生物多样性 ›› 2014, Vol. 22 ›› Issue (3): 392-400.doi: 10.3724/SP.J.1003.2014.13217

• • 上一篇    下一篇

紫色土区不同秸秆还田量对土壤线虫群落的影响

华萃1, 吴鹏飞1, , A;*(), 何先进1, 朱波2   

  1. 1.西南民族大学生命科学与技术学院, 成都 610041
    2 .中国科学院成都山地灾害与环境研究所, 山地环境演变与调控重点实验室, 成都 610041
  • 收稿日期:2013-10-09 接受日期:2014-03-18 出版日期:2014-05-20
  • 通讯作者: 吴鹏飞 E-mail:wupf@swun.cn
  • 基金项目:
    国家自然科学基金(41371270、40801092)、四川省青年基金(2012JQ0030)、西南民族大学研究生创新项目(CX2013SZ49)和中央高校优秀团队及重大孵化项目(2014NZYTD01)

Effects of different amounts of straw returning treatments on soil nematode community in purple soil

Cui Hua1, Pengfei Wu1, *(), Xianjin He1, Bo Zhu2   

  1. 1. College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041
    2. Key Laboratory of Environmental Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041
  • Received:2013-10-09 Accepted:2014-03-18 Online:2014-05-20
  • Contact: Wu Pengfei E-mail:wupf@swun.cn

为了研究不同秸秆还田量对紫色土区土壤线虫群落的影响, 作者于2011年5月和9月对川中丘陵区的100% (RMW1)、50%(RMW2)、30%(RMW3)和空白对照(CK)4种秸秆还田量的农田土壤线虫进行了调查。结果发现, 随着秸秆还田量的下降, 土壤线虫的群落结构有一定变化。总体上, 群落密度、食真菌类群和捕食-杂食类群的密度呈波动增加; 食细菌类群的密度持续增加; 植物寄生类群密度、Shannon-Wiener多样性指数(H')、植物寄生成熟指数(PPI)和瓦斯乐斯卡指数(WI)呈先增加后下降的变化趋势, 且多样性指数在秸秆还田量为30-50%之间最高; 类群数、自由生活成熟指数(MI)、线虫通路比值(CR)则先下降后增加; 所有变化均不显著(P > 0.05)。土壤速效钾含量随秸秆还田量的增加显著提高(P < 0.05), 且与线虫群落多样性指数呈显著负相关(P < 0.05)。研究结果表明, 在紫色土区秸秆还田主要是通过改变土壤钾含量对土壤线虫群落产生影响, 且秸秆还田量在30-50%之间时有利于维持线虫群落多样性。

关键词: 秸秆还田量, 土壤线虫, 多样性, 群落结构, 营养类群

We evaluated the effects of 4 years of straw returning (2007-2011) on the nematode communities of the purple soil area in the hilly areas of central Sichuan basin, China, using the four treatments of 100, 50, 30, and 0% of straw returned to cropland. The Baermann method was used to extract nematodes from soil samples (0-15 cm). A total of 2,380 individuals, belonging to 2 classes, 8 orders, 24 families, and 39 genera, were extracted. The dominant genera included Tylencholaimus and Prionchulus, comprising 31% of total soil nematode individuals. Our results showed that soil nematode communities differed among the four treatments. Densities of the total nematode community, and fungivores and predators-omnivores specifically exhibited greater fluctuations with reducing straw return levels, while densities of bacterivores increased with reducing straw levels. Plant-parasite density, diversity index(H'), plant-parasite index (PPI) and Wasilewska index (WI) first increased and then decreased with reduction of straw return, while genera number, free-living nematode maturity index (MI) and channel ratio (CR) presented the opposite trend. Nematode diversity index (H') was highest at 30-50% straw return levels. But there were no significant differences among treatments for all of the indexes. The content of soil available potassium, which significantly increased at the lower levels of straw return, was significantly correlated with diversity indices of nematode communities. Our results suggested that straw return management changes the nematode community through its action on the content of soil available potassium, and that level of 30-50% of straw returning were optimal in the hilly areas of central Sichuan basin in terms of maximizing nematode diversity.

Key words: amounts of straw returning, soil nematode, diversity, community structure, trophic groups

表1

紫色土区不同秸秆还田处理土壤样品的化学性质(n=16)"

项目
Item
有机质
Soil organic material (g/kg)
全氮
Total N (g/kg)
有效磷
Available P (mg/kg)
速效钾
Available K (mg/kg)
pH
RMW1 14.52±0.43a 1.01±0.04a 12.25±0.25a 144.50±8.86a 8.31±0.09a
RMW2 13.07±0.85a 0.87±0.03b 10.75±0.63a 126.75±2.10a 8.42±0.06a
RMW3 12.68±0.20a 0.89±0.00b 10.00±0.41a 104.75±5.88ab 8.26±0.06a
CK 12.10±0.73a 0.87±0.04b 11.00±0.71a 106.50±1.19b 8.34±0.05a
F 2.87 4.02 3.11 11.89 1.10
P >0.05 <0.05 >0.05 <0.01 >0.05

表2

紫色土区不同秸秆还田量下土壤线虫组成及数量(条/100 g干土)"

类群 Group RMW1 RMW2 RMW3 CK 合计 Total 营养类群 Trophic group
矛线目 Dorylaimida
垫咽属 Tylencholaimus 95 141 92 147 475 Fu4
大矛属 Enchodelus 16 15 34 37 102 PO4
剑属 Xiphinema 25 40 26 27 118 Pl4
短体长针属 Longidorella 18 18 16 20 72 Pl4
长针属 Longidorus 0 12 0 5 17 Pl4
矛线属 Dorylaimus 30 39 22 21 112 PO4
中矛线属 Mesodorylaimus 0 0 1 4 5 PO4
无咽属 Alaimus 1 24 19 2 46 Ba4
穿咽属 Nygolaimus 5 0 0 14 19 PO5
小计 Total 190 289 210 277 966
单齿目 Mononchida
锯齿属 Prionchulus 87 54 20 104 265 PO4
锉齿属 Mylonchulus 30 58 33 67 188 PO4
基齿属 Iotonchus 3 6 8 15 32 PO4
单齿属 Mononchus 0 0 0 1 1 PO4
小计 Total 120 118 61 187 486
窄咽目 Araeolaimida
柱咽属 Cylindrolaimus 20 17 18 19 74 Ba3
管咽属 Aulolaimus 0 0 0 25 25 Ba3
巴氏属 Bastiania 10 22 21 32 85 Ba3
绕线属 Plectus 15 0 0 4 19 Ba2
杆咽属 Rhabdolaimus 0 2 4 1 7 Ba3
小计 Total 45 41 43 81 210
嘴刺目 Enoplida
托布利属 Tobrilus 0 74 29 13 116 PO3
三孔属 Tripyla 0 0 0 1 1 PO3
小计 Total 0 74 29 14 117
色矛目 Chromadorida
异色矛属 Achromadora 3 0 7 3 13 PO3
色矛属 Chromadorita 0 0 0 2 2 PO3
小计 Total 3 0 7 5 15
单宫目 Monhysterida
单宫属 Monhystera 0 0 0 11 11 Ba1
小计 Total 0 0 0 11 11
小杆目 Rhabditida
原杆属 Protorhabditis 17 67 79 62 225 Ba1
明杆属 Rhabditophanes 18 9 6 14 47 Ba1
小杆属 Rhabditis 0 0 1 0 1 Ba1
齿咽属 Odontopharynx 21 13 0 31 65 Ba1
后双胃属 Metadiplogaster 0 0 0 4 4 Ba1
伪杆咽属 Rhabdontolaimus 0 0 0 3 3 Ba1
头叶属 Cephalobus 9 3 19 2 33 Ba2
鹿角唇属 Cervidellus 0 4 5 0 9 Ba2
伪双胃属 Pseudodiplogasteroide 0 1 1 4 6 Ba1
盆咽属 Panagrolaimus 2 0 0 1 3 Ba1
小计 Total 67 97 111 121 396
垫刃目 Tylenchida
短体属 Pratylenchus 23 28 47 7 105 Pl3
根潜属 Hirschmanniella 2 0 0 0 2 Pl3
针属 Paratylenchus 10 10 31 7 58 Pl2
伪垫刃属 Nothotylenchus 0 0 0 9 9 Fu2
刺属 Belonolaimus 0 2 0 2 4 Pl3
柄端球属 Paurodontus 0 0 0 1 1 Fu2
小计 Total 35 40 78 26 179
总个体数 Total individuals 460 659 539 722 2,380
总类群数 Total group number 22 23 23 36 39

图1

紫色土区不同秸秆还田量土壤线虫群落和各营养类群的密度(平均值±标准误)"

表3

紫色土区土壤线虫群落和营养类群密度的重复测量方差分析"

项目 Item 线虫群落
Community
食细菌类群Bacterivores 食真菌类群Fungivores 植物寄生类群
Plant-parasites
捕食-杂食类群Predators-Omnivores
F P F P F P F P F P
月份 Month 1.86 0.20 0.67 0.43 11.39 0.01 0.25 0.63 0.01 0.97
处理 Treatment 0.56 0.65 0.55 0.66 0.16 0.92 1.63 0.24 0.70 0.57
月份×处理 Month×Treatment 0.43 0.74 0.64 0.60 0.67 0.59 0.20 0.90 0.32 0.81

图2

紫色土区不同秸秆还田处理土壤线虫群落多样性及生态指数(平均值±标准误)"

表4

紫色土区土壤线虫群落多样性及生态指数的重复测量方差分析"

项目 Item 类群数
Group
number
Shannon-Wiener多
样性指数
Shannon-Wiener index (H')
自由生活成熟指数
Free-living nematode
maturity index
(MI)
植物寄生成
熟指数
Plant-parasite
Index (PPI)
线虫通路
比值
Channel ratio
(CR)
瓦斯乐斯
卡指数
Wasilewska index (WI)
F P F P F P F P F P F P
月份 Month 0.49 0.50 3.40 0.09 6.89 0.02 1.57 0.23 6.60 0.02 3.49 0.09
处理 Treatment 2.19 0.14 0.99 0.43 3.23 0.06 3.43 0.05 0.84 0.50 0.41 0.75
月份×处理 Month×Treatment 0.86 0.49 0.91 0.46 2.75 0.09 1.25 0.34 0.91 0.47 1.81 0.20

图3

紫色土区土壤线虫群落主成分分析排序图。各属的中文名见表2。"

表5

紫色土区土壤线虫群落与土壤性质相关关系"

项目
Item
有机质
Soil organic matter
全氮
Total N
有效磷
Available P
速效钾
Available K
pH
PC1得分 PC1 scores -0.10 -0.23 -0.55* -0.38 -0.30
PC2得分 PC2 scores 0.09 0.02 0.39 0.01 -0.33
总密度 Total density -0.18 -0.26 -0.51* -0.21 -0.20
食细菌类群 Bacterivores -0.41 -0.36 -0.53* -0.43 -0.28
食真菌类群 Fungivores -0.01 -0.16 -0.41 -0.17 -0.22
植物寄生类群 Plant-parasites 0.04 -0.02 -0.51* -0.21 -0.30
捕食-杂食类群 Predators-Omnivores -0.05 -0.25 -0.21 -0.04 0.00
Shannon-Wiener多样性指数 Shannon-Wiener index (H') -0.40 -0.42 -0.32 -0.57* -0.37
类群数 Group number -0.31 -0.14 -0.19 -0.52* -0.30
自由生活成熟指数 Free-living nematode maturity index (MI) 0.06 0.23 0.03 0.09 0.11
植物寄生成熟指数 Plant-parasite index (PPI) 0.24 0.01 -0.04 0.10 -0.12
线虫通路比值 Channel ratio (CR) -0.37 -0.25 0.01 -0.26 -0.21
瓦斯乐斯卡指数 Wasilewska index (WI) -0.39 -0.43 0.12 -0.31 -0.17
[1] Bai HP (白和平), Hu XQ (胡喜巧), Zhu JT (朱俊涛), Pan YX (潘远祥), Liang YP (梁运攀), Zhang XJ (张潇军), Jiang AF (蒋爱凤) (2011) Effects of corn straw returning to field on wheat field soil nutrient. Science & Technology Information(科技信息), (11), 37-38. (in Chinese with English abstract)
[2] Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14-19.
[3] Bongers T, Bongers M (1998) Functional diversity of nematodes. Applied Soil Ecology, 10, 239-251.
[4] Fuentes M, Govaerts B, De León F, Hidalgo C, Dendooven L, Sayre KD, Etchevers J (2009) Fourteen years of applying zero and conventional tillage, crop rotation and residue management systems and its effect on physical and chemical soil quality. European Journal of Agronomy, 30, 228-237.
[5] Gunapala N, Venette RC, Ferris H, Scow KM (1998) Effects of soil management history on the rate of organic matter decomposition. Soil Biology and Biochemistry, 30, 1917-1927.
[6] Lenz R, Eisenbeis G (2000) Short-term effects of different tillage in a sustainable farming system on nematode community structure. Biology and Fertility of Soils, 31, 237-244.
[7] Li ZM (李仲明) (2003) Purple Soil in China (中国紫色土). Science Press, Beijing. (in Chinese)
[8] Liang WJ (梁文举), Zhang WM (张万民), Li WG (李维光), Duan YX (段玉玺) (2001) Effect of chemical fertilizer on nematode community composition and diversity in the black soil region. Biodiversity Science(生物多样性), 9, 237-240. (in Chinese with English abstract)
[9] Lin YH (林英华), Zhang FD (张夫道), Yang XY (杨学云), Bao DJ (宝德俊), Shi XJ (石孝均), Wang SJ (王胜佳), Wang BR (王伯仁) (2004) Study on the relationship between agricultural soil fauna and soil physicochemical properties. Scientia Agricultura Sinica(中国农业科学), 37, 871-877. (in Chinese with English abstract)
[10] Lu RK (鲁如坤) (2000) Soil Agricultural Chemistry Analysis Method (土壤农业化学分析方法). China Agricultural Science and Technology Press, Beijing. (in Chinese)
[11] Ma KP (马克平), Liu YM (刘玉明) (1994) Measurement of biotic community diversity. I. α diversity (Part 2). Chinese Biodiversity(生物多样性), 2, 231-239. (in Chinese)
[12] McBride RG, Mikkelsen RL, Barker KR (2000) The role of low molecular weight organic acids from decomposing rye in inhibiting root-knot nematode populations in soil. Applied Soil Ecology, 15, 243-251.
[13] Neher DA (1999) Soil community composition and ecosystem processes: comparing agricultural ecosystems with natural ecosystems. Agroforestry Systems, 45, 159-185.
[14] Tong FC (佟富春), Xiao YH (肖以华), Wang QL (王庆礼) (2009) Effects of succession process of secondary forestry on characteristics of soil nematode communities in Changbai Mountain. Journal of South China Agricultural University(华南农业大学学报), 30, 63-68. (in Chinese with English abstract)
[15] Wang KH, McSorley R, Gallaher RN (2003) Effect of Crotalaria juncea amendment on nematode communities in soil with different agricultural histories. Journal of Nematology, 35, 294-301.
[16] Wang KH, McSorley R, Marshall AJ, Gallaher RN (2004) Nematode community changes associated with decomposition of Crotalaria juncea amendment in litterbags. Applied Soil Ecology, 27, 31-45.
[17] Wasilewska L (1994) The effect of age of meadows on succession and diversity in soil nematode communities. Pedobiologia, 38, 1-11.
[18] Wu JH, Fu CZ, Chen SS, Chen JK (2002) Soil faunal response to land use: effect of estuarine tideland reclamation on nematode communities. Applied Soil Ecology, 21, 131-147.
[19] Wu TY (武天云), Schoenau JJ, Li FM (李凤民), Qian PY (钱佩源), Zhang SQ (张树清), Malhi SS, Wang F (王方) (2004) Concepts and relative analytical techniques of soil organic matter. Chinese Journal of Applied Ecology(应用生态学报), 15, 717-722. (in Chinese with English abstract)
[20] Yeates GW, Bongers T, De Goede R, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. Journal of Nematology, 25, 315-331.
[21] Yin WY (尹文英) (1998)Pictorial Keys to Soil Animal of China (中国土壤动物检索图鉴). Science Press, Beijing. (in Chinese)
[22] Yin XQ, Song B, Dong WH, Xin WD, Wang YQ (2010) A review on the eco-geography of soil fauna in China. Journal of Geographical Sciences, 20, 333-346.
[23] Zhang XK, Li Q, Zhu AN, Liang WJ, Zhang JB, Steinberger Y (2012) Effects of tillage and residue management on soil nematode communities in North China. Ecological Indicators, 13, 75-81.
[24] Zhao YX (赵映霞), Liu QZ (刘奇志), Cao ZP (曹志平), Wu WL (吴文良), Xue ZT (薛泽涛), Pan D (潘登) (2003) Effect of fertilization on population dynamics of plant- parasite nematode. Plant Protection(植物保护), 29(6), 19-22. (in Chinese with English abstract)
[25] Zhu B (朱波), Chen S (陈实), You X (游祥), Peng K (彭奎), Zhang XW (张先婉) (2002) Soil fertility restoration on degraded upland of purple soil. Acta Pedologica Sinica(土壤学报), 39, 743-749. (in Chinese with English abstract)
[26] Zhu B (朱波), Zhou MH (周明华), Kuang FH (况福虹), Wang T (汪涛) (2013) Measurement and simulation of nitrogen leaching loss in hillslope cropland of purple soil. Chinese Journal of Eco-Agriculture(中国生态农业学报), 21, 102-109. (in Chinese with English abstract)
[27] Zhu XY (朱新玉), Dong ZX (董志新), Kuang FH (况福虹), Zhu B (朱波) (2013) Effects of fertilization regimes on soil faunal communities in cropland of purple soil, China. Acta Ecologica Sinica(生态学报), 33, 464-474. (in Chinese with English abstract)
[1] 庄文颖 李熠 郑焕娣 曾昭清 王新存. (2020) 中国大型子囊菌受威胁现状及致危因素分析(大型真菌红色名录专辑). 生物多样性, 28(1): 0-0.
[2] 李熠 唐志尧 闫昱晶 王科 蔡磊 贺金生 古松 姚一建. (2020) 物种分布模型在大型真菌红色名录评估及保护中的应用: 以冬虫夏草为例(大型真菌红色名录专辑). 生物多样性, 28(1): 0-0.
[3] 许金石,柴永福,刘晓,岳明,郭垚鑫,康慕谊,刘全儒,郑成洋,吉成均,闫明,张峰,高贤明,王仁卿,石福臣,张钦弟,王茂. (2019) 华北区域环境梯度上阔叶林构建模式及分布成因. 植物生态学报, 43(9): 732-741.
[4] 施晶晶,赵鸣飞,王宇航,薛峰,康慕谊,江源. (2019) 黄土高原腹地人工林下草本层群落构建机制. 植物生态学报, 43(9): 834-842.
[5] 方文静,蔡琼,朱江玲,吉成均,岳明,郭卫华,张峰,高贤明,唐志尧,方精云. (2019) 华北地区落叶松林的分布、群落结构和物种多样性. 植物生态学报, 43(9): 742-752.
[6] 李永民, 吴孝兵. (2019) 安徽省两栖爬行动物名录修订. 生物多样性, 27(9): 1002-1011.
[7] 李顺, 邹亮, 宫一男, 杨海涛, 王天明, 冯利民, 葛剑平. (2019) 激光雷达技术在动物生态学领域的研究进展. 生物多样性, 27(9): 1021-1031.
[8] 杨锐, 彭钦一, 曹越, 钟乐, 侯姝彧, 赵智聪, 黄澄. (2019) 中国生物多样性保护的变革性转变及路径. 生物多样性, 27(9): 1032-1040.
[9] 陈自宏, 王元兵, 代永东, 陈凯, 徐玲, 何謦成. (2019) 滇西太保山森林公园子囊菌门虫生真菌物种多样性及其消长动态. 生物多样性, 27(9): 993-1001.
[10] 谭一波, 申文辉, 付孜, 郑威, 欧芷阳, 谭长强, 彭玉华, 庞世龙, 何琴飞, 黄小荣, 何峰. (2019) 环境因子对桂西南蚬木林下植被物种多样性变异的解释. 生物多样性, 27(9): 970-983.
[11] 秦浩,张殷波,董刚,张峰. (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43(9): 762-773.
[12] 唐丽丽,杨彤,刘鸿雁,康慕谊,王仁卿,张峰,高贤明,岳明,张梅,郑璞帆,石福臣. (2019) 华北地区荆条灌丛分布及物种多样性空间分异 规律. 植物生态学报, 43(9): 825-833.
[13] 图力古尔, 王雪珊, 张鹏. (2019) 大小兴安岭地区伞菌和牛肝菌类区系. 生物多样性, 27(8): 867-873.
[14] 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. (2019) 小兴安岭大亮子河国家森林公园不同生境下土壤细菌多样性和群落结构. 生物多样性, 27(8): 911-918.
[15] 吕美林, 刘泽, 宋震, 王亚宁, 刘小勇. (2019) 大兴安岭地区可培养毛霉门真菌多样性与分布. 生物多样性, 27(8): 821-832.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed