生物多样性 ›› 2018, Vol. 26 ›› Issue (7): 701-706. DOI: 10.17520/biods.2018144
收稿日期:
2018-05-15
接受日期:
2018-07-20
出版日期:
2018-07-20
发布日期:
2018-09-11
通讯作者:
冯刚
作者简介:
# 共同第一作者
基金资助:
Received:
2018-05-15
Accepted:
2018-07-20
Online:
2018-07-20
Published:
2018-09-11
Contact:
Feng Gang
About author:
# Co-first authors
摘要:
物种多样性的地理分布格局及其机制是宏生态学和生物地理学的核心问题之一。区域尺度与局域尺度的影响因素, 如温度、降水、海拔变化、生境过滤、捕食、竞争与互惠等, 共同影响昆虫物种多样性的分布格局。然而, 迄今为止少有研究同时讨论不同尺度驱动因子对昆虫多样性地理分布格局的影响。本文基于内蒙古自治区86个旗县的昆虫多样性数据, 结合各地年平均气温、年降水量、古气候变化、海拔变化及植物多样性, 探讨昆虫物种多样性分布格局及其主要驱动因子。结果发现内蒙古昆虫多样性主要受到植物多样性与海拔变化的影响, 而气候因子对昆虫物种多样性的影响并不大。这一结果表明种间关系(食物多样性)与生境异质性可能对内蒙古昆虫多样性的分布格局起着主导作用。
张宇, 冯刚 (2018) 内蒙古昆虫物种多样性分布格局及其机制. 生物多样性, 26, 701-706. DOI: 10.17520/biods.2018144.
Yu Zhang, Gang Feng (2018) Distribution pattern and mechanism of insect species diversity in Inner Mongolia. Biodiversity Science, 26, 701-706. DOI: 10.17520/biods.2018144.
图1 昆虫多样性及其相关变量散点图。古降水变化与古温度变化是末次最大冰期到现代的降水和温度的变化。* P < 0.05, ** P < 0.01。
Fig. 1 Scatter plots of insect species diversity and the related variables. Anom MAP and Anom MAT are the change of MAP/MAT between LGM and contemporary time.
coefOLS | r2OLS | coefSAR | r2SAR | |
---|---|---|---|---|
年平均气温 Mean annual temperature (MAT) | -0.22 | 0.04* | -0.24 | 0.08** |
年降水量 Mean annual precipitation (MAP) | -0.06 | 0 | -0.05 | 0 |
古温度变化 Anom MAT | 0.17 | 0.02 | 0.2 | 0.06** |
古降水变化 Anom MAP | -0.24 | 0.04* | -0.23 | 0.07* |
植物多样性 Plant diversity | 0.35 | 0.16** | 0.36 | 0.13** |
海拔变化 Altitudinal range | 0.42 | 0.11** | 0.41 | 0.18** |
表1 最小二乘法(OLS)和空间自回归(SAR)模型单变量分析结果
Table 1 Results of single-variable analysis by ordinary least squares (OLS) and simultaneous autoregressive (SAR) models
coefOLS | r2OLS | coefSAR | r2SAR | |
---|---|---|---|---|
年平均气温 Mean annual temperature (MAT) | -0.22 | 0.04* | -0.24 | 0.08** |
年降水量 Mean annual precipitation (MAP) | -0.06 | 0 | -0.05 | 0 |
古温度变化 Anom MAT | 0.17 | 0.02 | 0.2 | 0.06** |
古降水变化 Anom MAP | -0.24 | 0.04* | -0.23 | 0.07* |
植物多样性 Plant diversity | 0.35 | 0.16** | 0.36 | 0.13** |
海拔变化 Altitudinal range | 0.42 | 0.11** | 0.41 | 0.18** |
图2 随机森林模型得到的与昆虫物种多样性相关性最高的4个组合。Group 1为Anom MAP + Plant diversity, Group 2为Anom MAP + Altitudinal range + Plant diversity, Group 3为MAT + Anom MAP + Altitudinal range + Plant diversity, Group 4为MAP + Anom MAP + Altitudinal range + Plant diversity。Anom MAP表示古降水变化。
Fig. 2 Four combinations of variables most associated with insect species diversity obtained from the random forest model. Group 1 are Anom MAP and Plant diversity, Group 2 are Anom MAP, Altitudinal range and Plant diversity, Group 3 are MAT, Anom MAP, Altitudinal range and Plant diversity, Group 4 are MAP, Anom MAP, Altitudinal range and Plant diversity. Anom MAP is the change of MAP between LGM and contemporary time.
[1] | Aranda R, Graciolli G (2015) Spatial temporal distribution of the Hymenoptera in the Brazilian Savanna and the effects of habitat heterogeneity on these patterns. Journal of Insect Conservation, 19, 1173-1187. |
[2] | Araújo MB, Rozenfeld A (2014) The geographic scaling of biotic interactions. Ecography, 37, 406-415. |
[3] | Basset Y, Cizek L, Cuénoud P, Didham RK, Guilhaumon F, Missa O, Novotny V, Ødegaard F, Roslin T, Schmidl J, Tishechkin AK, Winchester NN, Roubik DW, Aberlenc HP, Bail J, Barrios H, Bridle JR, Castaño-Meneses G, Corbara B, Curletti G, da Rocha WD, Bakker DD, Delabie JH, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, Miller SE, de Orivel EJ, Pollet M, Rapp M, Ribeiro SP, Roisin Y, Schmidt JB, Sørensen L, Leponce M (2012) Arthropod diversity in a tropical forest. Science, 338, 1481-1484. |
[4] | Boyer SL, Markle TM, Baker CM, Luxbacher AM, Kozak KH (2016) Historical refugia have shaped biogeographical patterns of species richness and phylogenetic diversity in mite harvestmen (Arachnida, Opiliones, Cyphophthalmi) endemic to the Australian Wet Tropics. Journal of Biogeography, 43, 1400-1411. |
[5] | Breiman L (2001) Random forests. Machine Learning, 45, 5-32. |
[6] | Brown JH (2014) Why are there so many species in the tropics? Journal of Biogeography, 41, 8-22. |
[7] | Currie DJ (1991) Energy and large scale patterns of animal and plant species richness. The American Naturalist, 137, 27-49. |
[8] | Diniz-Filho JAF, Marco PD, Hawkins BA (2010) Defying the curse of ignorance: Perspectives in insect macroecology and conservation biogeography. Insect Conservation and Diversity, 3, 172-179. |
[9] | Fine P (2015) Ecological and evolutionary drivers of geographic variation in species diversity. Annual Review of Ecology, Evolution, and Systematics, 46, 369-392. |
[10] | Gebeyehu S, Samways MJ (2006) Topographic heterogeneity plays a crucial role for grasshopper diversity in a Southern African megabiodiversity hotspot. Biodiversity and Conservation, 15, 231-244. |
[11] | Harrison S, Cornell H (2008) Toward a better understanding of the regional causes of local community richness. Ecology Letters, 11, 969-979. |
[12] | Hasumi H, Emori S (2004) K-1 Coupled Model (MIROC) description. K-1 Technical Report No.1. Center for Climate System Research, University of Tokyo, Tokyo. |
[13] | Hawkins BA (2001) Ecology’s oldest pattern? Trends in Ecology and Evolution, 16, 470. |
[14] | Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. |
[15] | Liang CX, Feng G, Si XF, Mao LF, Yang GS, Svenning J-C, Yang J (2018) Bird species richness is associated with phylogenetic relatedness, plant species richness, and altitudinal range in Inner Mongolia. Ecology and Evolution, 8, 53-58. |
[16] | Marini L, Fontana P, Battisti A, Gaston KJ (2010) Agricultural management, vegetation traits and landscape drive orthopteran and butterfly diversity in a grassland-forest mosaic: A multi-scale approach. Insect Conservation and Diversity, 2, 213-220. |
[17] | Marini L, Paolo F, Sebastian K, Andrea B, Kevin G (2009) Impact of farm size and topography on plant and insect diversity of managed grasslands in the Alps. Biological Conservation, 142, 394-403. |
[18] | Misof B, Liu SL, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RJ, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen JQ, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu SC, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li YY, Li ZY, Li JG, Lu HR, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng GL, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou YX, Pass G, Podsiadlowski L, Poh H, von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song WH, Su X, Szucsich NU, Tan MH, Tan XM, Tang M, Tang JB, Timelthaler G, Tomizuka S, Trautwein M, Tong XL, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TKF, Wu Q, Wu GX, Xie YL, Yang SZ, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang WW, Zhang YH, Zhao J, Zhou CR, Zhou LL, Ziesmann T, Zou SJ, Li YR, Xu X, Zhang Y, Yang HM, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science, 346, 763-767. |
[19] | Nonnaizab(1999) Insects of Inner Mongolia, China. Inner Mongolia People’s Publishing House, Hohhot. (in Chinese) |
[能乃扎布 (1999) 内蒙古昆虫. 内蒙古人民出版社, 呼和浩特.] | |
[20] | O’Brien EM (1998) Water-energy dynamics, climate, and prediction of woody plant species richness: An interim general model. Journal of Biogeography, 25, 379-398. |
[21] | O’Brien EM, Field R, Whittaker RJ (2000) Climatic gradients in woody plant (tree and shrub) diversity: water-energy dynamics, residual variation, and topography. Oikos, 89, 588-600. |
[22] | Otto-Bliesner B, Brady E, Clauzet G, Thomas R, Levis S, Kothavala Z (2006) Last Glacial Maximum and Holocene Climate in CCSM3. Journal of Climate, 19, 2526-2544. |
[23] | Price PW (1991) The plant vigor hypothesis and herbivore attack. Oikos, 62, 244-251. |
[24] | Qu YH, Song G, Gao B, Quan Q, Ericson PGP, Lei FM (2015) The influence of geological events on the endemism of East Asian birds studied through comparative phylogeography. Journal of Biogeography, 42, 179-192. |
[25] | Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning J-C (2011) The influence of Late Quaternary climate change velocity on species endemism. Science, 334, 660-664. |
[26] | Schuldt A, Baruffol M, Böhnke M, Bruelheide H, Hädtle W, Lang AC, Nadrowski K, von Oheimb G, Voigt W, Zhou HZ, Assmann T (2010) Tree diversity promotes insect herbivory in subtropical forests of south-east China. Journal of Ecology, 98, 917-926. |
[27] | Shen MW, Chen SB, Bi MJ, Chen WD, Zhou KX (2016) Relationships between geographic patterns of ant species richness and environmental factors in China. Acta Ecologica Sinica, 36, 7732-7739. (in Chinese with English abstract) |
[沈梦伟, 陈圣宾, 毕孟杰, 陈文德, 周可新 (2016) 中国蚂蚁丰富度地理分布格局及其与环境因子的关系. 生态学报, 36, 7732-7739.] | |
[28] | Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866-880. |
[29] | Svenning J-C, Eiserhardt WL, Normand S, Ordonez A, Sandel B (2015) The influence of Paleoclimate on present day patterns in biodiversity and ecosystems. Annual Review of Ecology, Evolution, and Systematics, 46, 551-572. |
[30] | Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. Journal of Biogeography, 31, 79-92. |
[31] | Thomas CD, Bulman CR, Wilson RJ (2008) Where within a geographical range do species survive best? A matter of scale. Insect Conservation and Diversity, 1, 2-8. |
[32] | Wenninger EJ, Inouye RS (2008) Insect community response to plant diversity and productivity in a sagebrush steppe ecosystem. Journal of Arid Environments, 72, 24-33. |
[33] | Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF, Forchhammer MC, Grytnes J-A, Guisan A, Heikkinen RK, Høye TT, Kühn I, Luoto M, Maiorano L, Nilsson M-C, Normand S, Öckinger E, Schmidt NM, Termansen M, Timmermann A, Wardle DA, Aastrup P, Svenning J-C (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. Biological Reviews, 88, 15-30. |
[34] | Xu RG (2007) Fauna Inner Mongolia. III. Inner Mongolia University Press, Hohhot. (in Chinese) |
[旭日干 (2007) 内蒙古动物志. III. 内蒙古大学出版社, 呼和浩特.] | |
[35] | Xu RG (2015)Fauna Inner Mongolia. IV. Inner Mongolia University Press, Hohhot. (in Chinese) |
[旭日干 (2015) 内蒙古动物志. IV. 内蒙古大学出版社, 呼和浩特.] | |
[36] | Xu RG (2016a) Fauna Inner Mongolia. V. Inner Mongolia University Press, Hohhot. (in Chinese) |
[旭日干 (2016a) 内蒙古动物志. V. 内蒙古大学出版社, 呼和浩特.] | |
[37] | Xu RG (2016b) Fauna Inner Mongolia. VI. Inner Mongolia University Press, Hohhot. (in Chinese) |
[旭日干 (2016b) 内蒙古动物志. VI. 内蒙古大学出版社, 呼和浩特.] | |
[38] | Zhang K, Lin SL, Ji YQ, Yang CX, Wang XY, Yang CY, Wang HS, Jiang HD, Harrison RD, Yu DW (2016) Plant diversity accurately predicts insect diversity in two tropical landscapes. Molecular Ecology, 25, 4407-4419. |
[39] | Zhao YZ, Zhao LQ (2014) Key to the Vascular Plants of Inner Mongolia. Science Press, Beijing. (in Chinese) |
[赵一之, 赵利清 (2014) 内蒙古维管植物检索表. 科学出版社, 北京.] | |
[40] | Zhu H, Peng YY, Wang DL (2008) Effects of plant on insect diversity: A review. Chinese Journal of Ecology, 27, 2215-2221. |
(in Chinese with English abstract) [朱慧, 彭媛媛, 王德利 (2008) 植物对昆虫多样性的影响. 生态学杂志, 27, 2215-2221.] | |
[41] | Zobel M (1997) The relative role of species pools in determining plant species richness: An alternative explanation of species coexistence? Trends in Ecology and Evolution, 12, 266-269. |
[1] | 孙维悦, 舒江平, 顾钰峰, 莫日根高娃, 杜夏瑾, 刘保东, 严岳鸿. 基于保护基因组学揭示荷叶铁线蕨的濒危机制[J]. 生物多样性, 2022, 30(7): 21508-. |
[2] | 肖翠, 刘冰, 吴超然, 马金双, 叶建飞, 夏晓飞, 林秦文. 北京维管植物编目和分布数据集[J]. 生物多样性, 2022, 30(6): 22064-. |
[3] | 林秦文, 肖翠, 马金双. 中国外来植物数据集[J]. 生物多样性, 2022, 30(5): 22127-. |
[4] | 吴仁武, 南歆格, 晏海, 杨凡, 史琰, 包志毅. 梅耶(Frank Nicholas Meyer)在亚欧国家引种植物的路线和种类调查[J]. 生物多样性, 2022, 30(11): 22063-. |
[5] | 许祖昌, 罗亚皇, 秦声远, 朱光福, 李德铢. 中国竹类植物馆藏标本现状与地理分布[J]. 生物多样性, 2021, 29(7): 897-909. |
[6] | 李治霖, 多立安, 李晟, 王天明. 陆生食肉动物竞争与共存研究概述[J]. 生物多样性, 2021, 29(1): 81-97. |
[7] | 张全建, 杨彪, 付强, 王磊, 龚旭, 张远彬. 邛崃山系水鹿的冬季食性[J]. 生物多样性, 2020, 28(10): 1192-1201. |
[8] | 李强, 王彬, 邓云, 林露湘, 达佤扎喜, 张志明. 西双版纳热带雨林林窗空间分布格局及其特征数与林窗下植物多样性的相关性[J]. 生物多样性, 2019, 27(3): 273-285. |
[9] | 董雪蕊, 张红, 张明罡. 基于系统发育的黄土高原地区木本植物多样性及特有性格局[J]. 生物多样性, 2019, 27(12): 1269-1278. |
[10] | 杨贵军, 王敏, 杨益春, 李欣芸, 王新谱. 贺兰山甲虫物种丰富度分布格局及其环境解释[J]. 生物多样性, 2019, 27(12): 1309-1319. |
[11] | 姬红利, 詹选怀, 张丽, 彭焱松, 周赛霞, 胡菀. 幕阜山脉石松类和蕨类植物多样性及生物地理学特征[J]. 生物多样性, 2019, 27(11): 1251-1259. |
[12] | 刘杰, 罗亚皇, 李德铢, 高连明. 青藏高原及毗邻区植物多样性演化 与维持机制: 进展及展望[J]. 生物多样性, 2017, 25(2): 163-174. |
[13] | 杨崇曜, 李恩贵, 陈慧颖, 张景慧, 黄永梅. 内蒙古西部自然植被的物种多样性及其影响因素[J]. 生物多样性, 2017, 25(12): 1303-1312. |
[14] | 李利平, 安尼瓦尔·买买提, 努尔巴依·阿布都沙力克, 努尔佳玛丽·沙尔巴依, 万华伟. 新疆山地森林乔木和草地草本植物个体大小分布特征[J]. 生物多样性, 2017, 25(11): 1202-1212. |
[15] | 赵鸣飞, 王国义, 邢开雄, 王宇航, 薛峰, 康慕谊, 罗开. 秦岭西部森林群落相似性递减格局及其影响因素[J]. 生物多样性, 2017, 25(1): 3-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn