生物多样性 ›› 2019, Vol. 27 ›› Issue (4): 380-387.doi: 10.17520/biods.2018235

• 研究报告 • 上一篇    下一篇

中国东部海岛维管植物的beta多样性及其驱动因素

刘翔宇1, 2, 赵慈良2, 许洺山1, 2, 梁启明1, 2, 朱晓彤1, 2, 李亮1, 2, 阎恩荣1, 2, *()   

  1. 1 华东师范大学生态与环境科学学院, 上海 200241
    2 浙江普陀山森林生态系统定位观测研究站, 浙江舟山 316100
  • 收稿日期:2018-09-06 接受日期:2019-04-24 出版日期:2019-04-20
  • 通讯作者: 阎恩荣 E-mail:eryan@des.ecnu.edu.cn
  • 基金项目:
    舟山市科技计划项目(2016C31031);国家自然科学基金(31770467)

Beta diversity of vascular plants and its drivers in sea-islands of eastern China

Liu Xiangyu1, 2, Zhao Ciliang2, Xu Mingshan1, 2, Liang Qiming1, 2, Zhu Xiaotong1, 2, Li Liang1, 2, Yan Enrong1, 2, *()   

  1. 1 School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241
    2 Putuo Forest Ecosystem Research and Observation Station, Zhoushan, Zhejiang 316100
  • Received:2018-09-06 Accepted:2019-04-24 Online:2019-04-20
  • Contact: Yan Enrong E-mail:eryan@des.ecnu.edu.cn

beta多样性描述群落物种组成如何随环境梯度而变化。海岛具有边界清晰、面积和离岸距离不同以及环境变化剧烈等自然禀赋。目前, 我们对离岸距离、岛间距离和气候因素在海岛植物beta多样性变化格局中的相对贡献仍认识不足。本研究基于中国东部36个海岛的维管植物物种名录, 以Jaccard相异性指数度量beta多样性, 利用Mantel偏相关分析和beta多样性的变异分解, 探究了海岛不同生活型维管植物的beta多样性格局及其非生物影响因素。结果显示: 36个海岛共记录维管植物1,404种, 其中木本植物481种, 草本植物859种, 藤本植物64种。植物beta多样性随岛间距离和离岸距离差的增大而显著增加(P < 0.001); 海岛面积和气候要素对植物beta多样性无显著影响(P > 0.05)。岛间距离单独对beta多样性总变异的解释度为29.3%, 离岸距离独立解释了2.8%, 面积和气候共同解释了0.5%。木本植物与草本植物的beta多样性格局与总体一致, 距离因子对木本植物beta多样性的解释度高于草本植物(37.5% > 25.3%)。综上, 海岛植物beta多样性主要受岛间距离和离岸距离的影响, 反映了扩散限制是塑造中国东部海岛植物beta多样性格局的主要生态过程。

关键词: 海岛面积, Jaccard指数, 岛间距离, 离岸距离, 气候, 扩散限制

Plant beta diversity describes how species composition shifts along environmental gradients. Islands are characterized by natural boundaries, variation in size and distance from the mainland, and they also experience intensive shifts in environmental properties. To date, plant beta diversity and its association with influencing factors across islands remain poorly understood. This study examined patterns and abiotic drivers of vascular plant beta diversity across 36 sea-islands in eastern China. Beta diversity was quantified using the Jaccard dissimilarity index based on presence/absence data, and patterns and drivers were analyzed by using partial Mantel tests and the variance partitioning approach. In total, there were 1,404 vascular plant species, including 481 woody species, 859 herbaceous species and 64 liana species. Plant beta diversity increased significantly with increase in cross-island distance and distance difference from the mainland. Differences in both island area and climatic factors did not affect plant beta diversity significantly. Cross-island distance accounted for 29.3% of total variation in plant beta diversity. Distance from the mainland explained 2.8%, and island area and climatic differences together explained 0.5%. The pattern of plant beta diversity was consistent between woody and herbaceous plants, but distance-based variables accounted for more beta diversity variation for woody than herbaceous plants (37.5% > 25.3%). Collectively, cross-island distance and the difference between islands in distance from the mainland are the main drivers of plant beta diversity. This suggests that dispersal limitation plays a key role in shaping plant beta diversity in the sea-islands of eastern China.

Key words: island area, Jaccard index, cross-island distances, distances from the mainland, climate, dispersal limitation

图1

中国东部36个研究海岛的分布图"

图2

维管植物beta多样性与岛间距离(A)、离岸距离差(B)、海岛面积差(C)以及岛间气候差异(D)的Mantel偏相关性"

图3

中国东部海岛植物beta多样性的变异分解"

表1

木本植物与草本植物的beta多样性与岛间距离、离岸距离差、面积差和气候差异的Mantel偏相关系数"

植物生活型
Plant life form
岛间距离
Cross-island distance
离岸距离差
Distance difference
from the mainland
面积差
Area difference
between islands
气候差异
Climatic difference
between islands
草本植物 Herbaceous plants 0.50*** 0.21*** -0.10 0.03
木本植物 Woody plants 0.60*** 0.26*** -0.13 -0.07
[1] Bahram M, Kõljalg U, Courty PE, Diédhiou AG, Kjøller R, Põlme S, Ryberg M, Veldre V, Tedersoo L ( 2013) The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. Journal of Ecology, 1335-1344.
[2] Baselga A ( 2013) Multiple site dissimilarity quantifies compositional heterogeneity among several sites, while average pairwise dissimilarity may be misleading. Ecography, 36, 124-128.
doi: 10.1111/more.2013.36.issue-2
[3] Baselga A, Jiménez-Valverde A, Niccolini G ( 2007) A multiple-site similarity measure independent of richness. Biology Letters, 3, 642-645.
doi: 10.1098/rsbl.2007.0449
[4] Baselga A, Orme CDL ( 2012) betapart: An R package for the study of beta diversity. Methods in Ecology and Evolution, 3, 808-812.
doi: 10.1111/j.2041-210X.2012.00224.x
[5] Bell G ( 2001) Neutral marcoecology. Science, 293, 2413-2418.
doi: 10.1126/science.293.5539.2413
[6] Catano CP, Dickson TL, Myers JA ( 2017) Dispersal and neutral sampling mediate contingent effects of disturbance on plant beta-diversity: A meta-analysis. Ecology Letters, 20, 347-356.
doi: 10.1111/ele.12733
[7] Chen SB, Ouyang ZY, Xu WH, Xiao Y ( 2010) A review of beta diversity studies. Biodiversity Science, 18, 323-335. (in Chinese with English abstract)
[ 陈圣宾, 欧阳志云, 徐卫华, 肖燚 ( 2010) Beta多样性研究进展. 生物多样性, 18, 323-335.]
[8] Diserud OH, Ødegaard F ( 2007) A multiple-site similarity measure. Biology Letters, 3, 20-22.
doi: 10.1098/rsbl.2006.0553
[9] Fattorini S ( 2010) The influence of geographical and ecological factors on island beta diversity patterns. Journal of Biogeography, 37, 1061-1070.
[10] Gómez-Rodríguez C, Miller KE, Castillejo J, Iglesias-Piñeiro J, Baselga A ( 2019) Understanding dispersal limitation through the assessment of diversity patterns across phylogenetic scales below the species level. Global Ecology and Biogeography, 28, 353-364.
[11] Gomzález-Megías A, Menéndez R, Roy D, Brereton T, Thomas CD ( 2008) Changes in the composition of British butterfly assemblages over two decades. Global Change Biology, 14, 1464-1474.
doi: 10.1111/j.1365-2486.2008.01592.x
[12] Goslee SC, Urban DL ( 2007) The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software, 22(7), 1-19.
[13] Green JL, Ostling A ( 2003) Endemics-area relationships: The influence of species dominance and spatial aggregation. Ecology, 84, 3090-3097.
doi: 10.1890/02-3096
[14] Guitián J, Sánchez JM ( 1992) Seed dispersal spectra of plant communities in the Iberian Peninsula. Vegetatio, 98, 157-164.
doi: 10.1007/BF00045553
[15] Hijmans RJ, Williams E, Vennes C ( 2011) Geosphere: Spherical Trigonometry for Geographic Applications. http://cran.r-project.org/web/packages = geosphere. (accessed on 2017-11-05
[16] Ibanez T, Keppel G, Baider C, Birkinshaw C, Culmsee H, Cordell S, Florens FBV, Franklin J, Giardina CP, Gillespie TW, Laidlaw M, Litton CM, Martin TG, Ostertag R, Parthasarathy N, Randrianaivo R, Randrianjanahary M, Rajkumar M, Rasingam L, Ratovoson F, Reza L, Sack L, Aiba S, Webb E, Whitfeld TJS, Zang R, Birnbaum P ( 2018) Regional forcing explains local species diversity and turnover on tropical islands. Global Ecology and Biogeography, 27, 474-486.
doi: 10.1111/geb.2018.27.issue-4
[17] Itoh A, Yamakura T, Ohkubo T, Kanzaki M, Palmiotto PA, LaFrankie JV, Ashton PS, Lee HS ( 2003) Importance of topography and soil texture in the spatial distribution of two sympatric dipterocarp trees in a Bornean rainforest. Ecological Research, 18, 307-320.
doi: 10.1046/j.1440-1703.2003.00556.x
[18] Jaccard P ( 1912) The distribution of the flora in the alpine zone. New Phytologist, 11, 37-50.
doi: 10.1111/nph.1912.11.issue-2
[19] Jesse WAM, Behm JE, Helmus MR, Ellers J ( 2018) Human land use promotes the abundance and diversity of exotic species on Caribbean islands. Global Change Biology, 24, 4784-4796.
doi: 10.1111/gcb.14334
[20] Jiang YL, Li XK, Guo YL, Ding T, Wang B, Xiang WS ( 2017) Diversity of climbing seed plants and their reproductive habit in a karst seasonal rain forest in Nonggang, Guangxi, China. Chinese Journal of Plant Ecology, 41, 716-728. (in Chinese with English abstract)
[ 蒋裕良, 李先琨, 郭屹立, 丁涛, 王斌, 向悟生 ( 2017) 广西弄岗喀斯特季节性雨林藤本种子植物多样性及繁殖习性. 植物生态学报, 41, 716-728.]
[21] Kardol P, Fanin N, Wardle DA ( 2018) Long-term effects of species loss on community properties across contrasting ecosystems. Nature, 557, 710-713.
doi: 10.1038/s41586-018-0138-7
[22] Kim S ( 2015) ppcor: An R package for a fast calculation to semi-partial correlation coefficients. Communications for Statistical Applications and Methods, 22, 665-674.
doi: 10.5351/CSAM.2015.22.6.665
[23] Kubota Y, Hirao T, Fujii S, Shiono T, Kusumoto B ( 2014) Beta diversity of woody plants in the Japanese archipelago: The roles of geohistorical and ecological processes. Journal of Biogeography, 41, 1267-1276.
doi: 10.1111/jbi.2014.41.issue-7
[24] Legendre P ( 2019) A temporal beta-diversity index to identify sites that have changed in exceptional ways in space-time surveys. Ecology and Evolution, 9, 3500-3514.
doi: 10.1002/ece3.2019.9.issue-6
[25] Li J, Guo C, Xiao ZS ( 2013) Fruit composition and seed dispersal strategies of woody plants in a Dujiangyan subtropical forest, Southwest China. Biodiversity Science, 21, 572-581. (in Chinese with English abstract)
[ 李娟, 郭聪, 肖治术 ( 2013) 都江堰亚热带森林常见木本植物果实组成与种子扩散策略. 生物多样性, 21, 572-581.]
[26] MacArthur RH ( 1965) Patterns of species diversity. Biological Reviews, 40, 510-533.
doi: 10.1111/brv.1965.40.issue-4
[27] MacArthur RH, Wilson EO ( 1967) The Theory of Island Biogeography. Princeton University Press, Princeton.
[28] Moritz C, Richardson KS, Ferrier S, Monteith GB, Stanisic J, Williams SE, Whiffin T ( 2001) Biogeographical concordance and efficiency of taxon indicators for establishing conservation priority in a tropical rainforest biota. Proceedings of the Royal Society B: Biological Sciences, 268, 1875-1881.
doi: 10.1098/rspb.2001.1713
[29] Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A ( 2015) Global effects of land use on local terrestrial biodiversity. Nature, 520, 45-50.
[30] Oksanen J, Blanchet FG, Kindt R, Wagnar HH ( 2012) vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan. (accessed on 2019-02-04)
[31] Peng SY, Hu G, Yu MJ ( 2014) Beta diversity of vascular plants and its influencing factors on islands in the Thousand Island Lake. Acta Ecologica Sinica, 34, 3866-3872. (in Chinese with English abstract)
[ 彭思羿, 胡广, 于明坚 ( 2014) 千岛湖岛屿维管植物β多样性及其影响因素. 生态学报, 34, 3866-3872.]
[32] Qian H ( 2009) Beta diversity in relation to dispersal ability for vascular plants in North America. Global Ecology and Biogeography, 18, 327-332.
doi: 10.1111/geb.2009.18.issue-3
[33] Qian H, Ricklefs RE ( 2007) A latitudinal gradient in large- scale beta diversity for vascular plants in North America. Ecology Letters, 10, 737-744.
doi: 10.1111/ele.2007.10.issue-8
[34] Sax DF, Gaines SD ( 2008) Species invasions and extinction: The future of native biodiversity on islands. Proceedings of the National Academy of Sciences, USA, 105, 11490-11497.
doi: 10.1073/pnas.0802290105
[35] Socolar JB, Gilroy JJ, Kunin WE, Edwards DP ( 2016) How should beta-diversity inform biodiversity conservation? Trends in Ecology and Evolution, 31, 67-80.
doi: 10.1016/j.tree.2015.11.005
[36] The Editoral Committee of Sea Islands of China( 2013) Sea Islands of China. China Ocean Press, Beijing. (in Chinese)
[ 中国海岛志编纂委员会( 2013) 中国海岛志. 海洋出版社, 北京.]
[37] van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cárdenas D, Cárdenas-Toro J, Castaõo N, Chacón E, Chatelain C, Ebel AL, Figueiredo E, Fuentes N, Groom QJ, Henderson L, Singh I, Kupriyanov A, Masciadri S, Meerman J, Morozova O, Moser D, Nickrent DL, Patzelt A, Pelser PB, Baptiste MP, Poopath M, Schulze M, Seebens H, Shu WS, Thomas J, Velayos M, Wieringa JJ, Pyšek P ( 2015) Global exchange and accumulation of non-native plants. Nature, 525, 100-103.
doi: 10.1038/nature14910
[38] Vellend M ( 2016) Simulating dynamics in ecological communities. In: The Theory of Ecological Communities (eds Levin SA, Horn HS), pp. 76-96. Princeton University Press, Princeton.
[39] Westoby M, Leishman M, Lord J, Poorter H, Schoen DJ ( 1996) Comparative ecology of seed size and dispersal. Philosophical Transactions of the Royal Society B: Biological Sciences, 351, 1309-1318.
doi: 10.1098/rstb.1996.0114
[40] Whittaker RH ( 1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338.
doi: 10.2307/1943563
[41] Whittaker RJ ( 1995) Disturbed island ecology. Trends in Ecology and Evolution, 10, 421-425.
doi: 10.1016/S0169-5347(00)89164-8
[42] Xing DL, He FL ( 2018) Environmental filtering explains a U-shape latitudinal pattern in regional β-deviation for eastern North American trees. Ecology Letters, 22, 284-291.
[43] Yang J, Swenson NG, Zhang GC, Ci XQ, Cao M, Sha LQ, Li J, Slik JWF, Lin LX ( 2015) Local-scale partitioning of functional and phylogenetic beta diversity in a tropical tree assemblage. Scientific Reports, 5, 12731.
doi: 10.1038/srep12731
[44] Yu XY, Li YH, Yang GR ( 2018) Fruit types and seed dispersal modes of plants in different communities in Shilin Geopark, Yunnan, China. Chinese Journal of Plant Ecology, 42, 663-671. (in Chinese with English abstract)
[ 俞筱押, 李玉辉, 杨光荣 ( 2018) 石林地质公园不同群落类型植物果实组成与种子散布特征. 植物生态学报, 42, 663-671.]
[45] Zellweger F, Roth T, Bugmann H, Bollmann K ( 2017) Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure. Global Ecology and Biogeography, 26, 898-906.
doi: 10.1111/geb.2017.26.issue-8
[46] Zhang JL ( 2018) plantlist: Looking up the Status of Plant Scientific Names based on The Plant List Database. R package version 0.5.3. https://github.com/helixcn/plantlist/. (accessed on 2018-11-15)
[1] 白娥 薛冰. (2020) 土地利用与土地覆盖变化对生态系统的影响综述. 植物生态学报, 44(全球变化与生态系统专辑): 0-0.
[2] 白杨,陈声文,钱海源,余顺海,徐谊明,张芷昕,沈超,陈雨奇,张美琪,余建平,朱瑞良. (2020) 钱江源国家公园叶附生苔类植物的物种多样性. 生物多样性, 28(2): 231-237.
[3] 胡菀,张志勇,陈陆丹,彭焱松,汪旭. (2020) 末次盛冰期以来观光木的潜在地理分布变迁. 植物生态学报, 44(1): 44-55.
[4] 施晶晶,赵鸣飞,王宇航,薛峰,康慕谊,江源. (2019) 黄土高原腹地人工林下草本层群落构建机制. 植物生态学报, 43(9): 834-842.
[5] 黄玫, 王娜, 王昭生, 巩贺. (2019) 磷影响陆地生态系统碳循环过程及模型表达方法. 植物生态学报, 43(6): 471-479.
[6] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. (2019) 未来气候变化对不同国家茶适宜分布区的影响. 生物多样性, 27(6): 595-606.
[7] 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. (2019) 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析. 植物生态学报, 43(6): 490-500.
[8] 史娜娜, 肖能文, 王琦, 韩煜, 高晓奇, 冯瑾, 全占军. (2019) 锡林郭勒植被NDVI时空变化及其驱动力定量分析. 植物生态学报, 43(4): 331-341.
[9] 焦亮, 王玲玲, 李丽, 陈晓霞, 闫香香. (2019) 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应. 植物生态学报, 43(4): 320-330.
[10] 刘晓彤, 袁泉, 倪健. (2019) 中国植物分布模拟研究现状. 植物生态学报, 43(4): 273-283.
[11] 张富广, 曾彪, 杨太保. (2019) 气候变化背景下近30年祁连山高寒荒漠分布时空变化. 植物生态学报, 43(4): 305-319.
[12] 苑丹阳, 朱良军, 张远东, 李宗善, 赵慧颖, 王晓春. (2019) 吉林老白山鱼鳞云杉树轮蓝光强度和轮宽指数与气候响应关系随海拔变化的对比. 植物生态学报, 43(12): 1061-1078.
[13] 董雪蕊, 张红, 张明罡. (2019) 基于系统发育的黄土高原地区木本植物多样性及特有性格局. 生物多样性, 27(12): 1269-1278.
[14] 申佳艳, 李帅锋, 黄小波, 雷志全, 施兴全, 苏建荣. (2019) 南盘江流域云南松径向生长对气候暖干化的响应. 植物生态学报, 43(11): 946-958.
[15] 刘金亮, 于明坚. (2019) 片段化森林群落构建的生态过程及其检验方法. 植物生态学报, 43(11): 929-945.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed