Handa IT, Frainer A, Hättenschwiler S (2016) The importance of litter traits and decomposers for litter decomposition: A comparison of aquatic and terrestrial ecosystems within and across biomes. Functional Ecology, 30, 819-829. |
[14] | Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hättenschwiler S (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature, 509, 218-221. |
[15] | Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 36, 191-218. |
[16] | Hunt HW, Coleman DC, Ingham ER, Ingham RE, Elliott ET, Moore JC, Rose SL, Reid CPP, Morley CR (1987) The detrital food web in a shortgrass prairie. Biology and Fertility of Soils, 3, 57-68. |
[17] | Jia BR (2019) Litter decomposition and its underlying mechanisms. Chinese Journal of Plant Ecology, 43, 648-657. (in Chinese with English abstract) |
[贾丙瑞 (2019) 凋落物分解及其影响机制. 植物生态学报, 43, 648-657.]
DOI |
|
[18] | Jiang YF (2013) Litter Decomposition and Functional Role of Soil Fauna in Decomposition in a Pinus koraiensis Mixed Broad-leaved Forest of Changbai Mountains. PhD dissertation, Northeast Normal University, Changchun. (in Chinese with English abstract) |
[蒋云峰 (2013) 长白山针阔混交林主要凋落物分解及土壤动物的作用. 博士学位论文, 东北师范大学, 长春.] | |
[19] | Joly FX, Coq S, Coulis M, David JF, Hättenschwiler S, Mueller CW, Prater I, Subke JA (2020) Detritivore conversion of litter into faeces accelerates organic matter turnover. Communications Biology, 3, 660. |
[20] | Kampichler C, Bruckner A (2009) The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biological Reviews, 84, 375-389. |
[21] | Lin YH, Yang DF, Zhang FD, Wang JX, Bai XL, Wang B (2006) Structure of soil animal community of oakery litter and fluctuation during leaf litter decomposition. Forest Research, 19, 331-336. (in Chinese with English abstract) |
[林英华, 杨德付, 张夫道, 王建修, 白秀兰, 王兵 (2006) 栎林凋落层土壤动物群落结构及其在凋落物分解中的变化. 林业科学研究, 19, 331-336.] | |
[22] | Lu ZJ (2011) Brief introduction of Badagong Mountain National Nature Reserve in Hunan Province. Biodiversity Science, 19, 271. (in Chinese) |
[卢志军 (2011) 湖南八大公山国家级自然保护区简介. 生物多样性, 19, 271.] | |
[23] | Lu ZJ, Bao DC, Guo YL, Lu JM, Wang QG, He D, Zhang KH, Xu YZ, Liu HB, Meng HJ, Huang HD, Wei XZ, Liao JX, Qiao XJ, Jiang MX, Gu ZR, Liao CL (2013) Community composition and structure of Badagongshan (BDGS) forest dynamic plot in a mid-subtropical mountain evergreen and deciduous broad-leaved mixed forest, Central China. Plant Science Journal, 31, 336-344. (in Chinese with English abstract) |
[卢志军, 鲍大川, 郭屹立, 路俊盟, 王庆刚, 何东, 张奎汉, 徐耀粘, 刘海波, 孟红杰, 黄汉东, 魏新增, 廖建雄, 乔秀娟, 江明喜, 谷志容, 廖春林 (2013) 八大公山中亚热带山地常绿落叶阔叶混交林物种组成与结构. 植物科学学报, 31, 336-344.] | |
[24] | Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, Hara R, Solymos P, Stevens M, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De CM, Durand S, Evangelista H, Fitz JR, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, Mcglinn D, Ouellette M, Ribeiro CE, Smith T, Stier A, Ter BC, Weedon J (2022) vegan: Community Ecology Package, R package version 2.6-4. https://CRAN.R-project.org/package=vegan. (accessed on 2024-03-16) |
[25] | Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331. |
[26] | Seastedt T (1984) The role of microarthropods in decomposition and mineralization processes. Annual Review of Entomology, 29, 25-46. |
[27] | Shao YH, Zhang WX, Liu SJ, Wang XL, Fu SL (2015) Diversity and function of soil fauna. Acta Ecologica Sinica, 35, 6614-6625. (in Chinese with English abstract) |
[邵元虎, 张卫信, 刘胜杰, 王晓丽, 傅声雷 (2015) 土壤动物多样性及其生态功能. 生态学报, 35, 6614-6625.] | |
[28] | Tian XK (2020) Effects of Soil Fauna and Microbe in the Litter Decomposition Process of Four Subtropical Forests. PhD dissertation, Chinese Academy of Forestry, Beijing. (in Chinese with English abstract) |
[田晓堃 (2020) 亚热带四种森林凋落物分解过程中土壤动物与微生物的影响. 博士学位论文, 中国林业科学研究院, 北京.] | |
[29] | Wang DJ, Xie WY, Lin XY, Li F, Deng CC, Zeng XY, Tan K, Yuan YP, Gu ZR, Jiang MX, Mao Z, Zuo J (2024) Multifaceted leaf litter traits shape soil fauna communities: Evidence from subtropical monocultural plantations. Forest Ecology and Management, 563, 121965. |
[30] | Wang SJ (2009) Effects of Soil Fauna on Leaf Litter Decomposition along an Elevation Gradient in the Wuyi Mountains. PhD dissertation, Nanjing Forestry University, Nanjing. (in Chinese with English abstract) |
[王邵军 (2009) 武夷山不同海拔土壤动物对凋落物分解的影响. 博士学位论文, 南京林业大学, 南京.] | |
[31] | Wardle D, Bonner KI, Barker G (2002) Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Functional Ecology, 16, 585-595. |
[32] |
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
DOI PMID |
[33] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee TL, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[34] | Wu FZ, Tan B (2018) A review on the interactions between soil fauna and forest litter decomposition. Journal of Sichuan Agricultural University, 36, 569-575. (in Chinese with English abstract) |
[吴福忠, 谭波 (2018) 森林凋落物分解过程与土壤动物的相互关系研究进展. 四川农业大学学报, 36, 569-575.] | |
[35] | Xu X (2023) Effects of Soil Fauna on Leaf Litter Decomposition and Soil Respiration in Poplar Plantations. PhD dissertation, Nanjing Forestry University, Nanjing. (in Chinese with English abstract) |
[徐璇 (2023) 土壤动物对杨树人工林凋落叶分解和土壤呼吸的影响. 博士学位论文, 南京林业大学, 南京.] | |
[36] | Yan J, Wu JH (2018) Study advances in plant diversity effects on soil fauna. Soils, 50, 231-238. (in Chinese with English abstract) |
[严珺, 吴纪华 (2018) 植物多样性对土壤动物影响的研究进展. 土壤, 50, 231-238.] | |
[37] | Yang XD, Chen J (2009) Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biology and Biochemistry, 41, 910-918. |
[38] | Yin WY (1992) Subtropical Soil Animals of China. Science Press, Beijing. (in Chinese) |
[尹文英 (1992) 中国亚热带土壤动物. 科学出版社, 北京.] | |
[39] | Yin WY (1998) Pictorial Keys to Soil Animals of China. Science Press, Beijing. (in Chinese) |
[尹文英 (1998) 中国土壤动物检索图鉴. 科学出版社, 北京.] | |
[40] |
Yin XQ, Tao Y, Wang HX, Ma C, Kou XC, Xu H, Cui D (2018) Forest soil fauna ecology in Northeast China: Review and prospect. Biodiversity Science, 26, 1083-1090. (in Chinese with English abstract)
DOI |
[殷秀琴, 陶岩, 王海霞, 马辰, 寇新昌, 许还, 崔东 (2018) 我国东北森林土壤动物生态学研究现状与展望. 生物多样性, 26, 1083-1090.]
DOI |
|
[41] | Yue K, García-Palacios P, Parsons SA, Yang WQ, Peng Y, Tan B, Huang CP, Wu FZ (2018) Assessing the temporal dynamics of aquatic and terrestrial litter decomposition in an alpine forest. Functional Ecology, 32, 2464-2475. |
[42] |
Zanne AE, Flores-Moreno H, Powell JR, Cornwell WK, Dalling JW, Austin AT, Classen AT, Eggleton P, Okada KI, Parr CL, …, Valverde-Barrantes OJ, van den Berg E, Ciska Veen GF, Vogel JG, Wardlaw TJ, Wiehl G, Wirth C, Woods MJ, Zalamea PC (2022) Termite sensitivity to temperature affects global wood decay rates. Science, 377, 1440-1444.
DOI PMID |
[43] | Zuo J, Hefting MM, Berg MP, van Hal J, Goudzwaard L, Liu JC, Sass-Klaassen U, Sterck FJ, Poorter L, Cornelissen JHC (2018) Is there a tree economics spectrum of decomposability? Soil Biology and Biochemistry, 119, 135-142. |
[1] | 潘玉梅, 张乃莉. 亚热带森林树种多样性对凋落叶分解胞外酶活性的影响[J]. 生物多样性, 2021, 29(11): 1447-1460. |
[2] | 郭屹立, 李冬兴, 王斌, 白坤栋, 向悟生, 李先琨. 北热带喀斯特季节性雨林土壤和6个常见树种凋落物的C、N、P化学计量学特征[J]. 生物多样性, 2017, 25(10): 1085-1094. |
[3] | 李姗姗, 王正文, 杨俊杰. 凋落物分解过程中土壤微生物群落的变化[J]. 生物多样性, 2016, 24(2): 195-204. |
[4] | 廖崇惠, 李健雄. 再论DG指数的性质与应用[J]. 生物多样性, 2009, 17(2): 127-134. |
[5] | 王金凤, 由文辉, 易兰. 上海宝钢工业区凋落物中土壤动物群落结构及季节变化[J]. 生物多样性, 2007, 15(5): 463-469. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn