生物多样性 ›› 2018, Vol. 26 ›› Issue (12): 1296-1307.doi: 10.17520/biods.2018245

• 研究报告 • 上一篇    下一篇

施氮水平影响蚯蚓介导的番茄生长及抗虫性

张宇1, 肖正高1, 蒋林惠1, 钱蕾2, 陈小云1, 陈法军2, 胡锋1, 刘满强1, *()   

  1. 1 南京农业大学资源与环境科学学院土壤生态实验室, 南京 210095
    2 南京农业大学植物保护学院, 南京 210095
  • 收稿日期:2018-09-12 接受日期:2018-11-19 出版日期:2018-12-20
  • 通讯作者: 刘满强 E-mail:liumq@njau.edu.cn
  • 作者简介:# 共同第一作者
  • 基金项目:
    国家重点研发计划(2016YFD0200305)、国家自然科学基金(41771287)、公益性行业(农业)科研专项(201503121)和江苏高校优势学科(PAPD)

Nitrogen levels modify earthworm-mediated tomato growth and resistance to pests

Yu Zhang1, Zhenggao Xiao1, Linhui Jiang1, Lei Qian2, Xiaoyun Chen1, Fajun Chen2, Feng Hu1, Manqiang Liu1, *()   

  1. 1 Soil Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095
    2 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095
  • Received:2018-09-12 Accepted:2018-11-19 Online:2018-12-20
  • Contact: Liu Manqiang E-mail:liumq@njau.edu.cn
  • About author:# 同等贡献作者 Contributed equally to this work

过量施用氮肥不仅导致严重的生态环境问题, 还会限制土壤生物驱动的生态系统服务功能。蚯蚓的取食和掘穴等活动可以促进土壤肥力和植物生长, 进而影响植物与病虫害的关系。了解氮肥与害虫作用下蚯蚓对植物抗虫性的影响, 有助于揭示土壤动物的生态功能调控机制。采用蚯蚓(威廉腔环蚓Metaphire guillelmi)、西花蓟马(Frankliniella occidentalis)和氮肥用量的三因子完全交互设计, 利用番茄(Lycopersicon esculentum)盆栽实验探索了不同氮水平下蚯蚓对番茄生长及对植食者抗性的影响。结果表明, 在低氮条件下蚯蚓显著降低了番茄茎叶干生物量、根系干生物量及茎叶可溶性糖含量, 而茎叶的茉莉酸和水杨酸含量分别是无蚯蚓对照的6倍和3倍, 且伴随着西花蓟马数量下降了58%。在高氮水平时, 蚯蚓未影响番茄茎叶茉莉酸、茎叶水杨酸含量及西花蓟马数量。蚯蚓介导的番茄营养物质(茎叶可溶性糖和茎叶全氮)和防御信号物质(茎叶茉莉酸和茎叶水杨酸)含量分别与西花蓟马数量呈显著的正相关和负相关。总之, 氮肥施用改变的土壤氮有效性通过改变植物资源和防御物质含量转变了蚯蚓介导的植物抗虫性响应; 全面了解土壤生物对植物生长的影响需要综合考虑土壤管理-土壤动物-植物病原物三者之间的关系。

关键词: 土壤动物, 植物化学组成, 害虫, 地上和地下部, 生态系统服务

Excessive chemical nitrogen (N) fertilizer application causes serious environmental problems and affects the ecosystem services that depend on soil biota. Earthworms improve soil fertility and plant productivity via activities such as feeding, burrowing and casting, and alter the relationships between crop plants and pests by modifying plant primary and secondary productivity. In order to mechanistically understand the functional roles of soil fauna in ecosystem services, a pot experiment using tomatoes (Lycopersicon esculentum) was conducted in a greenhouse. The study used a complete factorial design that manipulated earthworm (Metaphire guillelmi) abundance, western flower thrips (Frankliniella occidentalis) and N input. Results showed that under low N-input conditions, earthworms significantly reduced shoot and root biomass and shoot soluble sugar content, and increased shoot jasmonic acid content (by 6 times) and shoot salicylic acid content (by 3 times), compared to treatments without earthworms. This was accompanied by the decrease of thrips abundance by 58%, indicating a remarkable suppression of aboveground pests by earthworms. However, under high N-input conditions, earthworm presence did not affect the contents of shoot jasmonic acid or shoot salicylic acid or thrips abundance by the end of the experimental period (45 days). The earthworm-mediated responses of plant nutrition (shoot soluble sugar and shoot total nitrogen) was significantly positively correlated with thrips abundance, whereas defense (shoot jasmonic and salicylic acid) was significantly negatively correlated. Changes to soil N availability due to N fertilizer input can shift the direction of earthworm-mediated plant resistance against herbivores by altering plant resource acquisition and secondary defense. Effects of earthworms on plant growth and resistance depend on soil management practices such as N fertilizer application. A comprehensive understanding of the roles of soil biota in mediating plant growth requires knowledge of the multifaceted relationships among soil management, soil fauna, and plant pathogens.

Key words: soil fauna, plant chemistry, pests, aboveground-belowground, ecosystem service

表1

不同处理下威廉腔环蚓的数量及生物量变化"

处理
Treatments
接种时 Inoculation time 采样时 Sampling time 蚯蚓失重率
Weight loss of the earthworm (%)
数量 Number 生物量 Biomass (g) 数量 Number 生物量 Biomass (g)
无西花蓟马
-WFT
低氮 Low N
高氮 High N
3 10.49 ± 0.27 3 9.19 ± 0.34 12.39
3 10.35 ± 0.24 3 8.63 ± 0.47 16.62
接种西花蓟马
+WFT
低氮 Low N
高氮 High N
3 10.19 ± 0.19 3 8.52 ± 0.22 16.39
3 10.27 ± 0.26 3 7.85 ± 0.66 23.56

表2

蚯蚓、氮素及植食者因素对土壤硝态氮、铵态氮、微生物生物量碳含量和微生物生物量氮含量影响的方差分析结果"

变量 Variables 蚯蚓 Earthworm
(E) (df = 1)
氮素 Nitrogen
(N) (df = 1)
西花蓟马 Thrips
(WFT) (df = 1)
E × N
(df = 1)
E × WFT
(df = 1)
N × WFT
(df = 1)
E × N × WFT
(df = 1)
硝态氮 NO3--N 18.49*** 87.43*** 8.21** 18.02*** 3.51 6.67* 3.68
铵态氮 NH4+-N 4.07 2.06 10.82** 1.91 27.26*** 0.00 0.28
微生物生物量碳
Microbial biomass carbon
10.35** 1.00 60.26*** 2.66 0.99 15.51*** 2.00
微生物生物量氮
Microbial biomass nitrogen
11.94** 0.38 2.69 0.84 3.90 2.44 23.70***

图1

不同氮素条件下, 蚯蚓在西花蓟马(WFT)有无时对土壤硝态氮、铵态氮、微生物生物量碳和微生物生物量氮含量(平均值 ± 标准差, n = 6)的影响。-WFT和+WFT分别表示无西花蓟马和有西花蓟马。不同小写字母表示各处理间差异显著(Fisher’s LSD检验, P < 0.05)。"

表3

蚯蚓、氮素、植食者因素及其交互作用对番茄茎叶及根系营养和化学防御性状的影响"

变量
Variables
蚯蚓 Earthworm
(E) (df = 1)
氮素 Nitrogen
(N) (df = 1)
西花蓟马 Thrips
(WFT) (df = 1)
E × N
(df = 1)
E × WFT
(df = 1)
N × WFT
(df = 1)
E × N × WFT
(df = 1)
茎叶干生物量 Shoot dry biomass 22.49*** 117.88*** 10.36** 2.39 1.64 5.86* 0.05
根系干生物量 Root dry biomass 13.77*** 2.08 0.20 11.47** 0.00 0.22 1.68
茎叶可溶性糖 Shoot soluble sugar 25.21*** 2.09 15.47*** 17.79*** 2.01 0.03 0.03
根系可溶性糖 Root soluble sugar 0.01 0.71 2.68 2.17 3.69 1.39 13.09***
茎叶全氮 Shoot total nitrogen 12.21** 182.83*** 1.19 3.10 0.00 0.07 1.70
根系全氮 Root total nitrogen 20.37*** 246.77*** 15.21*** 0.06 11.12** 2.79 2.11
茎叶游离氨基酸 Shoot amino acid 0.97 20.43*** 7.57** 0.73 0.28 26.10*** 8.31**
根系游离氨基酸 Root amino acid 46.10*** 43.08*** 7.38** 21.88*** 14.80*** 32.87*** 0.96
茎叶酚 Shoot phenolics 2.36 36.23*** 4.75* 1.50 2.26 0.31 29.01***
根系酚 Root phenolics 3.61 0.01 51.47*** 9.75** 0.00 0.01 33.56***
茎叶水杨酸 Shoot salicylic acid 49.52*** 0.08 0.11 72.61*** 80.09*** 18.73*** 95.11***
茎叶茉莉酸 Shoot jasmonic acid 156.85*** 3.54 26.94*** 38.62*** 83.52*** 64.95*** 116.73***

图2

不同氮素条件下, 蚯蚓在西花蓟马(WFT)有无时对番茄茎叶干生物量、根系干生物量、茎叶可溶性糖、根系可溶性糖、茎叶游离氨基酸、根系游离氨基酸、茎叶全氮和根系全氮(平均值 ± 标准差, n = 6)的影响。-WFT和+WFT分别表示无西花蓟马和接种西花蓟马。不同小写字母表示各处理间差异显著(Fisher’s LSD检验, P < 0.05)。"

图3

不同氮素条件下, 蚯蚓在西花蓟马(WFT)有无时对番茄茎叶酚、根系酚、茎叶水杨酸和茎叶茉莉酸(平均值 ± 标准差, n = 6)的影响。-WFT和+WFT分别表示无西花蓟马和接种西花蓟马。不同小写字母表示各处理间差异显著(Fisher’s LSD检验, P < 0.05)。"

图4

蚯蚓和氮素水平对植食者西花蓟马(WFT)种群数量(平均值 ± 标准差, n = 6)的影响。不同小写字母表示各处理间差异显著(Fisher’s LSD检验, P < 0.05)。"

图5

蚯蚓介导的番茄营养物质(茎叶可溶性糖和茎叶全氮)及信号物质(茎叶茉莉酸和茎叶水杨酸)与西花蓟马数量(WFT)的关系"

1 Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols, 2, 875-877.
2 Andriuzzi WS, Schmidt O, Brussaard L, Faber JH, Bolger T (2016) Earthworm functional traits and interspecific interactions affect plant nitrogen acquisition and primary production. Applied Soil Ecology, 104, 148-156.
3 Aurélien R, Michael G, Sergio R, Sanders IR (2013) Identity and combinations of arbuscular mycorrhizal fungal isolates influence plant resistance and insect preference. Ecological Entomology, 38, 330-338.
4 Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
5 Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology and Evolution, 31, 440-452.
6 Bertrand M, Barot S, Blouin M, Whalen J, de Oliveira T, Roger-Estrade J (2015) Earthworm services for cropping systems: A review. Agronomy for Sustainable Development, 35, 553-567.
7 Blouin M, Zuily-Fodil Y, Pham-Thi AT, Laffray D, Reversat G, Pando A, Tondoh JE, Lavelle P (2005) Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecology Letters, 8, 202-208.
8 Bogaert F, Chesnais Q, Catterou M, Rambaud C, Geraldine D, Ameline A (2017) How the use of nitrogen fertiliser may switch plant suitability for aphids: The case of Miscanthus, a promising biomass crop and the aphid pest Rhopalosiphum maidis. Pest Management Science, 73, 1648-1654.
9 Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: Harnessing ecosystem services for food security. Trends in Ecology and Evolution, 28, 230-238.
10 Brown GG, Edwards CA, Brussaard L (2004) How earthworms affect plant growth: Burrowing into the mechanisms. Earthworm Ecology, 2, 13-49.
11 Burghardt KT (2016) Nutrient supply alters goldenrod’s induced response to herbivory. Functional Ecology, 30, 1769-1778.
12 Caarls L, Pieterse CM, van Wees S (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science, 6, 170.
13 Dalby P, Baker G, Smith S (1996) “Filter paper method” to remove soil from earthworm intestines and to standardise the water content of earthworm tissue. Soil Biology and Biochemistry, 28, 685-687.
14 Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Science, 207, 79-87.
15 Eisenhauer N, Hoersch V, Moeser J, Scheu S (2010) Synergistic effects of microbial and animal decomposers on plant and herbivore performance. Basic and Applied Ecology, 11, 23-34.
16 Fu SL (2007) A review and perspective on soil biodiversity research. Biodiversity Science, 15, 109-115. (in Chinese with English abstract)
[傅声雷 (2007) 土壤生物多样性的研究概况与发展趋势. 生物多样性, 15, 109-115.]
17 Gong X, Jiang YY, Zheng Y, Chen XY, Li HX, Hu F, Liu MQ, Scheu S (2018) Earthworms differentially modify the microbiome of arable soils varying in residue management. Soil Biology and Biochemistry, 121, 120-129.
18 Hettenhausen C, Baldwin IT, Wu J (2013) Nicotiana attenuata MPK4 suppresses a novel jasmonic acid (JA) signaling- independent defense pathway against the specialist insect Manduca sexta, but is not required for the resistance to the generalist Spodoptera littoralis. New Phytologist, 199, 787-799.
19 Jana U, Barot S, Blouin M, Lavelle P, Laffray D, Repellin A (2010) Earthworms influence the production of above- and belowground biomass and the expression of genes involved in cell proliferation and stress responses in Arabidopsis thaliana. Soil Biology and Biochemistry, 42, 244-252.
20 Jarzomski CM, Stamp NE, Bowers MD (2000) Effects of plant phenology, nutrients and herbivory on growth and defensive chemistry of plantain, Plantago lanceolata. Oikos, 88, 371-379.
21 Kaplan I, Pineda A, Bezemer M (2018) Application and theory of plant-soil feedbacks on aboveground herbivores. In: Aboveground-Belowground Community Ecology (eds Ohgushi T, Wurst S, Johnson SN), pp. 319-343. Springer International Publishing, West Lafayette.
22 Kempel A, Brandl R, Schadler M (2009) Symbiotic soil microorganisms as players in aboveground plant-herbivore interactions—the role of rhizobia. Oikos, 118, 634-640.
23 Kempel A, Schaedler M, Chrobock T, Fischer M, van Kleunen M (2011) Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proceedings of the National Academy of Sciences, USA, 108, 5685-5689.
24 Korres NE, Norsworthy JK, Tehranchian P, Gitsopoulos TK, Loka DA, Oosterhuis DM, Gealy DR, Moss SR, Burgos NR, Miller MR, Palhano M (2016) Cultivars to face climate change effects on crops and weeds: A review. Agronomy for Sustainable Development, 36, 1-22.
25 Larbat R, Olsen KM, Slimestad R, Lovdal T, Benard C, Verheul M, Bourgaud F, Robin C, Lillo C (2012) Influence of repeated short-term nitrogen limitations on leaf phenolics metabolism in tomato. Phytochemistry, 77, 119-128.
26 Li H, Li XL, Zhang JL, Gai JP, Wang C, Xiang D (2011) Interaction between earthworm and AM fungi and their effects on plant performance. Acta Pedologica Sinica, 48, 847-855. (in Chinese with English abstract)
[李欢, 李晓林, 张俊伶, 盖京苹, 王冲, 向丹 (2011) 蚯蚓与丛枝菌根真菌的相互作用及其对植物的影响. 土壤学报, 48, 847-855.]
27 Lohmann M, Scheu S, Muller C (2009) Decomposers and root feeders interactively affect plant defence in Sinapis alba. Oecologia, 160, 289-298.
28 Loranger-Merciris G, Cabidoche YM, Delone B, Queneherve P, Ozier-Lafontaine H (2012) How earthworm activities affect banana plant response to nematodes parasitism. Applied Soil Ecology, 52, 1-8.
29 Lu RK (2000) Analysis Method of Soil Agricultural Chemistry. China Agricultural Science and Technology Press, Beijing. (in Chinese)
[鲁如坤 (2000) ,土壤农业化学分析方法. 中国农业科技出版社, 北京.]
30 Lü YB, Zhang ZJ, Wu QJ, Du YZ, Zhang HR, Yu Y, Wang ED, Wang MH, Wang MQ, Tong XL, Lü LH, Tan XQ, Fu WD (2011) Research progress of the monitoring, forecast and sustainable management of invasive alien pest Frankliniella occidentalis in China. Chinese Journal of Applied Entomology, 48, 488-496. (in Chinese with English abstract)
[吕要斌, 张治军, 吴青君, 杜予州, 张宏瑞, 于毅, 王恩东, 王鸣华, 王满囷, 童晓立, 吕利华, 谭新球, 付卫东 (2011) 外来入侵害虫西花蓟马防控技术研究与示范. 应用昆虫学报, 48, 488-496.]
31 Morris WF, Traw MB, Bergelson J (2006) On testing for a tradeoff between constitutive and induced resistance. Oikos, 112, 102-110.
32 Mundim FM, Alborn HT, Vieira-Neto EHM, Bruna EM (2017) A whole-plant perspective reveals unexpected impacts of above- and belowground herbivores on plant growth and defense. Ecology, 98, 70-78.
33 Pan KW, Zhang L, Shao YH, Fu SL (2016) Thematic monitoring network of soil fauna diversity in China: Exploring the mystery of soil. Biodiversity Science, 24, 1234-1239. (in Chinese with English abstract)
[潘开文, 张林, 邵元虎, 傅声雷 (2016) 中国土壤动物多样性监测: 探知土壤中的奥秘. 生物多样性, 24, 1234-1239.]
34 Paudel S, Longcore T, MacDonald B, Mccormick MK, Szlavecz K, Wilson GWT, Loss SR (2016) Belowground interactions with aboveground consequences: Invasive earthworms and arbuscular mycorrhizal fungi. Ecology, 97, 605-614.
35 Pineda A, Soler R, Pozo MJ, Rasmann S, Turlings TCJ (2015) Above-belowground interactions involving plants, microbes and insects. Frontiers in Plant Science, 6, 318.
36 Poveda K, Steffan-Dewenter I, Scheu S, Tscharntke T (2005) Effects of decomposers and herbivores on plant performance and aboveground plant-insect interactions. Oikos, 108, 503-510.
37 Puga-Freitas R, Blouin M (2015) A review of the effects of soil organisms on plant hormone signalling pathways. Environmental and Experimental Botany, 114, 104-116.
38 Schädler M, Ballhorn DJ (2017) Beneficial soil microbiota as mediators of the plant defensive phenotype and aboveground plant-herbivore interactions. In: Progress in Botany (eds Cánovas FM, Lüttge U, Matyssek R), pp. 305-343. Springer International Publishing, Berlin.
39 Scheu S (2003) Effects of earthworms on plant growth: Patterns and perspectives. Pedobiologia, 47, 846-856.
40 Shekoofa A, Emam Y (2008) Effects of nitrogen fertilization and plant growth regulators (PGRs) on yield of wheat (Triticum aestivum L.) cv. Shiraz. Journal of Agricultural Science and Technology, 10, 101-108.
41 Staley JT, Stewartjones A, Pope TW, Wright DJ, Leather SR, Hadley P, Rossiter JT, van Emden HF, Poppy GM (2010) Varying responses of insect herbivores to altered plant chemistry under organic and conventional treatments. Proceedings of the Royal Society B: Biological Sciences, 277, 779-786.
42 Tao L, Ahmad A, Roode JC, Hunter MD (2016) Arbuscular mycorrhizal fungi affect plant tolerance and chemical defences to herbivory through different mechanisms. Journal of Ecology, 104, 561-571.
43 Tsiafouli MA, Thebault E, Sgardelis SP, Deruiter PC, van der Putten WH, Birkhofer RD, Hemerik L, de Vries FT, Bargett RD, Brady MV, Bjornlund L, Jorgensen HB, Christensen S, Hertefeldt TD, Hotes S, Hol WHG, Frouz J, Liiri M, Mortimer SR, Setala H, Tzanopoulos J, Uteseny K, Pizl V, Stary J, Wolters V, Hedlund K (2015) Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 21, 973-985.
44 van Groenigen JW, Lubbers IM, Vos HM, Brown GG, Deyn GB, van Groenigen KJ (2014) Earthworms increase plant production: A meta-analysis. Scientific Reports, 4, 6365.
45 Wang SJ, Ruan HH (2008) Feedback mechanisms of soil biota to aboveground biology in terrestrial ecosystems. Biodiversity Science, 16, 407-416. (in Chinese with English abstract)
[王邵军, 阮宏华 (2008) 土壤生物对地上生物的反馈作用及其机制. 生物多样性, 16, 407-416.]
46 Wu JH, Song CY, Chen JK (2007) Effect of microbivorous nematodes on plant growth and soil nutrient cycling: A review. Biodiversity Science, 15, 124-133. (in Chinese with English abstract)
[吴纪华, 宋慈玉, 陈家宽 (2007) 食微线虫对植物生长及土壤养分循环的影响. 生物多样性, 15, 124-133.]
47 Wu YP, Lü LY, Bi YM, Zhang Y, Sun ZJ (2013) Effects of earthworm inoculation on saline-alkali soil nutrient, soil organisms and plant cultivation. Journal of China Agricultural University, 18, 45-51. (in Chinese with English abstract)
[伍玉鹏, 吕丽媛, 毕艳孟, 张一, 孙振钧 (2013) 接种蚯蚓对盐碱土养分、土壤生物及植被的影响. 中国农业大学学报, 18, 45-51.]
48 Wurst S (2013) Plant-mediated links between detritivores and aboveground herbivores. Frontiers in Plant Science, 4, 380.
49 Wurst S, Dugassa-Gobena D, Langel R, Bonkowski M, Scheu S (2004) Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance. New Phytologist, 163, 169-176.
50 Wurst S, Wagenaar R, Biere A, van der Putten WH (2010) Microorganisms and nematodes increase levels of secondary metabolites in roots and root exudates of Plantago lanceolata. Plant and Soil, 329, 117-126.
51 Wurst S, Forstreuter M (2010) Colonization of Tanacetum vulgare by aphids is reduced by earthworms. Entomologia Experimentalis et Applicata, 137, 86-92.
52 Xiao ZG, Wang X, Koricheva J, Kergunteuil A, Le Bayon R, Liu MQ, Hu F, Rasmann S (2018) Earthworms affect plant growth and resistance against herbivores: A meta-analysis. Functional Ecology, 32, 150-160.
53 Xu W, Ma ZY, Jing X, He JS (2016) Biodiversity and ecosystem multifunctionality: Advances and perspectives. Biodiversity Science, 24, 55-71. (in Chinese with English abstract)
[徐炜, 马志远, 井新, 贺金生 (2016) 生物多样性与生态系统多功能性: 进展与展望. 生物多样性, 24, 55-71.]
54 Zhang N, Liao Y, Sun FL, Wang C, Sun ZJ (2012) Earthworm population characteristics in soils different in land use and their relationships with biological fertility of the soils. Acta Pedologica Sinica, 49, 364-372. (in Chinese with English abstract)
[张宁, 廖燕, 孙福来, 王冲, 孙振钧 (2012) 不同土地利用方式下的蚯蚓种群特征及其与土壤生物肥力的关系. 土壤学报, 49, 364-372.]
55 Zhang SJ, Chao Y, Zhang CL, Cheng J, Li J, Ma N (2010) Earthworms enhanced winter oilseed rape (Brassica napus L.) growth and nitrogen uptake. Agriculture Ecosystems and Environment, 139, 463-468.
56 Zhang WX, Chen DM, Zhao CC (2007) Functions of earthworm in ecosystem. Biodiversity Science, 15, 142-153. (in Chinese with English abstract)
[张卫信, 陈迪马, 赵灿灿 (2007) 蚯蚓在生态系统中的作用. 生物多样性, 15, 142-153.]
57 Zheng Y, Wang S, Bonkowski M, Chen XY, Griffiths B, Hu F, Liu MQ (2018) Litter chemistry influences earthworm effects on soil carbon loss and microbial carbon acquisition. Soil Biology and Biochemistry, 123, 105-114.
58 Züst T, Agrawal AA (2017) Trade-offs between plant growth and defense against insect herbivory: An emerging mechanistic synthesis. Annual Review of Plant Biology, 68, 513-534.
[1] 汤永康, 武艳涛, 武魁, 郭之伟, 梁存柱, 王敏杰, 常佩静. (2019) 放牧对草地生态系统服务和功能权衡关系的影响. 植物生态学报, 43(5): 408-417.
[2] 朱柏菁, 薛敬荣, 夏蓉, 靳苗苗, 吴攸, 田善义, 陈小云, 刘满强, 胡锋. (2019) 不同土壤线虫功能团对水稻生长及地上部植食者的影响. 生物多样性, 27(4): 409-418.
[3] 孙孝平,李双,余建平,方彦君,张银龙,曹铭昌. (2019) 基于土地利用变化情景的生态系统服务价值评估: 以钱江源国家公园体制试点区为例. 生物多样性, 27(1): 51-63.
[4] 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. (2018) 青藏高原高寒草地地下生物多样性: 进展、问题与展望. 生物多样性, 26(9): 972-987.
[5] Richard Corlett. (2018) 生物多样性和生态系统服务:实现东亚热带和亚热带的生态安全. 生物多样性, 26(7): 766-774.
[6] 关正君, 鲁顺保, 霍艳林, 郝浩永, 曹建斌, 魏伟, 刘标. (2018) Bt基因抗虫作物对非靶标害虫的影响. 生物多样性, 26(6): 636-644.
[7] 莫畏, 王志良, 李猷, 郭建军, 张润志. (2018) 北京近郊深土层动物群落结构特征. 生物多样性, 26(3): 248-257.
[8] 张博雅, 潘玉雪, 徐靖, 田瑜. (2018) IPBES土地退化和恢复专题评估报告及其潜在影响. 生物多样性, 26(11): 1243-1248.
[9] 王梦茹, 傅声雷, 徐海翔, 王美娜, 时雷雷. (2018) 陆地生态系统中马陆的生态功能. 生物多样性, 26(10): 1051-1059.
[10] 殷秀琴, 陶岩, 王海霞, 马辰, 寇新昌, 许还, 崔东. (2018) 我国东北森林土壤动物生态学研究现状与展望. 生物多样性, 26(10): 1083-1090.
[11] 毕艳孟, 孙振钧. (2018) 蚯蚓调控土壤微生态缓解连作障碍的作用机制. 生物多样性, 26(10): 1103-1115.
[12] 伍一宁, 王贺, 钟海秀, 许楠, 李金博, 王继丰, 倪红伟, 邹红菲. (2018) 三江平原土壤动物群落多样性对CO2浓度升高的响应. 生物多样性, 26(10): 1127-1132.
[13] 潘玉雪, 田瑜, 徐靖, 张博雅, 李俊生. (2018) IPBES框架下生物多样性和生态系统服务情景和模型方法评估及对我国的影响. 生物多样性, 26(1): 89-95.
[14] 杜乐山, 李俊生, 刘高慧, 张风春, 徐靖, 胡理乐. (2016) 生态系统与生物多样性经济学(TEEB)研究进展. 生物多样性, 24(6): 686-693.
[15] 唐海萍, 陈姣, 薛海丽. (2015) 生态阈值: 概念、方法与研究展望. 植物生态学报, 39(9): 932-940.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed