生物多样性 ›› 2018, Vol. 26 ›› Issue (5): 510-518.doi: 10.17520/biods.2018065

• 研究报告 • 上一篇    下一篇

青藏高原高寒草甸植物花寿命对传粉环境的响应

王玉贤1, 刘左军1, *(), 赵志刚2, 侯盟2, 张小瑞1, 吕婉灵1   

  1. 1 兰州理工大学生命科学与工程学院, 兰州 730050
    2 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州 730000
  • 收稿日期:2018-02-27 接受日期:2018-04-26 出版日期:2018-05-20
  • 通讯作者: 刘左军 E-mail:zuojunl@lut.cn
  • 作者简介:

    # 共同第一作者

  • 基金项目:
    国家自然科学基金(31570229)

Responses of floral longevity to pollination environments in 11 species from two alpine meadows

Yuxian Wang1, Zuojun Liu1, *(), Zhigang Zhao2, Meng Hou2, Xiaorui Zhang1, Wanling Lü1   

  1. 1 School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
    2 School of Life Sciences, Lanzhou University, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou 730000
  • Received:2018-02-27 Accepted:2018-04-26 Online:2018-05-20
  • Contact: Liu Zuojun E-mail:zuojunl@lut.cn
  • About author:

    # Co-first authors

花寿命是指花保持开放且具有功能的时间长度。不同物种的花寿命具有显著的差异, 但一定程度上的可塑性反映了植物对传粉环境变化的适应性。本研究以青藏高原高寒草甸不同海拔(2,900 m和3,600 m)的11种开花植物为研究对象, 通过套袋、补充授粉以及自然授粉处理分别测量了植物的潜在花寿命、最短花寿命以及实际花寿命。分析了不同海拔植物花寿命的变异, 以及对套袋处理(潜在花寿命与实际花寿命之差)和补充授粉处理(实际花寿命与最短花寿命之差)的响应及其可塑性(潜在花寿命与最短花寿命之差)的变异。结果表明: 无论是高海拔还是低海拔, 套袋显著延长了花寿命, 而补充授粉显著缩短了花寿命, 即, 潜在花寿命>实际花寿命>最短花寿命。高海拔群落中植物的实际花寿命和潜在花寿命均显著延长, 而最短花寿命在海拔间差异不显著。相对于低海拔群落, 高海拔植物的花寿命对补充授粉处理更敏感, 花寿命的可塑性更大。本研究说明传粉者稀少的高寒环境中, 植物通过提高花寿命及其可塑性来增加授粉机会, 获得更高的适合度。

关键词: 高寒草甸, 花寿命, 可塑性, 授粉, 海拔

Floral longevity, the length of time that a flower remains open and functional, varies greatly among species. The high plasticity of floral longevity can reflect an adaptation to variable pollination environments. In the alpine meadows of Qinghai-Tibetan Plateau (2,900 m vs. 3,600 m), we assessed how potential floral longevity, the shortest floral longevity and the actual floral longevity of 11 species varied under treatments of different pollination contexts. We modeled the response of floral longevity to pollinator exclusion (potential floral longevity minus actual floral longevity) and supplemental pollination (actual longevity minus shortest longevity), and the plasticity of floral longevity (potential longevity minus shortest longevity) at high and low altitude habitats. We found that the plants at the high-altitude community had longer potential floral longevity compared to the low-altitude community, while the shortest floral longevity was not significantly different. Furthermore, pollinator exclusion significantly increased flower longevity, while supplemental pollination significantly decreased floral longevity (i.e. the potential floral longevity > the actual floral longevity > the shortest floral longevity) in both high and low-altitude habitats. In comparison with the low-altitude community, high-altitude plants exhibited higher plasticity of floral longevity. Overall, our results suggest that greater plasticity of floral longevity may increase the opportunity for pollination and thus aid fitness at higher altitudes where pollinators are scarce and unpredictable.

Key words: alpine meadow, floral longevity, plasticity, pollination, altitude

表1

物种、海拔(低海拔与高海拔)、处理(套袋、补充授粉及自然授粉)及它们的交互作用对群落1和2以及群落3和4花寿命的影响。群落1和2分别指低海拔和高海拔所有研究物种组成的群落, 群落3和4分别指低海拔和高海拔共有的研究物种组成的群落。运用一般线性混合效应模型检验这些因素的显著性并用粗体表示差异显著。"

因素 Factor 花寿命 Floral longevity
群落1和2 Community 1 & 2 群落3和4 Community 3 & 4
Df F P Df F P
截距 Intercept 1, 10 17,634.897 < 0.001 1, 9 23,757.518 < 0.001
物种 Species 10, 434 762.000 < 0.001 4, 269 1,121.932 < 0.001
海拔 Elevation 1, 437 50.519 < 0.001 1, 270 55.844 < 0.001
处理 Treatment 2, 433 200.241 < 0.001 2, 267 182.577 < 0.001
物种×海拔 Species × Elevation 4, 435 1.218 0.303 4, 269 1.350 0.252
物种×处理 Species × Treatment 18, 433 4.776 < 0.001 7, 267 5.668 < 0.001
海拔×处理 Elevation × Treatment 2, 433 4.316 0.014 2, 267 4.722 0.010
物种×海拔×处理
Species × Elevation × Treatment
7, 433 0.716 0.659 7, 267 0.791 0.596

表2

高海拔(3,600 m)和低海拔(2,900 m)的16个研究种群在套袋、自然授粉和补充授粉处理下的平均花寿命(天, 平均值±标准差), 同行不同字母表示在同一海拔下不同处理之间花寿命差异显著(P < 0.05)。"

物种 Species 花寿命 Floral longevity
低海拔 Low elevation (2,900 m ) 高海拔 High elevation (3,500 m)
套袋处理
Pollinator
exclusion
自然授粉
Open
pollination
补充授粉Supplemental pollination 套袋处理Pollinator
exclusion
自然授粉
Open
pollination
补充授粉Supplemental pollination
蒲公英 Taraxacum mongolicum 5.2 ± 0.8a 4.7 ± 0.6a - 6.5 ± 1.2a 5.6 ± 0.8b -
甘青老鹳草 Geranium pylzowianum 4.4 ± 0.5a 3.2 ± 0.4b 2.8 ± 0.3b 5.0 ± 0.5a 3.8 ± 0.3b 3.0 ± 0.3c
钝裂银莲花 Anemone obtusiloba 9.8 ± 0.9a 8.6 ± 1.1b 7.6 ± 0.4c 10.8 ± 0.8a 9.4 ± 0.7b 7.5 ± 0.6c
莓叶委陵菜 Potentilla fragarioides 3.5 ± 0.4a 2.8 ± 0.3b 2.4 ± 0.3c 3.8 ± 0.4a 3.3 ± 0.3b 2.8 ± 0.5c
高原毛茛 Ranunculus tanguticus 9.4 ± 0.4a 8.2 ± 0.8b 7.7 ± 1.1b 10.2 ± 0.7a 8.9 ± 0.8b 7.8 ± 0.6c
狼毒 Stellera chamaejasme 14.3 ± 1.4a 11.8 ± 1.4b - - - -
鹅绒委陵菜 Potentilla anserina 4.5 ± 0.6a 3.2 ± 0.5b 3.1 ± 0.6b - - -
野草莓 Fragaria vesca 4.4 ± 0.7a 4.3 ± 0.8a 3.5 ± 0.5b - - -
华西委陵菜 Potentilla potaninii 3.3 ± 0.5a 2.5 ± 0.6b 2.2 ± 0.3b - - -
高山豆 Tibetia himalaica 4.1 ± 0.9a 3.0 ± 0.5b 2.8 ± 0.5b - - -
小花草玉梅 Anemone rivularis var. flore-minore - - - 5.3 ± 0.8a 4.6 ± 0.6b 4.4 ± 1.0b

图1

高海拔(3,600 m)和低海拔(2,900 m) 5种共有物种的平均花寿命(平均值±标准差)的比较。* P < 0.05。"

图2

群落3和4的研究物种在套袋、补充授粉以及自然授粉处理下的平均花寿命(平均值±标准差)的比较。* P < 0.05。"

图3

高海拔和低海拔5种共有物种的花寿命对套袋处理(A)及补充授粉(B)的响应以及花寿命可塑性(C)的变异。"

1 Arroyo MTK, Armesto JJ, Villagran C (1981) Plant phenological patterns in the high Andrean Cordillera of central Chile. Journal of Ecology, 69, 205-223.
2 Arroyo MTK, Dudley LS, Jespersen G, Pacheco DA, Cavieres LA (2013) Temperature-driven flower longevity in a high- alpine species of Oxalis influences reproductive assurance. New Phytologist, 200, 1260-1268.
3 Ashman TL, Schoen DJ (1994) How long should flowers live? Nature, 371, 788-791.
4 Ashman TL, Schoen DJ (1997) The cost of floral longevity in Clarkia tembloriensis: An experimental investigation. Evolutionary Ecology, 11, 289-300.
5 Aximoff IA, Freitas L (2010) Is pollen removal or seed set favoured by flower longevity in a hummingbird-pollinated Salvia species? Annals of Botany, 106, 413-419.
6 Bingham RA, Orthner AR (1998) Efficient pollination of alpine plants. Nature, 391, 238-239.
7 Blionis GJ, Vokou D (2001) Pollination ecology of Campanula species on Mt. Olympos, Greece. Ecography, 24, 287-297.
8 Castro S, Silveira P, Navarro L (2008) Effect of pollination on floral longevity and costs of delaying fertilization in the out-crossing Polygala vayredae Costa (Polygalaceae). Annals of Botany, 102, 1043-1048.
9 Clark MJ, Husband BC (2007) Plasticity and timing of flower closure in response to pollination in Chamerion angustifolium (Onagraceae). International Journal of Plant Sciences, 168, 619-625.
10 Duan YW, Zhang TF, Liu JQ (2007) Interannual fluctuations in floral longevity, pollinator visitation and pollination limitation of an alpine plant (Gentiana straminea Maxim, Gentianaceae) at two altitudes in the Qinghai-Tibetan Plateau. Plant Systematics & Evolution, 267, 255-265.
11 Evanhoe L, Galloway LF (2002) Floral longevity in Campanula americana (Campanulaceae): A comparison of morphological and functional gender phases. American Journal of Botany, 89, 587-591.
12 Gao J, XiongYZ, Huang SQ (2015) Effects of floral sexual investment and dichogamy on floral longevity. Journal of Plant Ecology, 8, 116-121.
13 Gerlinde S, Johanna W (2010) Flower longevity and duration of pistil receptivity in high mountain plants. Flora, 205, 376-387.
14 Giblin DE (2005) Variation in floral longevity between populations of Campanula rotundifolia (Campanulaceae) in response to fitness accrual rate manipulation. American Journal of Botany, 92, 1714-1722.
15 Harder LD, Johnson SD (2005) Adaptive plasticity of floral display size in animal-pollinated plants. Proceedings of the Royal Society of London B: Biological Sciences, 272, 2651-2657.
16 He YP, Fei SM, Liu JQ, Chen XM, Wang P, Jiang JM (2005) A preliminary review of studies of alpine plant breeding system. Journal of Sichuan Forestry Science and Technology, 26(4), 43-49. (in Chinese with English abstract)
[何亚平, 费世民, 刘建全, 陈秀明, 王鹏, 蒋俊明 (2005) 高山植物繁育系统研究进展初探. 四川林业科技, 26(4), 43-49.]
17 Hu C, Liu ZJ, Wu GQ, Zhao ZG (2013) Floral characteristic and breeding system of Anemone obtusiloba. Acta Agrestia Sinica, 21, 783-788. (in Chinese with English abstract)
[胡春, 刘左军, 伍国强, 赵志刚 (2013) 钝裂银莲花花部综合特征及其繁育系统. 草地学报, 21, 783-788.]
18 Itagaki T, Sakai S (2006) Relationship between floral longevity and sex allocation among flowers within inflorescences in Aquilegia buergeriana var. oxysepala (Ranunculaceae). American Journal of Botany, 93, 1320-1327.
19 Marques I, Draper D (2012) Pollination activity affects selection on floral longevity in the autumnal-flowering plant, Narcissus serotinus L. Botany, 90, 283-291.
20 Primack RB (1985) Longevity of individual flowers. Annual Review of Ecology and Systematics, 16, 15-37.
21 Rathcke BJ (2003) Floral longevity and reproductive assurance: Seasonal patterns and an experimental test with Kalmia latifolia (Ericaceae). American Journal of Botany, 90, 1328-1332.
22 Schoen DJ, Ashman TL (1995) The evolution of floral longevity: Resource allocation to maintenance versus construction of repeated parts in modular organisms. Evolution, 49, 131-139.
23 Spigler RB (2017) Plasticity of floral longevity and floral display in the self-compatible biennial Sabatia angularis (Gentianaceae): Untangling the role of multiple components of pollination. Annals of Botany, 119, 167-176.
24 Stratton DA (1989) Longevity of individual flowers in a Costa Rican cloud forest: Ecological correlates and phylogenetic constraints. Biotropica, 21, 308-318.
25 Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537-542.
26 Teixido AL, Valladares F (2015) Temperature-limited floral longevity in the large-flowered Mediterranean shrub Cistus ladanifer (Cistaceae). International Journal of Plant Sciences, 176, 131-140.
27 Trunschke J, Stöcklin J (2016) Plasticity of flower longevity in alpine plants is increased in populations from high elevation compared to low elevation populations. Alpine Botany, 127, 41-51.
28 Vega Y, Marques I (2015) Both biotic and abiotic factors influence floral longevity in three species of Epidendrum (Orchidaceae). Plant Species Biology, 30, 184-192.
29 Vesprini JL, Pacini E (2005) Temperature-dependent floral longevity in two Helleborus species. Plant Systematics and Evolution, 252, 63-70.
30 Weber JJ, Goodwillie C (2013) Variation in floral longevity in the genus Leptosiphon: Mating system consequences. Plant Biology, 15, 220-225.
31 Zhang J (2013) Study on Reproductive Biology of Taraxacum Species in Northeast China. PhD dissertation, Shenyang Agricultural University, Shenyang. (in Chinese with English abstract)
[张建 (2013) 蒲公英属植物繁殖生物学研究. 博士学位论文, 沈阳农业大学, 沈阳.]
32 Zhang ZQ, Li QJ (2009) Review of evolutionary ecology of floral longevity. Chinese Journal of Plant Ecology, 33, 598-606. (in Chinese with English abstract)
[张志强, 李庆军 (2009) 花寿命的进化生态学意义. 植物生态学报, 33, 598-606.]
33 Zhao ZG, Du GZ (2003) Characteristics of the mating system and strategies for resource allocation in Ranunculaceae. Journal of Lanzhou University (Natural Sciences), 39(5), 70-74. (in Chinese with English abstract)
[赵志刚, 杜国祯 (2003) 毛茛科植物交配系统的特征与花期资源分配对策. 兰州大学学报(自然科学版), 39(5), 70-74.]
[1] 陈俊,姚兰,艾训儒,朱江,吴漫玲,黄小,陈思艺,王进,朱强. (2020) 基于功能性状的水杉原生母树种群生境适应策略. 生物多样性, 28(3): 296-302.
[2] 秦浩,张殷波,董刚,张峰. (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43(9): 762-773.
[3] 陈锦, 宋明华, 李以康. (2019) 13C脉冲标记揭示放牧对高寒草甸同化碳分配的影响. 植物生态学报, 43(7): 576-584.
[4] 陈星, 赵联军, 胡茜茜, 罗春平, 梁春平, 蒋仕伟, 梁磊, 郑维超, 官天培. (2019) 基于地形的牲畜空间利用特征及干扰评价——以王朗国家级自然保护区为例. 生物多样性, 27(6): 630-637.
[5] 章异平, 海旭莹, 徐军亮, 吴文霞, 曹鹏鹤, 安文静. (2019) 秦岭东段栓皮栎枝条非结构性碳水化合物含量的季节动态. 植物生态学报, 43(6): 521-531.
[6] 李全弟, 刘旻霞, 夏素娟, 南笑宁, 蒋晓轩. (2019) 甘南高寒草甸群落的物种-多度关系沿坡向的变化. 植物生态学报, 43(5): 418-426.
[7] 向文倩, 任明迅. (2019) 木棉黄花个体的适应意义. 生物多样性, 27(4): 373-379.
[8] 苑丹阳, 朱良军, 张远东, 李宗善, 赵慧颖, 王晓春. (2019) 吉林老白山鱼鳞云杉树轮蓝光强度和轮宽指数与气候响应关系随海拔变化的对比. 植物生态学报, 43(12): 1061-1078.
[9] 殷爽, 王传宽, 金鹰, 周正虎. (2019) 东北地区大秃顶子山土壤-微生物-胞外酶C:N:P 化学计量特征沿海拔梯度的变化. 植物生态学报, 43(11): 999-1009.
[10] 杨继鸿, 李亚楠, 卜海燕, 张世挺, 齐威. (2019) 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应. 植物生态学报, 43(10): 863-876.
[11] 高珂晓, 李飞飞, 柳晓燕, 熊韫琦, 李俊生, 赵彩云. (2019) 广西九万山国家级自然保护区外来入侵和本地草本植物多样性垂直分布格局. 生物多样性, 27(10): 1047-1055.
[12] 翁昌露,张田田,巫东豪,陈声文,金毅,任海保,于明坚,罗媛媛. (2019) 古田山10种主要森林群落类型的α和β多样性格局及影响因素. 生物多样性, 27(1): 33-41.
[13] 孙德鑫, 刘向, 周淑荣. (2018) 停止人为去除植物功能群后的高寒草甸多样性恢复过程与群落构建. 生物多样性, 26(7): 655-666.
[14] 徐翔, 张化永, 谢婷, 孙青青, 田永兰. (2018) 西双版纳种子植物物种多样性的垂直格局及机制. 生物多样性, 26(7): 678-689.
[15] 张宇, 冯刚. (2018) 内蒙古昆虫物种多样性分布格局及其机制. 生物多样性, 26(7): 701-706.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed