生物多样性 ›› 2019, Vol. 27 ›› Issue (12): 1269-1278.doi: 10.17520/biods.2019224

• 研究报告:植物多样性 •    下一篇

基于系统发育的黄土高原地区木本植物多样性及特有性格局

董雪蕊1, 张红2, 张明罡1, *()   

  1. 1 山西大学黄土高原研究所, 太原 030006
    2 山西大学环境与资源学院, 太原 030006
  • 收稿日期:2019-07-10 接受日期:2019-12-12 出版日期:2019-12-20
  • 通讯作者: 张明罡 E-mail:zhangmg@sxu.edu.cn
  • 基金项目:
    国家自然科学基金(31700465);山西省应用基础研究计划(201701D221217)

Explaining the diversity and endemic patterns based on phylogenetic approach for woody plants of the Loess Plateau

Xuerui Dong1, Hong Zhang2, Minggang Zhang1, *()   

  1. 1 Institute of Loess Plateau, Shanxi University, Taiyuan 030006
    2 College of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006
  • Received:2019-07-10 Accepted:2019-12-12 Online:2019-12-20
  • Contact: Zhang Minggang E-mail:zhangmg@sxu.edu.cn

黄土高原地区植被类型多样, 森林、草原和荒漠在此交汇并逐渐过渡。由于水热条件限制和人类活动加剧, 该地区生态环境脆弱, 生物多样性保护面临的形势日益严峻, 因此获取该区域物种多样性的空间分布格局并阐明其影响因素成为该地区生物多样性保护的首要任务。本研究首先结合标本采集记录与环境因子, 利用物种分布模型获取了293种木本植物的潜在分布区, 分析了物种丰富度和物种加权特有性的空间格局。其次, 引入系统发育信息, 分析系统发育多样性和系统发育特有性的空间格局, 并进一步利用环境因子对上述格局分别进行解释。最后, 对黄土高原地区的特有中心性质和显著性进行分析。结果表明, 生物多样性热点地区均出现在黄土高原南部水热条件较好的地区, 即秦岭和中条山一带。本区域的生物多样性空间格局由年平均降水量和最冷月最低温主导, 符合植物区系交汇带的特点。特有中心集中在南部地区和青海省, 由南向北分别是古特有中心和混合特有中心, 不存在单独的新特有中心。黄土高原地区木本植物起源较为古老, 生物多样性格局的形成以来源于热带或亚热带的物种扩散为主, 物种的分化不占主导地位。上述结果表明了将植物的进化历史纳入生物多样性保护的重要性。

关键词: 多样性分布格局, 系统发育, 气候因子, 新特有, 古特有, 木本植物, 黄土高原地区

The Loess Plateau is home to various vegetation types as it contains famous transitional forests, grasslands, and deserts. Due to natural resource limitation and intensive human activities, this natural environment faces serious conservation challenges. In order to effectively conserve this natural environment, spatial mapping of species diversity is key to conservation efforts. In this study, we first modeled the potential distribution of 293 woody species based on specimen records and climate data and then calculated the spatial patterns of species richness and weighted endemism. Secondly, we calculated phylogenetic diversity and phylogenetic endemism and identified environmental drivers of the observed spatial patterns. Finally, we analyzed endemism types and tested their significance. Our results suggest that biodiversity hotspots are distributed on the southern edge of the Loess Plateau and are highly related to the flora of Qinling Mountains. The biodiversity patterns of this transitional region are driven by annual precipitation and minimum temperature of coldest month. Endemism hotspots were found on the southern edge of the Loess Plateau, which contain paleo-endemism and mixed-endemism, but no neo-endemism. We concluded that most woody species of the Loess Plateau originated in tropical or subtropical regions, and the species richness patterns of this region are maintained by dispersal rather than speciation. Our study indicated the importance of incorporating the evolutionary history in biodiversity conservation.

Key words: diversity distribution pattern, phylogeny, climatic factors, neo-endemism, paleo-endemism, woody plant, Loess Plateau

表1

保留的环境因子间的Spearman相关系数"

年平均温度 Annual mean temperature 平均日较差 Mean diurnal range 温度季节性 Temperature seasonality 最热月最高温
Max. temperature of warmest month
最冷月最低温 Min. temperature
of coldest month
年平均降水量 Annual precipitation
平均日较差 Mean diurnal range -0.197
温度季节性 Temperature seasonality -0.110 0.750
最热月最高温
Max. temperature of warmest month
0.640 0.436 0.548
最冷月最低温
Min. temperature of coldest month
0.727 -0.713 -0.687 0.059
年平均降水量 Annual precipitation 0.362 -0.619 -0.709 -0.167 0.702
最干月降水量 Precipitation of driest month 0.327 -0.265 -0.134 0.209 0.374 0.602

图1

黄土高原地区木本植物多样性分布格局图。(A)物种丰富度(SR); (B)物种加权特有性(WE); (C)系统发育多样性(PD); (D)系统发育特有性(PE); (E)采样记录物种丰富度。"

表2

黄土高原地区气候因子与生物多样性指数多元逐步回归的结果。R2adj: 标准化决定系数; Beta: 回归系数; t: 回归系数t检验。"

R2adj. Beta t
物种丰富度 Species richness
年平均降水量 Annual precipitation 0.656 0.438 31.316
最冷月最低温 Min. temperature of coldest month 0.772 0.392 30.247
最干月降水量 Precipitation of driest month 0.777 0.098 8.549
平均日较差 Mean diurnal range 0.782 -0.097 7.798
物种加权特有性 Weighted endemism
年平均降水量 Annual precipitation 0.544 0.197 9.037
最冷月最低温 Min. temperature of coldest month 0.658 -0.445 -2.245
最干月降水量 Precipitation of driest month 0.682 0.288 16.948
最热月最高温 Max. temperature of warmest month 0.700 0.661 3.831
平均日较差 Mean diurnal range 0.701 -0.359 -5.554
温度季节性 Temperature seasonality 0.704 -0.847 -4.621
系统发育多样性 Phylogenetic diversity
年平均降水量 Annual precipitation 0.652 0.411 21.770
最冷月最低温 Min. temperature of coldest month 0.766 -1.014 -5.746
平均日较差 Mean diurnal range 0.771 -0.466 -8.296
最干月降水量 Precipitation of driest month 0.775 0.121 8.308
温度季节性 Temperature seasonality 0.777 -1.215 -7.670
最热月最高温 Max. temperature of warmest month 0.781 0.885 4.931
年平均温度 Annual mean temperature 0.782 0.264 2.219
系统发育特有性 Phylogenetic endemism
最冷月最低温 Min. temperature of coldest month 0.520 -0.443 -2.166
年平均降水量 Annual precipitation 0.633 0.157 6.957
最干月降水量 Precipitation of driest month 0.659 0.307 17.472
最热月最高温 Max. temperature of warmest month 0.680 0.653 3.666
平均日较差 Mean diurnal range 0.681 -0.352 -5.270
温度季节性 Temperature seasonality 0.683 -0.866 -4.572

图2

黄土高原地区木本植物多样性指数的显著性检验结果图。(A)系统发育多样性; (B)系统发育特有性; (C)相对系统发育多样性; (D)相对系统发育特有性。"

图3

黄土高原地区木本植物新、古特有中心分类"

[1] Barnabas HD, Michelle B, Davies TJ ( 2015) Spatial incongruence among hotspots and complementary areas of tree diversity in southern Africa. Diversity and Distributions, 21, 769-780.
[2] Barnabas HD, Peter LR, Jeyanthi G, Daniel SP, Ben GH, Michelle G ( 2018) Spatial overlaps between the global protected areas network and terrestrial hotspots of evolutionary diversity. Global Ecology and Biogeography, 28, 757-766.
[3] Chen ZD, Li DZ ( 2013) On Barcode of Life and Tree of Life. Plant Diversity and Resources, 35, 675-681. (in Chinese with English abstract)
[ 陈之端, 李德铢 ( 2013) 生命条形码与生命之树. 植物分类与资源学报, 35, 675-681.]
[4] Crisp MD, Laffan SW, Linder HP, Monro A ( 2001) Endemism in the Australian flora. Journal of Biogeography, 28, 183-198.
[5] Donoghue MJ ( 2008) A phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences, USA, 105, 11549-11555.
[6] Faith DP ( 1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10.
[7] Feng XM, Fu BJ, Piao SL, Wang S, Ciais P, Zeng ZZ, Lu Y, Zeng Y, Li Y, Jiang XH, Wu BF ( 2016) Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 6, 1019-1022.
[8] Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Proches S, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V ( 2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757-760.
[9] Francis AP, Currie DJ ( 2003) A globally consistent richness- climate relationship for angiosperms. The American Naturalist, 161, 523-536.
[10] Ge XJ ( 2015) Application of DNA barcoding in phylofloristics study. Biodiversity Science, 23, 295-296. (in Chinese)
[ 葛学军 ( 2015) DNA条形码在植物系统发育区系学研究中的应用. 生物多样性, 23, 295-296.]
[11] Graham MH ( 2003) Confronting multicollinearity in ecological multiple regression. Ecology, 84, 2809-2815.
[12] Huang JH, Chen B, Liu CR, Lai JS, Zhang JL, Ma KP ( 2012) Identifying hotspots of endemic woody seed plant diversity in China. Diversity and Distributions, 18, 673-688.
[13] Huang JH, Zhang JL, Yang Y, Ma KP ( 2013) Advances in methods for measuring patterns of endemic plant diversity. Biodiversity Science, 21, 99-110. (in Chinese with English abstract)
[ 黄继红, 张金龙, 杨永, 马克平 ( 2013) 特有植物多样性分布格局测度方法的新进展. 生物多样性, 21, 99-110.]
[14] Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO ( 2012) The global diversity of birds in space and time. Nature, 491, 444-448.
[15] Kerkhoff AJ, Moriarty PE, Weiser MD ( 2014) The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proceedings of the National Academy of Sciences, USA, 111, 8125-8130.
[16] Laffan SW, Lubarsky E, Rosauer DF ( 2010) Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography, 33, 643-647.
[17] Liu CR, White M, Newell G ( 2018) Detecting outliers in species distribution data. Journal of Biogeography, 45, 164-176.
[18] Lu LM, Sun M, Zhang JB, Li HL, Lin L, Yang T, Chen M, Chen ZD ( 2014) Tree of life and its applications. Biodiversity Science, 22, 3-20. (in Chinese with English abstract)
[ 鲁丽敏, 孙苗, 张景博, 李宏雷, 林立, 杨拓, 陈闽, 陈之端 ( 2014) 生命之树及其应用. 生物多样性, 22, 3-20.]
[19] Ma YP, Chen G, Grumbine ED, Dao ZL, Sun WB, Guo HJ ( 2013) Conserving plant species with extremely small populations (PSESP) in China. Biodiversity and Conservation, 22, 803-809.
[20] Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W ( 2009) Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, 15, 59-69.
[21] Merow C, Smith MJ, Silander JA ( 2013) A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36, 1058-1069.
[22] Mishler BD, Knerr N, Gonzalez-Orozco CE, Thornhill AH, Laffan SW, Miller JT ( 2014) Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. Nature Communications, 5, 4473.
[23] Phillips SJ, Anderson RP, Schapire RE ( 2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
[24] Qian H ( 2013) Environmental determinants of woody plant diversity at a regional scale in China. PLoS ONE, 8, e75832.
[25] Qian H, Jin Y, Ricklefs RE ( 2017) Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America. Proceedings of the National Academy of Sciences, USA, 114, 11452-11457.
[26] Qian H, Sandel B ( 2017) Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Global Ecology and Biogeography, 26, 1258-1269.
[27] Raes N, Ter Steege H ( 2007) A null-model for significance testing of presence-only species distribution models. Ecography, 30, 727-736.
[28] Rosauer D, Laffan SW, Crisp MD, Donnellan SC, Cook LG ( 2009) Phylogenetic endemism: A new approach for identifying geographical concentrations of evolutionary history. Molecular Ecology, 18, 4061-4072.
[29] Schmidt-Lebuhn AN, Knerr NJ, Miller JT, Mishler BD ( 2015) Phylogenetic diversity and endemism of Australian daisies (Asteraceae). Journal of Biogeography, 42, 1114-1122.
[30] Shangguan TL, Zhang F, Fan LS ( 2000) Analysis on the flora of xylophyta in Zhongtiao Mountains, Shanxi. Bulletin of Botanical Research, 20, 143-155. (in Chinese with English abstract)
[ 上官铁梁, 张峰, 樊龙锁 ( 2000) 中条山木本植物区系地理成分分析. 植物研究, 20, 143-155.]
[31] Shapcott A, Forster PI, Guymer GP, McDonald WJF, Faith DP, Erickson D, Kress WJ ( 2015) Mapping biodiversity and setting conservation priorities for SE Queensland’s rainforests using DNA barcoding. PLoS ONE, 10, e0122164.
[32] Shi SL, Li ZS, Wang H, Arx GV, Lü YH, Wu X, Wang XC, Liu GH, Fu BJ ( 2016) Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau: Herb-chronology based analysis. Scientific Reports, 6, 28535.
[33] Tang CW, Sun XG, Xiao DN ( 2005) Priority area assessment for species diversity conservation of spermatophytic genera endemic to China in Gansu Province. Chinese Journal of Ecology, 24, 1127-1133. (in Chinese with English abstract)
[ 汤萃文, 孙学刚, 肖笃宁 ( 2005) 甘肃省中国种子植物特有属物种多样性保护优先地区分析. 生态学杂志, 24, 1127-1133.]
[34] Tang ZY, Fang JY, Zhang L ( 2004) Patterns of woody plant species diversity along environmental gradients on Mt. Taibai, Qinling Mountains. Biodiversity Science, 12, 115-122. (in Chinese with English abstract)
[ 唐志尧, 方精云, 张玲 ( 2004) 秦岭太白山木本植物物种多样性的梯度格局及环境解释. 生物多样性, 12, 115-122.]
[35] Wang L, Li YY, Li YY ( 2004) The eco-environment deterioration and its counter measures in the Loess Plateau. Journal of Natural Resources, 19, 263-271. (in Chinese with English abstract)
[ 王力, 李裕元, 李秧秧 ( 2004) 黄土高原生态环境的恶化及其对策. 自然资源学报, 19, 263-271.]
[36] Wang YF, Xiao XM ( 1993) Climatic gradient of main vegetation types in the Loess Plateau region. Acta Botanica Sinica, 35, 291-299. (in Chinese with English abstract)
[ 王义凤, 肖向明 ( 1993) 黄土高原地区主要植被类型的气候梯度分布. 植物学报, 35, 291-299.]
[37] Wang YR, Yin XZ, Yuan ZP ( 2004) Main characteristics of climate system in Loess Plateau in China. Journal of Catastrophology, 19(S1), 39-45. (in Chinese with English abstract)
[ 王毅荣, 尹宪志, 袁志鹏 ( 2004) 中国黄土高原气候系统主要特征. 灾害学, 19(S1), 39-45.]
[38] Wang ZH, Fang JY, Tang ZY, Lin X ( 2011) Patterns, determinants and models of woody plant diversity in China. Proceedings of the Royal Society B: Biological Sciences, 278, 2122-2132.
[39] Webb CO, Donoghue MJ ( 2005) Phylomatic: Tree assembly for applied phylogenetics. Molecular Ecology Notes, 5, 181-183.
[40] Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A ( 2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763-773.
[41] Xu XT, Wang ZH, Rahbek C, Lessard JP, Fang JY ( 2013) Evolutionary history influences the effects of water-energy dynamics on oak diversity in Asia. Journal of Biogeography, 40, 2146-2155.
[42] Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RL, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM ( 2014) Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.
[43] Zhang HH, Huang ZB ( 2001) Bio-climatic division and restoration of the degraded ecosystem on the Loess Plateau. Journal of Arid Land Resources and Environment, 15(1), 64-71. (in Chinese with English abstract)
[ 张厚华, 黄占斌 ( 2001) 黄土高原生物气候分区与该区生态系统的恢复. 干旱区资源与环境, 15(1), 64-71.]
[44] Zhang JL ( 2017) plantlist: Looking up the Status of Plant Scientific Names based on the Plant List Database. R package version 0.3.0. . (accessed on 2019-01-06)
[45] Zhang MG, Slik JWF, Ma KP ( 2017) Priority areas for the conservation of perennial plants in China. Biological Conservation, 210, 56-63.
[46] Zhang WH, Li DW, Liu GB, Xu XH ( 2002) The characteristics of the seed plant flora in Loess Plateau. Bulletin of Botanical Research, 22, 373-379. (in Chinese with English abstract)
[ 张文辉, 李登武, 刘国彬, 徐学华 ( 2002) 黄土高原地区种子植物区系特征. 植物研究, 22, 373-379.]
[47] Zhang YB, Guo LL, Wang W, Tian Y, Li JS ( 2014) Spatial distribution patterns of species richness and hotspots of protected plants in Qinling Mountain. Acta Ecologica Sinica, 34, 2109-2117. (in Chinese with English abstract)
[ 张殷波, 郭柳琳, 王伟, 田瑜, 李俊生 ( 2014) 秦岭重点保护植物丰富度空间格局与热点地区. 生态学报, 34, 2109-2117.]
[48] Zhao MF, Xue F, Wang YH, Wang GY, Xing KX, Kang MY, Wang JL ( 2017) Phylogenetic structure and diversity of herbaceous communities in the conifer forests along an elevational gradient in Luya Mountain, Shanxi, China. Chinese Journal of Plant Ecology, 41, 707-715. (in Chinese with English abstract)
[ 赵鸣飞, 薛峰, 王宇航, 王国义, 邢开雄, 康慕谊, 王菁兰 ( 2017) 山西芦芽山针叶林草本层群落谱系结构与多样性的海拔格局. 植物生态学报, 41, 707-715.]
[1] 曹槟, 李国杰, 赵瑞琳. (2019) 大小兴安岭地区红菇属物种多样性及其地理成分. 生物多样性, 27(8): 854-866.
[2] 陈志祥, 姚雪莹, Stephen R.Downie, 王奇志. (2019) 直刺变豆菜叶绿体全基因组及其特征. 生物多样性, 27(4): 366-372.
[3] 陈志远,刘珺,杨星鹏,刘梦,汪涯,张志斌,朱笃. (2019) 东乡野生稻可培养内生细菌群落组成及多样性. 生物多样性, 27(12): 1320-1329.
[4] 杜新宇, 卢金梅, 李德铢. (2019) 石松类和蕨类植物质体基因组结构演化研究进展. 生物多样性, 27(11): 1172-1183.
[5] 赵国华, 王莹, 商辉, 周喜乐, 王爱华, 李玉峰, 王晖, 刘保东, 严岳鸿. (2019) 祖先性状重建法揭示铁线蕨属植物孢子表面纹饰的形态多样性及其演化. 生物多样性, 27(11): 1228-1235.
[6] 孙德鑫, 刘向, 周淑荣. (2018) 停止人为去除植物功能群后的高寒草甸多样性恢复过程与群落构建. 生物多样性, 26(7): 655-666.
[7] 张宇, 冯刚. (2018) 内蒙古昆虫物种多样性分布格局及其机制. 生物多样性, 26(7): 701-706.
[8] 侯勤曦, 慈秀芹, 刘志芳, 徐武美, 李捷. (2018) 基于DNA条形码评估西双版纳国家级自然保护区对樟科植物进化历史的保护. 生物多样性, 26(3): 217-228.
[9] 陈自宏, 杨晓娜, 孙宁静, 徐玲, 郑元, 杨宇明. (2018) 中国西南高黎贡山绿僵菌物种多样性及其垂直分布特征. 生物多样性, 26(12): 1308-1317.
[10] 李文英, 李夏, 解开治, 邓旺秋, 庄文颖. (2017) 葡萄座腔菌科真菌的系统学和多样性探讨. 生物多样性, 25(8): 874-885.
[11] 毛建丰, 马永鹏, 周仁超. (2017) 结合系统发育与群体遗传学分析检验杂交是否存在的技术策略. 生物多样性, 25(6): 577-599.
[12] 舒江平, 刘莉, 沈慧, 戴锡玲, 王全喜, 严岳鸿. (2017) 基于系统基因组学分析揭示早期陆生植物的复杂网状进化关系. 生物多样性, 25(6): 675-682.
[13] 贾晓旭, 唐修君, 樊艳凤, 陆俊贤, 黄胜海, 葛庆联, 高玉时, 韩威. (2017) 华东地区地方鸡品种mtDNA控制区遗传多样性. 生物多样性, 25(5): 540-548.
[14] 樊大勇, 高贤明, 杜彦君, 申国珍, 徐文婷, 熊高明, 赵常明, 周友兵, 谢宗强. (2017) 神农架世界自然遗产地落叶木本植物 多样性及其代表性. 生物多样性, 25(5): 498-503.
[15] 谢宗强, 申国珍, 周友兵, 樊大勇, 徐文婷, 高贤明, 杜彦君, 熊高明, 赵常明, 祝燕, 赖江山. (2017) 神农架世界自然遗产地的全球突出普遍价值及其保护. 生物多样性, 25(5): 490-497.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed