生物多样性 ›› 2014, Vol. 22 ›› Issue (5): 649-657.doi: 10.3724/SP.J.1003.2014.13257

所属专题: 海洋生物多样性

• • 上一篇    下一篇

莱州湾大型砂壳纤毛虫群落季节变化

陈雪1, 3, 张武昌1, *(), 吴强2, 栾青杉2, 肖天1   

  1. 1 中国科学院海洋研究所海洋生态与环境重点实验室, 山东青岛 266071
    2 中国水产科学院黄海水产研究所海洋可捕资源评估与生态系统实验室, 山东青岛 266071
    3 中国科学院大学, 北京 100049
  • 收稿日期:2013-12-11 接受日期:2014-04-17 出版日期:2014-09-20
  • 通讯作者: 张武昌 E-mail:wuchangzhang@163.com
  • 基金项目:
    国家重点基础研究发展计划项目(2011CB409804)和国家自然科学基金(U1406403)

Seasonal change of the community of large-sized tintinnids (Ciliophora, Tintinnida) in Laizhou Bay

Xue Chen1, 3, Wuchang Zhang1, *(), Qiang Wu2, Qingshan Luan2, Tian Xiao1   

  1. 1 Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071
    2 Laboratory of Stock Assessment and Ecosystem, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071
    3 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2013-12-11 Accepted:2014-04-17 Online:2014-09-20
  • Contact: Zhang Wuchang E-mail:wuchangzhang@163.com

为揭示莱州湾砂壳纤毛虫群落季节变化规律, 在莱州湾设置8个站位, 于2011年5-11月及2012年3-4月进行了9个航次的调查, 用浅海III型浮游生物网由底至表垂直拖网采集砂壳纤毛虫。结果表明, 莱州湾3-11月砂壳纤毛虫物种丰富度的变化范围为5-19, 周年变化呈现一峰两谷的趋势。丰度的范围为0-318 ind./L, 丰度较大(> 50 ind./L)的种类有运动类铃虫(Codonellopsis mobilis)和清兰拟铃虫(Tintinnopsis chinglanensis)。各月平均丰度随时间的变化趋势为双峰型, 最大值出现在7月(63 ind./L), 次峰值出现在5月(48 ind./L), 最小值出现在3月(2 ind./L)。黏着壳种类在3-11月均有出现, 透明壳种类仅在温度较高(> 15°C)的6-9月出现。各月的优势种数目为1种(5月)到8种(8月), 其中运动类铃虫在所有月中都是优势种, 对砂壳纤毛虫丰度周年的变化规律产生较大影响。使用各月所有种类的平均丰度对各月砂壳纤毛虫群落进行聚类分析, 得到两个群落(相似度30%): 群落I(7-9月)和群落II(3-6月、10-11月), 说明砂壳纤毛虫群落发生了明显的季节变化。砂壳纤毛虫的物种丰富度、丰度与环境因子(温度、盐度)均没有明显的相关性。

关键词: 砂壳纤毛虫, 群落, 周年变化, 莱州湾

The abundance and seasonal change of large-sized tintinnids were studied in Laizhou Bay. Large-sized tintinnids were collected by vertical towing using a shallow sea type III plankton net (open area 0.1 m2, mesh size 76 μm) during 9 cruises between May and November of 2011 and from March to April, 2012. The samples were fixed in formalin solution to a final concentration of 5% and counted using an inverted microscope in the laboratory. We sampled 8 stations to avoid fluctuations over a short time period. The purpose of this study was to characterize seasonal change of the large-sized tintinnid community. Maximum tintinnid species richness was 19 in August and minimum was 5 in May. Tintinnid abundance ranged from 0 ind./L to 318 ind./L. Average abundance at all stations was highest (63 ind./L) in July and lowest (2 ind./L) in March, and there was a secondary peak of 48 ind./L in May. The abundance of Codonellopsis mobilis and Tintinnopsis chinglanensis were more than 50 ind./L. Agglutinated species occurred from March to November, while the hyaline species only occurred from June to September when the temperature was > 15°C. Codonellopsis mobilis occurred from March to November. The number of dominant species ranged from 1 in May, to 8 in August. Codonellopsis mobilis was a dominant species during all time periods and this one species significantly influenced the pattern of total ciliate abundance. Using the average abundance data of 8 stations, two distinct cluster groups were observed (30% similarity): cluster I (July to September) and cluster II (March to June, October to November). The cluster results showed that there was a seasonal change of the large-sized tintinnid community. Average abundance and species richness were not significantly correlated with temperature and salinity.

Key words: Tintinnid, community, seasonal change, Laizhou Bay

图1

莱州湾调查站位图"

表1

莱州湾3-11月记录的砂壳纤毛虫种类"

中文种名
Chinese name
拉丁文种名
Latin name
Amax Mmax
透明壳种类 Hyaline species
尖底类瓮虫 Amphorellopsis acuta 2.81 8
卢氏真铃虫 Eutintinnus lusus-undae 2.53 7
巴拿马网纹虫 Favella panamensis 4.21 6
黏着壳种类 Agglutinated species
鲁西塔尼亚类铃虫 Codonellopsis lusitanica 1.04 8
运动类铃虫 C. mobilis 316.72 5
诺氏薄铃虫 Leprotintinnus nordqvisti 0.42 7
简单薄铃虫 L. simplex 7.67 7
白领细壳虫 Stenosemella nivalis 16.93 7
巴西拟铃虫 Tintinnopsis brasiliensis 1.04 3
布氏拟铃虫 T. butschlii 1.18 7
清兰拟铃虫 T. chinglanensis 65.85 7
有角拟铃虫 T. corniger 3.87 7
指状拟铃虫 T. digita 9.44 8
直颈拟铃虫 T. directa 0.53 7
半旋拟铃虫 T. hemispiralis 3.85 11
日本拟铃虫 T. japonica 14.21 4
卡拉直克拟铃虫 T. karajacensis 0.20 3
罗氏拟铃虫 T. lohmanni 6.15 7
梅氏拟铃虫 T. mayeri 0.11 4
根状拟铃虫 T. radix 29.14 7
圆锥拟铃虫 T. rapa 0.59 3
斯氏拟铃虫 T. schotti 12.43 9
妥肯丁拟铃虫 T. tocantinensis 13.38 8
未定种1 Tintinnopsis sp.1 4.84 5
未定种2 Tintinnopsis sp.2 0.39 6
未定种3 Tintinnopsis sp.3 0.80 8

图2

莱州湾3-11月砂壳纤毛虫物种丰富度的变化(a)及温度和物种丰富度的关系(b)"

图3

莱州湾3-11月砂壳纤毛虫各种类出现情况(a)及其温度范围(b)"

图4

胶州湾3-11月砂壳纤毛虫各站平均丰度(ind./L)的变化"

图5

莱州湾3-11月均出现的两种砂壳纤毛虫丰度变化。A: 运动类铃虫, B: 指状拟铃虫。"

表2

莱州湾3-11月砂壳纤毛虫的优势种及其优势度"

优势种
Dominant species
优势度
Dominance
优势种
Dominant species
优势度
Dominance
3月 日本拟铃虫 T. japonica 0.293 8月 白领细壳虫 S. nivalis 0.179
半旋拟铃虫 T. hemispiralis 0.100 清兰拟铃虫 T. chinglanensis 0.129
运动类铃虫 C. mobilis 0.065 妥肯丁拟铃虫 T. tocantinensis 0.095
指状拟铃虫 T. digita 0.065 指状拟铃虫 T. digita 0.077
巴西拟铃虫 T. brasiliensis 0.065 运动类铃虫 C. mobilis 0.045
4月 日本拟铃虫 T. japonica 0.637 日本拟铃虫 T. japonica 0.044
运动类铃虫 C. mobilis 0.288 罗氏拟铃虫 T. lohmanni 0.040
5月 运动类铃虫 C. mobilis 0.979 根状拟铃虫 T. radix 0.031
9月 斯氏拟铃虫 T. schotti 0.220
6月 运动类铃虫 C. mobilis 0.581 有角拟铃虫 T. corniger 0.042
巴拿马网纹虫 F. panamensis 0.189 半旋拟铃虫 T. hemispiralis 0.033
Tintinnopsis sp.1 0.049 指状拟铃虫 T. digita 0.032
7月 运动类铃虫 C. mobilis 0.305 根状拟铃虫 T. radix 0.024
根状拟铃虫 T. radix 0.157 10月 运动类铃虫 C. mobilis 0.496
清兰拟铃虫 T.chinglanensis 0.086 白领细壳虫 S. nivalis 0.349
白领细壳虫 S. nivalis 0.075 11月 白领细壳虫 S. nivalis 0.445
妥肯丁拟铃虫 T. tocantinensis 0.067 半旋拟铃虫 T. hemispiralis 0.267
简单薄铃虫 L. simplex 0.033 运动类铃虫 C. mobilis 0.215
日本拟铃虫 T. japonica 0.030

表3

莱州湾3-11月砂壳纤毛虫的种丰富度、均匀度指数和多样性指数"

3月
March
4月
April
5月
May
6月
June
7月
July
8月
August
9月
September
10月
October
11月
November
种丰富度
Species richness
10 7 5 11 18 19 12 6 10
均匀度指数
Evenness index (J)
0.78±0.15 0.62±0.18 0.40±0.30 0.59±0.19 0.57±0.13 0.72±0.08 0.76±0.26 0.55±0.18 0.69±0.11
多样性指数
Diversity index (H')
1.71±0.60 1.00±0.23 0.42±0.29 1.33±0.34 2.06±0.50 2.38±0.32 1.45±0.75 1.04±0.46 1.71±0.36

图6

莱州湾3-11月砂壳纤毛虫群落聚类分析结果"

附图

莱州湾3-11月表层温度(°C)和盐度的变化"

[1] .Abboud-Abi Saab M (1989) Distribution and ecology of tintinnids in the plankton of Lebanese coastal waters (eastern Mediterranean). Journal of Plankton Research, 11, 203-222.
[2] .Abboud-Abi Saab M (2002) Annual cycle of the micro- zooplankton communities in the waters surrounding the Palm Island Nature Reserve (north Lebanon), with special attention to tintinnids. Mediterranean Marine Science, 3, 55-76.
[3] .Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10, 257-263.
[4] .Bojanić N (2001) Seasonal distribution of the ciliated protozoa in Kastela Bay. Journal of the Marine Biological Association of the United Kingdom, 81, 383-390.
[5] .Bojanić N, Šolić M, Krstulović N, Šestanović S, Marasović I, Ninčević Ž (2005) Temporal variability in abundance and biomass of ciliates and copepods in the eutrophicated part of Kaštela Bay (Middle Adriatic Sea). Helgoland Marine Research, 59, 107-120.
[6] .Dolan JR (1991) Guilds of ciliate microzooplankton in the Chesapeake Bay. Estuarine, Coastal and Shelf Science, 33, 137-152.
[7] .Dolan JR, Gallegos CL (2001) Estuarine diversity of tintinnids (planktonic ciliates). Journal of Plankton Research, 23, 1009-1027.
[8] .Dolan JR, Montagnes DJ, Agatha S, Coats DW, Stoecker DK (2013) The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton. Wiley-Blackwell, Chichester, UK.
[9] .Elliott DT, Kaufmann RS (2007) Spatial and temporal variability of mesozooplankton and tintinnid ciliates in a seasonally hypersaline estuary. Estuaries and Coasts, 30, 418-430.
[10] .Gold K, Morales EA (1975) Seasonal changes in lorica sizes and the species of Tintinnida in the New York Bight. Journal of Eukaryotic Microbiology, 22, 520-528.
[11] .Graziano C (1989) On the ecology of tintinnids (Ciliophora: Oligotrichida) in the North Irish Sea. Estuarine, Coastal and Shelf Science, 29, 233-245.
[12] .Kamiyama T, Tsujino M (1996) Seasonal variation in the species composition of tintinnid ciliates in Hiroshima Bay, the Seto Inland Sea of Japan. Journal of Plankton Research, 18, 2313-2327.
[13] .Kofoid CA, Campbell AS (1929) A Conspectus of the Marine and Fresh-water Ciliata Belonging to the Suborder Tintinnoinea: with Descriptions of New Species Principally from the Agassiz Expedition to the Eastern Tropical Pacific 1904-1905. University of California, Publications in Zoology, 34, 1-403.
[14] .Kofoid CA, Campbell AS (1939) The Ciliata: the Tintinnoinea. Reports on the Scientific Results of the Expedition to the Eastern Tropical Pacific 1904-1905. Bulletin of the Museum of Comparative Zoology at Harvard College, 84, 1473.
[15] .Laval-Peuto M, Heinbokel JF, Anderson OR, Rassoulzadegan F, Sherr BF (1986) Role of micro- and nanozooplankton in marine food webs. International Journal of Tropical Insect Science, 7, 387-395.
[16] .Leakey R, Burkill PH, Sleigh M (1993) Planktonic ciliates in Southampton Water: quantitative taxonomic studies. Journal of the Marine Biological Association of the United King- dom, 73, 579-594.
[17] .Modigh M, Castaldo S (2002) Variability and persistence in tintinnid assemblages at a Mediterranean coastal site. Aquatic Microbial Ecology, 28, 299-311.
[18] .Montagnes D, Lynn D, Roff J, Taylor W (1988) The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Marine Biology, 99, 21-30.
[19] .Pielou EC (1966) The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144.
[20] .Pierce RW (1992) Ecology of planktonic ciliates in marine food webs. Reviews in Aquatic Sciences, 6, 139-181.
[21] .Pierce RW, Turner JT (1994) Plankton studies in Buzzards Bay, Massachusetts, USA. IV. Tintinnids, 1987 to 1988. Marine Ecology Progress Series, 112, 235-240.
[22] .Sanders RW (1987) Tintinnids and other microzooplankton: seasonal distributions and relationships to resources and Hydrography in a Maine estuary. Journal of Plankton Research, 9, 65-77.
[23] .Shannon CE, Weaver W (1949) The Mathematical Theory of Communication. University of Illinois Press, Urbana.
[24] .Sitran R, Bergamasco A, Decembrini F, Guglielmo L (2007) Temporal succession of tintinnids in the northern Ionian Sea, central Mediterranean. Journal of Plankton Research, 29, 495-508.
[25] .Sun J (孙军), Liu DY (刘东艳) (2003) The application of diversity indices in marine phytoplankton studies. Acta Oceanologica Sinica(海洋学报), 26, 62-75. (in Chinese with English abstract)
[26] .Urrutxurtu I, Orive E, de la Sota A (2003) Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Estuarine, Coastal and Shelf Science, 57, 1169-1182.
[27] .Vaqué D, Blough H, Duarte C (1997) Dynamics of ciliate abundance, biomass and community composition in an oligotrophic coastal environment (NW Mediterranean). Aquatic Microbial Ecology, 12, 71-83.
[28] .Verity PG (1987) Abundance, community composition, size distribution, and production rates of tintinnids in Narragansett Bay, Rhode Island. Estuarine, Coastal and Shelf Science, 24, 671-690.
[29] .Witek M (1998) Annual changes of abundance and biomass of planktonic ciliates in the Gdańsk Basin, southern Baltic. International Review of Hydrobiology, 83, 163-182.
[30] .Xu ZL (徐兆礼), Chen YQ (陈亚瞿) (1989) Aggregated intensity of dominant species of zooplankton in autumn in the East China Sea and Yellow Sea. Chinese Journal of Ecology(生态学杂志), 4, 13-15. (in Chinese with English abstract)
[31] .Yu Y (于莹), Zhang WC (张武昌), Zhao N (赵楠), Sun XX (孙晓霞), Zhang CX (张翠霞), Feng MP (丰美萍), Xiao T (肖天) (2011) Annual variations in the abundance and biomass of planktonic ciliate in the Jiaozhou Bay. Oceanologia et Limnologia Sinica(海洋与湖沼), 42, 690-701. (in Chinese with English abstract)
[32] .Zhang WC (张武昌), Wang R (王荣) (2000) Microzooplank- ton and their grazing pressure on phytoplankton in Bohai Sea. Oceanologia et Limnologia Sinica(海洋与湖沼), 31, 252-258. (in Chinese with English abstract)
[33] .Zhang WC (张武昌), Feng MP (丰美萍), Yu Y (于莹), Zhang CX (张翠霞), Xiao T (肖天) (2012) An Illustrated Guide to Contemporary Tintinnids in the World (砂壳纤毛虫图谱). Science Press, Beijing. (in Chinese)
[1] 唐丽丽,张梅,赵香林,康慕谊,刘鸿雁,高贤明,杨彤,郑璞帆,石福臣. (2019) 华北地区胡桃楸林分布规律及群落构建机制分析. 植物生态学报, 43(9): 753-761.
[2] 柴永福,许金石,刘鸿雁,刘全儒,郑成洋,康慕谊,梁存柱,王仁卿,高贤明,张峰,福臣,刘晓,岳明. (2019) 华北地区主要灌丛群落物种组成及系统发育结构特征. 植物生态学报, 43(9): 793-805.
[3] 秦浩,张殷波,董刚,张峰. (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43(9): 762-773.
[4] 许金石,柴永福,刘晓,岳明,郭垚鑫,康慕谊,刘全儒,郑成洋,吉成均,闫明,张峰,高贤明,王仁卿,石福臣,张钦弟,王茂. (2019) 华北区域环境梯度上阔叶林构建模式及分布成因. 植物生态学报, 43(9): 732-741.
[5] 唐丽丽,杨彤,刘鸿雁,康慕谊,王仁卿,张峰,高贤明,岳明,张梅,郑璞帆,石福臣. (2019) 华北地区荆条灌丛分布及物种多样性空间分异 规律. 植物生态学报, 43(9): 825-833.
[6] 施晶晶,赵鸣飞,王宇航,薛峰,康慕谊,江源. (2019) 黄土高原腹地人工林下草本层群落构建机制. 植物生态学报, 43(9): 834-842.
[7] 方文静,蔡琼,朱江玲,吉成均,岳明,郭卫华,张峰,高贤明,唐志尧,方精云. (2019) 华北地区落叶松林的分布、群落结构和物种多样性. 植物生态学报, 43(9): 742-752.
[8] 李紫晶,莎娜,史亚博,佟旭泽,董雷,张小青,孙蔷,梁存柱. (2019) 内蒙古西鄂尔多斯地区半日花荒漠群落特征及其分类. 植物生态学报, 43(9): 806-816.
[9] 王明明,刘新平,何玉惠,张铜会,魏静,车力木格,孙姗姗. (2019) 科尔沁沙地封育恢复过程中植物群落特征变化及影响因素. 植物生态学报, 43(8): 672-684.
[10] 孙蓓蓓, 俞存根, 刘惠, 颜文超, 张文俊, 戴冬旭. (2019) 南麂列岛东侧海域春秋季虾蟹类生物多样性. 生物多样性, 27(7): 787-795.
[11] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. (2019) 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征. 生物多样性, 27(6): 619-629.
[12] 刘璐, 葛结林, 舒化伟, 赵常明, 徐文婷, 申国珍, 谢宗强. (2019) 神农架常绿落叶阔叶混交林碳氮磷化学计量比. 植物生态学报, 43(6): 482-489.
[13] 邢圆, 吴小平, 欧阳珊, 张君倩, 徐靖, 银森录, 谢志才. (2019) 赣江水系大型底栖动物多样性与受胁因子初探. 生物多样性, 27(6): 648-657.
[14] 江焕, 张辉, 龙文兴, 方燕山, 符明期, 朱孔新. (2019) 金钟藤入侵群落的种间联结及生态位特征. 生物多样性, 27(4): 388-399.
[15] 谢峰淋, 周全, 史航, 舒枭, 张克荣, 李涛, 冯水园, 张全发, 党海山. (2019) 秦岭落叶阔叶林25 ha森林动态监测样地物种组成与群落特征. 生物多样性, 27(4): 439-448.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed