生物多样性 ›› 2019, Vol. 27 ›› Issue (3): 306-313.doi: 10.17520/biods.2018269

• 研究报告 • 上一篇    下一篇

利用昆虫携带的花粉初探西藏入侵植物印加孔雀草在当地传粉网络中的地位

土艳丽1, 王力平2, 3, 王喜龙1, 王林林2, 3, *(), 段元文2   

  1. 1 西藏自治区高原生物研究所, 拉萨 850001
    2 中国科学院昆明植物研究所, 昆明 650201
    3 中国科学院大学, 北京 100049
  • 收稿日期:2018-10-11 接受日期:2019-03-02 出版日期:2019-03-20
  • 通讯作者: 王林林 E-mail:wanglinlin0328@mail.kib.ac.cn
  • 基金项目:
    西藏自治区科技计划项目(ZD20170021)

Status of invasive plants on local pollination networks: A case study of Tagetes minuta in Tibet based on pollen grains from pollinators

Tu Yanli1, Wang Liping2, 3, Wang Xilong1, Wang Linlin2, 3, *(), Duan Yuanwen2   

  1. 1 Tibet Plateau Institute of Biology, Lhasa 850001
    2 Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201
    3 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2018-10-11 Accepted:2019-03-02 Online:2019-03-20
  • Contact: Wang Linlin E-mail:wanglinlin0328@mail.kib.ac.cn

入侵植物在新生境中成功定殖后, 通过利用当地传粉昆虫促进繁殖可以更好地保证种群的扩张, 但是入侵植物在当地传粉网络中的角色和地位仍不是很清楚。本文利用西藏近年发现的入侵植物印加孔雀草(Tagetes minuta), 分析其访花昆虫所携带的植物花粉种类, 构建了植物花粉-传粉者网络, 探讨印加孔雀草快速入侵和扩张的可能机制。结果表明印加孔雀草为泛化传粉系统, 共有13种昆虫访花, 其中12种携带有印加孔雀草花粉, 所有花粉中印加孔雀草花粉数量占比为89.89%。12种印加孔雀草传粉昆虫中, 4种泛化传粉昆虫(1种蜂、2种食蚜蝇和1种蝇)是其主要传粉昆虫。本研究揭示印加孔雀草在较短时间内已经成功利用多种当地泛化传粉昆虫为其授粉, 已顺利融入当地的传粉网络, 今后需要更加重视对印加孔雀草的防控。

关键词: 青藏高原, Tagetes minuta, 入侵植物, 传粉网络, 花粉

Invasive plants that use local pollinators would better ensure their expansion in the new environment, but the role and status of the invasive plants on local pollination network is still unclear. In this paper, we analyzed the pollen grains of Tagetes minuta carried by pollinators and constructed a plant-pollinator network, to explore the roles and impacts of T. minuta in local pollination network. The results showed that pollination system of T. minuta was generalized, and there were 13 insect species visiting its flowers, 12 of which carried pollen grains of T. minuta, and the pollen grains of T. minuta accounted for 89.89%. Among the 12 pollinator species of T. minuta, one species of bees, two species of scorpion flies and one species of flies are the main pollinators. This study reveals that T. minuta has successfully used a variety of local pollinators for pollination in a relatively short period of time, indicating that T. minuta has strong adaptability and diffusion ability, and it is necessary to pay more attentions to the prevention and control of T. minuta in the future.

Key words: Qinghai-Tibet Plateau, Tagetes minuta, invasive plants, pollination network, pollen

图1

西藏印加孔雀草种群与传粉昆虫。(A)印加孔雀草种群; (B)膜翅目分舌蜂科一种; (C)双翅目蝇类花蝇科一种; (D)双翅目蝇类丽蝇科一种; (E)鳞翅目红灰蝶; (F)鞘翅目拟步甲科一种。"

表1

印加孔雀草种群的传粉网络的群落水平参数"

特征 Traits 网络参数 Parameters
植物种类数 No. of plant species 12
访花昆虫种类数 No. of visiting species 13
植物与昆虫的连接数量 No. of interactions 63
连接度 Connectance 0.404
嵌套度 Nestedness temperature 14.57
加权嵌套度 Weighted nestedness 0.683
特化水平 Specialization level (H°2) 0.147

表2

印加孔雀草种群的传粉网络中植物物种水平的几个参数"

代码
Codes
植物
Plant species
传粉者种类
Degree
传粉昆虫比例
Normalised degree
物种强度
Species strength
特化水平
Specialization level ()
A 印加孔雀草 Tagetes minuta 12 0.923 10.312 0.034
B 狭叶荆芥 Nepeta souliei 8 0.615 0.85 0.095
C 无心菜 Arenaria serphyllifolia 5 0.385 0.086 0.11
D 马先蒿属一种 Pedicularis sp. 6 0.462 0.054 0.085
E 龙胆属一种 Gentiana sp. 4 0.308 0.779 0.467
F 紫草科一种 Boraginaceae sp. 6 0.462 0.107 0.046
G 蓝钟花属一种 Cyananthus sp. 5 0.385 0.328 0.289
H 唇形科一种 Lamiaceae sp. 4 0.308 0.197 0.099
I 唇形科一种 Lamiaceae sp. 1 0.077 0.002 0.045
J 唇形科一种 Lamiaceae sp. 3 0.231 0.037 0.332
K 百合科一种 Liliaceae sp. 3 0.231 0.352 0.563
L 甘青老鹳草 Geranium pylzowianum 6 0.462 0.063 0.117

图2

印加孔雀草的传粉昆虫所携带的花粉扫描图。(A)印加孔雀草; (B)狭叶荆芥; (C)无心菜; (D)马先蒿属一种; (E)龙胆属一种; (F)紫草科一种; (G)蓝钟花属一种; (H-J)唇形科; (K)百合科一种; (L)甘青老鹳草。"

图3

印加孔雀草的所有访花昆虫携带的花粉网络。上部每个矩形框表示一种传粉者, 下部每个矩形框表示一种植物, 框的宽度与花粉数量成正比。灰线表示植物与传粉者之间的连接。植物及传粉者各编号代表的物种见表2和表3。"

表3

印加孔雀草种群的传粉网络中传粉昆虫物种水平的几个参数"

代码
Codes
传粉者
Pollinators
昆虫数量
Samples
植物物种
Degree
植物物种比例
Normalised degree
物种强度
Species strength
特化水平
Bee sp. 分舌花蜂科Colletidae 32 11 0.917 1.611 0.006
Syr sp.1 长尾管蚜蝇Eristalis tenax 5 10 0.833 2.194 0.102
Syr sp.2 黑带蚜蝇属Episyrpus 3 7 0.583 0.64 0.024
Syr sp.3 黑带蚜蝇属Episyrpus 3 7 0.583 1.319 0.012
Syr sp.4 食蚜蝇科Syrphidae 1 2 0.167 0.013 0
Fly sp.1 丽蝇科Calliphoridae 2 8 0.667 4.072 0.016
Fly sp.2 丽蝇科Calliphoridae 1 2 0.167 0.299 0.139
Fly sp.3 蝇科Muscidae 1 1 0.083 0.014 0.017
Fly sp.4 花蝇科Anthomyiidae 1 4 0.333 0.303 0.034
Sar sp. 麻蝇科Sarcophadidae 2 4 0.333 0.823 0.056
Pier sp.1 东方菜粉蝶Pieris canidia 1 2 0.167 0.501 0.803
Pier sp.2 红灰蝶Lycaena phlaeas 2 1 0.083 0.003 0.005
Col sp. 拟步甲科Tenebrionidae 1 4 0.333 0.229 0.119
1 Arceo-Gómez G, Ashman TL ( 2016) Invasion status and phylogenetic relatedness predict cost of heterospecific pollen receipt: Implications for native biodiversity decline. Journal of Ecology, 104, 1003-1008.
doi: 10.1111/1365-2745.12586
2 Bascompte J, Jordano P, Melián CJ, Olesen JM ( 2003) The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences, USA, 100, 9383-9387.
doi: 10.1073/pnas.1633576100 pmid: 12881488
3 Bascompte J, Jordano P, Olesen JM ( 2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312, 431-433.
doi: 10.1126/science.1123412 pmid: 16627742
4 Bluthgen N, Menzel F, Bluthgen N ( 2006) Measuring specialization in species interaction networks. BMC Ecology, 6, 9.
doi: 10.1186/1472-6785-6-9 pmid: 16907983
5 Brennan AC, Harris SA, Hiscock SJ ( 2005) Modes and rates of selfing and associated inbreeding depression in the self-incompatible plant Senecio squalidus (Asteraceae): A successful colonizing species in the British Isles. New Phytologist, 168, 475-486.
doi: 10.1111/j.1469-8137.2005.01517.x pmid: 16219086
6 Campbell LG, Husband BC ( 2007) Small populations are mate-poor but pollinator-rich in a rare, self-incompatible plant, Hymenoxys herbacea (Asteraceae). New Phytologist, 174, 915-925.
doi: 10.1111/j.1469-8137.2007.02045.x pmid: 17504472
7 Dong ZG, Liu QX, Hu J, Deng MB, Xiong YN ( 2013) New records of naturalized plants from the Chinese Mainland. Guihaia, 33, 432-434. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-3142.2013.03.026
[ 董振国, 刘启新, 胡君, 邓懋彬, 熊豫宁 ( 2013) 中国大陆归化植物新记录. 广西植物, 33, 432-434.]
doi: 10.3969/j.issn.1000-3142.2013.03.026
8 Eviner VT, Garbach K, Baty JH, Hoskinson SA ( 2012) Measuring the effects of invasive plants on ecosystem services: Challenges and prospects. Invasive Plant Science and Management, 5, 125-136.
doi: 10.1614/IPSM-D-11-00095.1
9 Fang Q, Huang SQ ( 2012) Progress in pollination networks: Network structure and dynamics. Biodiversity Science, 20, 300-307. (in Chinese with English abstract)
doi: 10.3724/SP.J.1003.2012.08026
[ 方强, 黄双全 ( 2012) 传粉网络的研究进展: 网络的结构和动态. 生物多样性, 20, 300-307.]
doi: 10.3724/SP.J.1003.2012.08026
10 Flanagan RJ, Mitchell RJ, Karron JD ( 2010) Increased relative abundance of an invasive competitor for pollination, Lythrum salicaria, reduces seed number in Mimulus ringens. Oecologia, 164, 445-454.
doi: 10.1007/s00442-010-1693-2 pmid: 20585807
11 Goodell K, Parker IM ( 2017) Invasion of a dominant floral resource: Effects on the floral community and pollination of native plants. Ecology, 98, 57-69.
doi: 10.1002/ecy.1639 pmid: 28052387
12 Hao J, Sheng Q, Thomas C, Mark VK, Liu Q ( 2011) A test of baker’s law: Breeding systems of invasive species of Asteraceae in China. Biological Invasions, 13, 571-580.
doi: 10.1007/s10530-010-9850-4
13 Jeschke JM, Bacher S, Blackburn TM, Dick JTA, Essl F, Evans T, Gaertner M, Hulme PE, Kühn I, Mrugała A ( 2015) Defining the impact of non-native species. Conservation Biology, 28, 1188-1194.
doi: 10.1111/cobi.12299 pmid: 4282110
14 Ju RT, Li H, Shi CJ, Li B ( 2012) Progress of biological invasions research in China over the last decade. Biodiversity Science, 20, 581-611. (in Chinese with English abstract)
doi: 10.3724/SP.J.1003.2012.31148
[ 鞠瑞亭, 李慧, 石正人, 李博 ( 2012) 近十年中国生物入侵研究进展. 生物多样性, 20, 581-611.]
doi: 10.3724/SP.J.1003.2012.31148
15 Kaiser-Bunbury CN, Mougal J, Whittington AE, Valentin T, Gabriel R, Olesen JM, Bluthgen N ( 2017) Ecosystem restoration strengthens pollination network resilience and function. Nature, 542, 223-227.
doi: 10.1038/nature21071 pmid: 28135718
16 Kearns CA, Inouye DW, Waser NM ( 1998) Endangered mutualisms: The conservation of plant-pollinator interactions. Annual Review of Ecology & Systematics, 29, 83-112.
doi: 10.1146/annurev.ecolsys.29.1.83
17 Lang DD, Tang M, Zhou X ( 2018) Qualitative and quantitative molecular construction of plant-pollinator network: Application and prospective. Biodiversity Science, 26, 445-456. (in Chinese with English abstract)
doi: 10.17520/biods.2018058
[ 郎丹丹, 唐敏, 周欣 ( 2018) 传粉网络构建的定性定量分子研究: 应用与展望. 生物多样性, 26, 445-456.]
doi: 10.17520/biods.2018058
18 Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J ( 2007) The impact of an alien plant on a native plant-pollinator network: An experimental approach. Ecology Letters, 10, 539-550.
doi: 10.1111/j.1461-0248.2007.01055.x pmid: 17542933
19 McKinney AM, Goodell K ( 2011) Plant-pollinator interactions between an invasive and native plant vary between sites with different flowering phenology. Plant Ecology, 212, 1025-1035.
doi: 10.1007/s11258-010-9882-y
20 Millennium Ecosystem Assessment ( 2005) Ecosystems and Human Well- Being: Synthesis. Island Press, Washington, DC.
21 Olesen JM, Bascompte J, Dupont YL, Jordano P ( 2007) The modularity of pollination networks. Proceedings of the National Academy of Sciences, USA, 104, 19891-19896.
doi: 10.1073/pnas.0706375104 pmid: 18056808
22 Padrón B, Traveset A, Biedenweg T, Díaz D, Nogales M, Olesen JM ( 2009) Impact of alien plant invaders on pollination networks in two archipelagos. PLoS ONE, 4, e6275.
doi: 10.1371/journal.pone.0006275 pmid: 2707600
23 Potts SG, Imperatrizfonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J ( 2016) Safeguarding pollinators and their values to human well-being. Nature, 540, 220-229.
doi: 10.1038/nature20588 pmid: 27894123
24 Powell KI, Krakos KN, Knight TM ( 2011) Comparing the reproductive success and pollination biology of an invasive plant to its rare and common native congeners: A case study in the genus Cirsium (Asteraceae). Biological Invasions, 13, 905-917.
doi: 10.1007/s10530-010-9878-5
25 Richardson RT, Lin CH, Sponsler DB, Quijia JO, Goodell K, Johnson RM ( 2015) Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Applications in Plant Sciences, 3, 235-250.
doi: 10.3732/apps.1400066 pmid: 25606352
26 Schemske DW ( 1983) Limits to Specialization and Coevolution in Plant-Animal Mutualisms. Chicago University Press, Chicago.
27 Sun SG, Lu B, Lu XM, Huang SQ ( 2018) On reproductive strategies of invasive plants and their impacts on native plants. Biodiversity Science, 26, 457-467. (in Chinese with English abstract)
doi: 10.17520/biods.2017294
[ 孙士国, 卢斌, 卢新民, 黄双全 ( 2018) 入侵植物的繁殖策略以及对本土植物繁殖的影响. 生物多样性, 26, 457-467.]
doi: 10.17520/biods.2017294
28 Wan FH, Guo JY, Wang DH ( 2002) Alien invasive species in China: Their damages and management strategies. Biodiversity Science, 10, 119-125. (in Chinese with English abstract)
doi: 10.3321/j.issn:1005-0094.2002.01.015
[ 万方浩, 郭建英, 王德辉 ( 2002) 中国外来入侵生物的危害与管理对策. 生物多样性, 10, 119-125.]
doi: 10.3321/j.issn:1005-0094.2002.01.015
29 Wang H, Cao GX, Wang LL, Yang YP, Zhang ZQ, Duan YW ( 2017) Evaluation of pollinator effectiveness based on pollen deposition and seed production in a gynodieocious alpine plant, Cyananthus delavayi. Ecology and Evolution, 7, 8156-8160.
doi: 10.1002/ece3.3391
30 Weber E, Li B ( 2008) Plant invasions in China: What is to be expected in the wake of economic development? BioScience, 58, 437-444.
doi: 10.1016/j.str.2009.09.008
31 Weber E, Sun SG, Li B ( 2008) Invasive alien plants in China: Diversity and ecological insights. Biological Invasions, 10, 1411-1429.
doi: 10.1007/s10530-008-9216-3
32 Xie Y, Li ZY, Gregg WP, Dianmo L ( 2001) Invasive species in China—An overview. Biodiversity and Conservation, 10, 1317-1341.
doi: 10.1023/A:1016695609745
33 Xu M, Tashi T ( 2015) A newly naturalized plant in Qinghai-Tibet Plateau. Guihaia, 35, 554-555. (in Chinese with English abstract)
doi: 10.11931/guihaia.gxzw201310020
[ 许敏, 扎西次仁 ( 2015) 青藏高原一新归化种. 广西植物, 35, 554-555.]
doi: 10.11931/guihaia.gxzw201310020
34 Zhang JL, Lü YF, Bian Y, Liu RS, Jiang L ( 2014) A new kind of invasive plant from mainland China—Tagetes minuta L. Plant Quarantine, 28(2), 65-67. (in Chinese with English abstract)
[ 张劲林, 吕玉峰, 边勇, 刘若思, 江璐 ( 2014) 中国境内(内地)一种新的入侵植物——印加孔雀草. 植物检疫, 28(2), 65-67.]
35 Zhu SX, Qin HN, Chen YL ( 2005) Alien species of Compositae in China. Guihaia, 25, 69-76. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-3142.2005.01.014
[ 朱世新, 覃海宁, 陈艺林 ( 2005) 中国菊科植物外来种概述. 广西植物, 25, 69-76.]
doi: 10.3969/j.issn.1000-3142.2005.01.014
[1] 闫雅楠, 叶小齐, 吴明, 闫明, 张昕丽. (2019) 入侵植物加拿大一枝黄花根际解钾菌多样性及解钾活性. 植物生态学报, 43(6): 543-556.
[2] 唐敏, 邹怡, 苏秦之, 周欣. (2019) 洞察景观环境影响蜜蜂之新视角: 肠道微生物. 生物多样性, 27(5): 516-525.
[3] 杨浩, 刘晨, 王志飞, 胡秀丽, 王台. (2019) 作物花粉高温应答机制研究进展. 植物学报, 54(2): 157-167.
[4] 王晓月,朱鑫鑫,杨娟,刘云静,汤晓辛. (2019) 梅花个体内花柱长度的变异及其对繁殖成功的影响. 生物多样性, 27(2): 159-167.
[5] 牟静, 宾振钧, 李秋霞, 卜海燕, 张仁懿, 徐当会. (2019) 氮硅添加对青藏高原高寒草甸土壤氮矿化的影响. 植物生态学报, 43(1): 77-84.
[6] 薛晨阳, 许玉凤, 曲波. (2018) 不同氮水平下瘤突苍耳、苍耳及其杂交种形态、光合及生长特征比较. 生物多样性, 26(6): 554-563.
[7] 张贇, 尹定财, 田昆, 张卫国, 和荣华, 和文清, 孙江梅, 刘振亚. (2018) 玉龙雪山不同海拔丽江云杉径向生长对气候变异的响应. 植物生态学报, 42(6): 629-639.
[8] 周彤,曹入尹,王少鹏,陈晋,唐艳鸿. (2018) 中国草地和欧洲木本植物返青期对气温和降水变化的响应: 基于生存分析的研究. 植物生态学报, 42(5): 526-538.
[9] 郎丹丹, 唐敏, 周欣. (2018) 传粉网络构建的定性定量分子研究: 应用与展望. 生物多样性, 26(5): 445-456.
[10] 孙士国, 卢斌, 卢新民, 黄双全. (2018) 入侵植物的繁殖策略以及对本土植物繁殖的影响. 生物多样性, 26(5): 457-467.
[11] 吉乃提汗·马木提, 成小军, 谭敦炎. (2018) 荒漠短命植物异喙菊的小花异形性及繁殖特性. 生物多样性, 26(5): 498-509.
[12] 刘魏, 童永鳌, 白洁. (2018) 水稻雄配子体发育过程中tRNA片段的生物信息学分析. 植物学报, 53(5): 625-633.
[13] 耿晓东, 旭日, 刘永稳. (2018) 青藏高原纳木错高寒草甸生态系统碳交换对多梯度增水的响应. 植物生态学报, 42(3): 397-405.
[14] 于海彬, 张镱锂, 刘林山, 陈朝, 祁威. (2018) 青藏高原特有种子植物区系特征及多样性分布格局. 生物多样性, 26(2): 130-137.
[15] 蒋志刚, 李立立, 胡一鸣, 胡慧建, 李春旺, 平晓鸽, 罗振华. (2018) 青藏高原有蹄类动物多样性和特有性: 演化与保护. 生物多样性, 26(2): 158-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed