生物多样性 ›› 2018, Vol. 26 ›› Issue (5): 510-518. DOI: 10.17520/biods.2018065
王玉贤1, 刘左军1,*(), 赵志刚2, 侯盟2, 张小瑞1, 吕婉灵1
收稿日期:
2018-02-27
接受日期:
2018-04-26
出版日期:
2018-05-20
发布日期:
2018-09-11
通讯作者:
刘左军
作者简介:
# 共同第一作者
基金资助:
Yuxian Wang1, Zuojun Liu1,*(), Zhigang Zhao2, Meng Hou2, Xiaorui Zhang1, Wanling Lü1
Received:
2018-02-27
Accepted:
2018-04-26
Online:
2018-05-20
Published:
2018-09-11
Contact:
Liu Zuojun
About author:
# Co-first authors
摘要:
花寿命是指花保持开放且具有功能的时间长度。不同物种的花寿命具有显著的差异, 但一定程度上的可塑性反映了植物对传粉环境变化的适应性。本研究以青藏高原高寒草甸不同海拔(2,900 m和3,600 m)的11种开花植物为研究对象, 通过套袋、补充授粉以及自然授粉处理分别测量了植物的潜在花寿命、最短花寿命以及实际花寿命。分析了不同海拔植物花寿命的变异, 以及对套袋处理(潜在花寿命与实际花寿命之差)和补充授粉处理(实际花寿命与最短花寿命之差)的响应及其可塑性(潜在花寿命与最短花寿命之差)的变异。结果表明: 无论是高海拔还是低海拔, 套袋显著延长了花寿命, 而补充授粉显著缩短了花寿命, 即, 潜在花寿命>实际花寿命>最短花寿命。高海拔群落中植物的实际花寿命和潜在花寿命均显著延长, 而最短花寿命在海拔间差异不显著。相对于低海拔群落, 高海拔植物的花寿命对补充授粉处理更敏感, 花寿命的可塑性更大。本研究说明传粉者稀少的高寒环境中, 植物通过提高花寿命及其可塑性来增加授粉机会, 获得更高的适合度。
王玉贤, 刘左军, 赵志刚, 侯盟, 张小瑞, 吕婉灵 (2018) 青藏高原高寒草甸植物花寿命对传粉环境的响应. 生物多样性, 26, 510-518. DOI: 10.17520/biods.2018065.
Yuxian Wang, Zuojun Liu, Zhigang Zhao, Meng Hou, Xiaorui Zhang, Wanling Lü (2018) Responses of floral longevity to pollination environments in 11 species from two alpine meadows. Biodiversity Science, 26, 510-518. DOI: 10.17520/biods.2018065.
因素 Factor | 花寿命 Floral longevity | |||||
---|---|---|---|---|---|---|
群落1和2 Community 1 & 2 | 群落3和4 Community 3 & 4 | |||||
Df | F | P | Df | F | P | |
截距 Intercept | 1, 10 | 17,634.897 | < 0.001 | 1, 9 | 23,757.518 | < 0.001 |
物种 Species | 10, 434 | 762.000 | < 0.001 | 4, 269 | 1,121.932 | < 0.001 |
海拔 Elevation | 1, 437 | 50.519 | < 0.001 | 1, 270 | 55.844 | < 0.001 |
处理 Treatment | 2, 433 | 200.241 | < 0.001 | 2, 267 | 182.577 | < 0.001 |
物种×海拔 Species × Elevation | 4, 435 | 1.218 | 0.303 | 4, 269 | 1.350 | 0.252 |
物种×处理 Species × Treatment | 18, 433 | 4.776 | < 0.001 | 7, 267 | 5.668 | < 0.001 |
海拔×处理 Elevation × Treatment | 2, 433 | 4.316 | 0.014 | 2, 267 | 4.722 | 0.010 |
物种×海拔×处理 Species × Elevation × Treatment | 7, 433 | 0.716 | 0.659 | 7, 267 | 0.791 | 0.596 |
表1 物种、海拔(低海拔与高海拔)、处理(套袋、补充授粉及自然授粉)及它们的交互作用对群落1和2以及群落3和4花寿命的影响。群落1和2分别指低海拔和高海拔所有研究物种组成的群落, 群落3和4分别指低海拔和高海拔共有的研究物种组成的群落。运用一般线性混合效应模型检验这些因素的显著性并用粗体表示差异显著。
Table 1 The effect of species identity, elevation (low vs. high elevation), and pollination treatments (pollinator exclusion, supplemental pollinated, open-pollinated) and their interactions on flower longevity of studied species in community 1 & 2 (and community 3 & 4 ). The community 1 and 2 refer to the community that composed of all the research species at low and high altitudes, respectively, while the community 3 and 4 refer to the community of the mutual research species at low and high altitudes, respectively. Significant differences are examined from general linear mixed effect models at P < 0.05 and indicated in bold.
因素 Factor | 花寿命 Floral longevity | |||||
---|---|---|---|---|---|---|
群落1和2 Community 1 & 2 | 群落3和4 Community 3 & 4 | |||||
Df | F | P | Df | F | P | |
截距 Intercept | 1, 10 | 17,634.897 | < 0.001 | 1, 9 | 23,757.518 | < 0.001 |
物种 Species | 10, 434 | 762.000 | < 0.001 | 4, 269 | 1,121.932 | < 0.001 |
海拔 Elevation | 1, 437 | 50.519 | < 0.001 | 1, 270 | 55.844 | < 0.001 |
处理 Treatment | 2, 433 | 200.241 | < 0.001 | 2, 267 | 182.577 | < 0.001 |
物种×海拔 Species × Elevation | 4, 435 | 1.218 | 0.303 | 4, 269 | 1.350 | 0.252 |
物种×处理 Species × Treatment | 18, 433 | 4.776 | < 0.001 | 7, 267 | 5.668 | < 0.001 |
海拔×处理 Elevation × Treatment | 2, 433 | 4.316 | 0.014 | 2, 267 | 4.722 | 0.010 |
物种×海拔×处理 Species × Elevation × Treatment | 7, 433 | 0.716 | 0.659 | 7, 267 | 0.791 | 0.596 |
物种 Species | 花寿命 Floral longevity | |||||
---|---|---|---|---|---|---|
低海拔 Low elevation (2,900 m ) | 高海拔 High elevation (3,500 m) | |||||
套袋处理 Pollinator exclusion | 自然授粉 Open pollination | 补充授粉Supplemental pollination | 套袋处理Pollinator exclusion | 自然授粉 Open pollination | 补充授粉Supplemental pollination | |
蒲公英 Taraxacum mongolicum | 5.2 ± 0.8a | 4.7 ± 0.6a | - | 6.5 ± 1.2a | 5.6 ± 0.8b | - |
甘青老鹳草 Geranium pylzowianum | 4.4 ± 0.5a | 3.2 ± 0.4b | 2.8 ± 0.3b | 5.0 ± 0.5a | 3.8 ± 0.3b | 3.0 ± 0.3c |
钝裂银莲花 Anemone obtusiloba | 9.8 ± 0.9a | 8.6 ± 1.1b | 7.6 ± 0.4c | 10.8 ± 0.8a | 9.4 ± 0.7b | 7.5 ± 0.6c |
莓叶委陵菜 Potentilla fragarioides | 3.5 ± 0.4a | 2.8 ± 0.3b | 2.4 ± 0.3c | 3.8 ± 0.4a | 3.3 ± 0.3b | 2.8 ± 0.5c |
高原毛茛 Ranunculus tanguticus | 9.4 ± 0.4a | 8.2 ± 0.8b | 7.7 ± 1.1b | 10.2 ± 0.7a | 8.9 ± 0.8b | 7.8 ± 0.6c |
狼毒 Stellera chamaejasme | 14.3 ± 1.4a | 11.8 ± 1.4b | - | - | - | - |
鹅绒委陵菜 Potentilla anserina | 4.5 ± 0.6a | 3.2 ± 0.5b | 3.1 ± 0.6b | - | - | - |
野草莓 Fragaria vesca | 4.4 ± 0.7a | 4.3 ± 0.8a | 3.5 ± 0.5b | - | - | - |
华西委陵菜 Potentilla potaninii | 3.3 ± 0.5a | 2.5 ± 0.6b | 2.2 ± 0.3b | - | - | - |
高山豆 Tibetia himalaica | 4.1 ± 0.9a | 3.0 ± 0.5b | 2.8 ± 0.5b | - | - | - |
小花草玉梅 Anemone rivularis var. flore-minore | - | - | - | 5.3 ± 0.8a | 4.6 ± 0.6b | 4.4 ± 1.0b |
表2 高海拔(3,600 m)和低海拔(2,900 m)的16个研究种群在套袋、自然授粉和补充授粉处理下的平均花寿命(天, 平均值±标准差), 同行不同字母表示在同一海拔下不同处理之间花寿命差异显著(P < 0.05)。
Table 2 Flower longevity (d, mean ± SD) of 16 research populations when flowers were either excluded from pollinators, open-pollinated or supplemental hand-pollinated at low (2,900 m) and high (3,600 m) elevations. Different letters in the same row at each floral longevity of different treatments indicate significant difference (P < 0.05).
物种 Species | 花寿命 Floral longevity | |||||
---|---|---|---|---|---|---|
低海拔 Low elevation (2,900 m ) | 高海拔 High elevation (3,500 m) | |||||
套袋处理 Pollinator exclusion | 自然授粉 Open pollination | 补充授粉Supplemental pollination | 套袋处理Pollinator exclusion | 自然授粉 Open pollination | 补充授粉Supplemental pollination | |
蒲公英 Taraxacum mongolicum | 5.2 ± 0.8a | 4.7 ± 0.6a | - | 6.5 ± 1.2a | 5.6 ± 0.8b | - |
甘青老鹳草 Geranium pylzowianum | 4.4 ± 0.5a | 3.2 ± 0.4b | 2.8 ± 0.3b | 5.0 ± 0.5a | 3.8 ± 0.3b | 3.0 ± 0.3c |
钝裂银莲花 Anemone obtusiloba | 9.8 ± 0.9a | 8.6 ± 1.1b | 7.6 ± 0.4c | 10.8 ± 0.8a | 9.4 ± 0.7b | 7.5 ± 0.6c |
莓叶委陵菜 Potentilla fragarioides | 3.5 ± 0.4a | 2.8 ± 0.3b | 2.4 ± 0.3c | 3.8 ± 0.4a | 3.3 ± 0.3b | 2.8 ± 0.5c |
高原毛茛 Ranunculus tanguticus | 9.4 ± 0.4a | 8.2 ± 0.8b | 7.7 ± 1.1b | 10.2 ± 0.7a | 8.9 ± 0.8b | 7.8 ± 0.6c |
狼毒 Stellera chamaejasme | 14.3 ± 1.4a | 11.8 ± 1.4b | - | - | - | - |
鹅绒委陵菜 Potentilla anserina | 4.5 ± 0.6a | 3.2 ± 0.5b | 3.1 ± 0.6b | - | - | - |
野草莓 Fragaria vesca | 4.4 ± 0.7a | 4.3 ± 0.8a | 3.5 ± 0.5b | - | - | - |
华西委陵菜 Potentilla potaninii | 3.3 ± 0.5a | 2.5 ± 0.6b | 2.2 ± 0.3b | - | - | - |
高山豆 Tibetia himalaica | 4.1 ± 0.9a | 3.0 ± 0.5b | 2.8 ± 0.5b | - | - | - |
小花草玉梅 Anemone rivularis var. flore-minore | - | - | - | 5.3 ± 0.8a | 4.6 ± 0.6b | 4.4 ± 1.0b |
图1 高海拔(3,600 m)和低海拔(2,900 m) 5种共有物种的平均花寿命(平均值±标准差)的比较。* P < 0.05。
Fig. 1 The mean floral longevity (mean ± SD) of 5 mutual species at low (2,900 m) and high (3,600 m) elevation. * P < 0.05.
图2 群落3和4的研究物种在套袋、补充授粉以及自然授粉处理下的平均花寿命(平均值±标准差)的比较。* P < 0.05。
Fig. 2 The mean flower longevity (mean ± SD) of community 3 & 4 when flowers were either pollinator exclusion, supplemental pollination or open pollination. * P < 0.05.
图3 高海拔和低海拔5种共有物种的花寿命对套袋处理(A)及补充授粉(B)的响应以及花寿命可塑性(C)的变异。
Fig 3 Differences in responses of floral longevity to pollinator exclusion (A) and supplemental pollination (B) and the plasticity of flower longevity (C)in populations of five mutual plant species from low and high elevation.
1 | Arroyo MTK, Armesto JJ, Villagran C (1981) Plant phenological patterns in the high Andrean Cordillera of central Chile. Journal of Ecology, 69, 205-223. |
2 | Arroyo MTK, Dudley LS, Jespersen G, Pacheco DA, Cavieres LA (2013) Temperature-driven flower longevity in a high- alpine species of Oxalis influences reproductive assurance. New Phytologist, 200, 1260-1268. |
3 | Ashman TL, Schoen DJ (1994) How long should flowers live? Nature, 371, 788-791. |
4 | Ashman TL, Schoen DJ (1997) The cost of floral longevity in Clarkia tembloriensis: An experimental investigation. Evolutionary Ecology, 11, 289-300. |
5 | Aximoff IA, Freitas L (2010) Is pollen removal or seed set favoured by flower longevity in a hummingbird-pollinated Salvia species? Annals of Botany, 106, 413-419. |
6 | Bingham RA, Orthner AR (1998) Efficient pollination of alpine plants. Nature, 391, 238-239. |
7 | Blionis GJ, Vokou D (2001) Pollination ecology of Campanula species on Mt. Olympos, Greece. Ecography, 24, 287-297. |
8 | Castro S, Silveira P, Navarro L (2008) Effect of pollination on floral longevity and costs of delaying fertilization in the out-crossing Polygala vayredae Costa (Polygalaceae). Annals of Botany, 102, 1043-1048. |
9 | Clark MJ, Husband BC (2007) Plasticity and timing of flower closure in response to pollination in Chamerion angustifolium (Onagraceae). International Journal of Plant Sciences, 168, 619-625. |
10 | Duan YW, Zhang TF, Liu JQ (2007) Interannual fluctuations in floral longevity, pollinator visitation and pollination limitation of an alpine plant (Gentiana straminea Maxim, Gentianaceae) at two altitudes in the Qinghai-Tibetan Plateau. Plant Systematics & Evolution, 267, 255-265. |
11 | Evanhoe L, Galloway LF (2002) Floral longevity in Campanula americana (Campanulaceae): A comparison of morphological and functional gender phases. American Journal of Botany, 89, 587-591. |
12 | Gao J, XiongYZ, Huang SQ (2015) Effects of floral sexual investment and dichogamy on floral longevity. Journal of Plant Ecology, 8, 116-121. |
13 | Gerlinde S, Johanna W (2010) Flower longevity and duration of pistil receptivity in high mountain plants. Flora, 205, 376-387. |
14 | Giblin DE (2005) Variation in floral longevity between populations of Campanula rotundifolia (Campanulaceae) in response to fitness accrual rate manipulation. American Journal of Botany, 92, 1714-1722. |
15 | Harder LD, Johnson SD (2005) Adaptive plasticity of floral display size in animal-pollinated plants. Proceedings of the Royal Society of London B: Biological Sciences, 272, 2651-2657. |
16 | He YP, Fei SM, Liu JQ, Chen XM, Wang P, Jiang JM (2005) A preliminary review of studies of alpine plant breeding system. Journal of Sichuan Forestry Science and Technology, 26(4), 43-49. (in Chinese with English abstract) |
[何亚平, 费世民, 刘建全, 陈秀明, 王鹏, 蒋俊明 (2005) 高山植物繁育系统研究进展初探. 四川林业科技, 26(4), 43-49.] | |
17 | Hu C, Liu ZJ, Wu GQ, Zhao ZG (2013) Floral characteristic and breeding system of Anemone obtusiloba. Acta Agrestia Sinica, 21, 783-788. (in Chinese with English abstract) |
[胡春, 刘左军, 伍国强, 赵志刚 (2013) 钝裂银莲花花部综合特征及其繁育系统. 草地学报, 21, 783-788.] | |
18 | Itagaki T, Sakai S (2006) Relationship between floral longevity and sex allocation among flowers within inflorescences in Aquilegia buergeriana var. oxysepala (Ranunculaceae). American Journal of Botany, 93, 1320-1327. |
19 | Marques I, Draper D (2012) Pollination activity affects selection on floral longevity in the autumnal-flowering plant, Narcissus serotinus L. Botany, 90, 283-291. |
20 | Primack RB (1985) Longevity of individual flowers. Annual Review of Ecology and Systematics, 16, 15-37. |
21 | Rathcke BJ (2003) Floral longevity and reproductive assurance: Seasonal patterns and an experimental test with Kalmia latifolia (Ericaceae). American Journal of Botany, 90, 1328-1332. |
22 | Schoen DJ, Ashman TL (1995) The evolution of floral longevity: Resource allocation to maintenance versus construction of repeated parts in modular organisms. Evolution, 49, 131-139. |
23 | Spigler RB (2017) Plasticity of floral longevity and floral display in the self-compatible biennial Sabatia angularis (Gentianaceae): Untangling the role of multiple components of pollination. Annals of Botany, 119, 167-176. |
24 | Stratton DA (1989) Longevity of individual flowers in a Costa Rican cloud forest: Ecological correlates and phylogenetic constraints. Biotropica, 21, 308-318. |
25 | Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537-542. |
26 | Teixido AL, Valladares F (2015) Temperature-limited floral longevity in the large-flowered Mediterranean shrub Cistus ladanifer (Cistaceae). International Journal of Plant Sciences, 176, 131-140. |
27 | Trunschke J, Stöcklin J (2016) Plasticity of flower longevity in alpine plants is increased in populations from high elevation compared to low elevation populations. Alpine Botany, 127, 41-51. |
28 | Vega Y, Marques I (2015) Both biotic and abiotic factors influence floral longevity in three species of Epidendrum (Orchidaceae). Plant Species Biology, 30, 184-192. |
29 | Vesprini JL, Pacini E (2005) Temperature-dependent floral longevity in two Helleborus species. Plant Systematics and Evolution, 252, 63-70. |
30 | Weber JJ, Goodwillie C (2013) Variation in floral longevity in the genus Leptosiphon: Mating system consequences. Plant Biology, 15, 220-225. |
31 | Zhang J (2013) Study on Reproductive Biology of Taraxacum Species in Northeast China. PhD dissertation, Shenyang Agricultural University, Shenyang. (in Chinese with English abstract) |
[张建 (2013) 蒲公英属植物繁殖生物学研究. 博士学位论文, 沈阳农业大学, 沈阳.] | |
32 | Zhang ZQ, Li QJ (2009) Review of evolutionary ecology of floral longevity. Chinese Journal of Plant Ecology, 33, 598-606. (in Chinese with English abstract) |
[张志强, 李庆军 (2009) 花寿命的进化生态学意义. 植物生态学报, 33, 598-606.] | |
33 | Zhao ZG, Du GZ (2003) Characteristics of the mating system and strategies for resource allocation in Ranunculaceae. Journal of Lanzhou University (Natural Sciences), 39(5), 70-74. (in Chinese with English abstract) |
[赵志刚, 杜国祯 (2003) 毛茛科植物交配系统的特征与花期资源分配对策. 兰州大学学报(自然科学版), 39(5), 70-74.] |
[1] | 祖奎玲, 王志恒. 山地物种海拔分布对气候变化响应的研究进展[J]. 生物多样性, 2022, 30(5): 21451-. |
[2] | 黄永江, 苏涛, 朱海, 贾林波, 胡瑾瑾, 纪运恒, 周浙昆. 横断山南段上新世的植被多样性与分布格局[J]. 生物多样性, 2022, 30(11): 22295-. |
[3] | 邓铭先, 黄河燕, 沈诗韵, 吴纪华, 拉琼, 斯确多吉, 潘晓云. 喜旱莲子草在青藏高原对模拟增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(9): 1198-1205. |
[4] | 易浪, 董亚坤, 苗白鸽, 彭艳琼. 云南高黎贡山地区蝴蝶群落多样性[J]. 生物多样性, 2021, 29(7): 950-959. |
[5] | 王爱霞, 马婧婧, 龚会蝶, 范国安, 王茂, 赵红梅, 程军回. 北疆一年生早春短命植物物种丰富度分布格局及其影响因素[J]. 生物多样性, 2021, 29(6): 735-745. |
[6] | 黄河燕, 朱政财, 吴纪华, 拉琼, 周永洪, 潘晓云. 喜旱莲子草对模拟全天增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(4): 419-427. |
[7] | 孙思邈, 陈吉欣, 冯炜炜, 张昶, 黄凯, 管铭, 孙建坤, 刘明超, 冯玉龙. 植物氮形态利用策略及对外来植物入侵性的影响[J]. 生物多样性, 2021, 29(1): 72-80. |
[8] | 李世雄, 王彦龙, 王玉琴, 尹亚丽. 土壤细菌群落特征对高寒草甸退化的响应[J]. 生物多样性, 2021, 29(1): 53-64. |
[9] | 陈梦悦, 吴雨恒, 廖承清, 马方舟, 王星. 八大公山国家级自然保护区不同生境蝶类群落特征与月动态[J]. 生物多样性, 2020, 28(8): 950-957. |
[10] | 石江艳, 杨海, 华俊钦, 赵玉泽, 李建强, 徐基良. 利用红外相机研究白冠长尾雉日活动节律与人为干扰的关系[J]. 生物多样性, 2020, 28(7): 796-805. |
[11] | 于良瑞, 朱政财, 潘晓云. 喜旱莲子草对同基因型邻体根系的表型可塑性: 入侵地和原产地的比较[J]. 生物多样性, 2020, 28(6): 651-657. |
[12] | 王宇彤, 牛克昌. 青藏高原高寒草甸土壤环境对线虫功能多样性的影响[J]. 生物多样性, 2020, 28(6): 707-717. |
[13] | 魏慧玉,陈凯,王备新. 澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性[J]. 生物多样性, 2020, 28(4): 504-514. |
[14] | 陈俊, 姚兰, 艾训儒, 朱江, 吴漫玲, 黄小, 陈思艺, 王进, 朱强. 基于功能性状的水杉原生母树种群生境适应策略[J]. 生物多样性, 2020, 28(3): 296-302. |
[15] | 李明家, 吴凯媛, 孟凡凡, 沈吉, 刘勇勤, 肖能文, 王建军. 西藏横断山区溪流细菌beta多样性组分对气候和水体环境的响应[J]. 生物多样性, 2020, 28(12): 1570-1580. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn