生物多样性 ›› 2018, Vol. 26 ›› Issue (7): 667-677.doi: 10.17520/biods.2018045

• • 上一篇    下一篇

荒漠草原“土岛”生境群落物种共存机制

宋乃平*(), 王兴, 陈林, 薛毅, 陈娟, 随金明, 王磊, 杨新国   

  1. 宁夏大学西北土地退化与生态恢复国家重点实验室培育基地/西北退化生态系统恢复与重建教育部重点实验室, 银川 750021
  • 收稿日期:2018-02-08 接受日期:2018-05-15 出版日期:2018-07-20
  • 通讯作者: 宋乃平 E-mail:songnp@163.com
  • 基金项目:
    国家自然科学基金(41461046)和宁夏回族自治区西部一流学科建设项目(NXYLXK2017B06)

Co-existence mechanisms of plant species within “soil islands” habitat of desert steppe

Song Naiping*(), Wang Xing, Chen Lin, Xue Yi, Chen Juan, Sui Jinming, Wang Lei, Yang Xinguo   

  1. Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University, Yinchuan 750021
  • Received:2018-02-08 Accepted:2018-05-15 Online:2018-07-20
  • Contact: Song Naiping E-mail:songnp@163.com

经过长期破碎化, 荒漠草原原生硬质灰钙土斑块散布在广大沙化土地中, 形成类似“土岛”的土被结构。为揭示土岛生境的群落物种共存机制, 2016年在宁夏盐池县皖记沟村选取大(200-300 m2)、中(约100 m2)、小(约50 m2)土岛各3个开展调查, 采用Jaccard相异系数、物种生态位宽度和生态位重叠度、零模型、Meta分析, 综合计算和分析土岛内部与外部植物群落相似性、物种生态位宽度和生态位重叠、物种共存格局及其影响因子。研究发现, (1)随着破碎化加剧, 土岛内部植物多样性整体呈现下降趋势, 群落优势种从短花针茅(Stipa breviflora)转变为猪毛蒿(Artemisia scoparia)和短花针茅共优种, 土岛内外群落相似性增加。(2)土岛内外绝大多数物种生态位重叠较小, 生态位重叠在土岛内呈集中分布, 而土岛外则呈均匀发散分布。(3)环境过滤为主的生态过程决定了土岛生境群落物种的共存格局, 随着土岛面积减小, 环境因子对群落物种共存的调控强度降低, 关键性环境因子由土壤细砂粒和黏粒转变为粗砂粒, 显著性竞争物种共存格局在小岛出现。综上所述, 土岛生境对于维持草原物种具有重要作用, 环境过滤主导了荒漠草原物种共存格局。随着生境破碎化加剧或土岛面积减小, 物种共存格局及其调控因子发生转变。保护面积在200 m2以上的大土岛对于恢复荒漠草原区草原成分种和其物种多样性机制都十分必要。

关键词: 生境破碎化, 土岛, 生态位重叠, 物种共存, 荒漠草原

Extensive fragmentation has led to the original desert steppe soils of hard sierozem to become isolated in the desertified lands, forming the so-called “soil islands”. We aimed to reveal the effect of fragmentation on the co-existence of plant species within “soil islands” habitat. To this end, we characterized the plant communities on three large (200-300 m2), medium (about 100 m2) and small (about 50 m2) soil islands each, in the Wanjigou Village of Yanchi County in Ningxia Hui Autonomous Region of China. We analyzed the similarity of plant community within and outside those soil islands, the breadth and overlap of plant ecological niche, the species co-existence pattern and its influencing factors using Jaccard similarity coefficient, niche overlapping degree formula, null model analysis, and meta-analysis. Our results showed that: (1) with increased fragmentation, plant diversity within the soil island decreased, and the dominant plant species changed from Stipa breviflora to a combination of Artemisia scoparia and S. breviflora, and the plant communities within soil islands became more similar to communities outside; (2) most species showed relatively small ecological niche overlap between within and outside soil islands, with the overlap showing concentrated distribution within soil islands but scattered distribution outside the islands; (3) environmental filtering was the main driver of species co-existence patterns. As soil islands became larger, the effect of environmental factors on species co-existence decreased, and the key environmental factor that explained species composition changed from clay and fine sand to coarse sand. Notably, a competition was a key driver of co-existence patterns within small “soil islands”. In summary, “soil islands” provide an important habitat for representative plant species in the desert steppe and environmental factors influenced species co-existence patterns. Both processes were disrupted by fragmentation. Maintaining soil islands larger than 200 m2 would be critical for restoring representative plant species and preserving plant diversity of the desert steppe ecosystems.

Key words: habitat fragmentation, soil islands, niche overlap, species co-existence, desert steppe

图1

不同面积土岛内外群落Jaccard相异矩阵热图。Jaccard指数值位于0-1之间。红紫色表示相异系数接近0 (最大相似性), 青绿色表示相异系数接近1 (最小相似性)。图中数字分别表示土岛内部(1, 2, 3)、边缘(4, 5, 6)和外部(7, 8, 9)。"

表1

土岛内外优势种短花针茅和猪毛蒿密度(平均值±标准差)"

土岛内部 Inside the soil island 土岛外部 Outside the soil island
大土岛 Large island 中土岛 Medium island 小土岛 Small island 中土岛 Medium island 小土岛 small island
短花针茅 S. breviflora 22.28 ± 11.17ab 29.75 ± 10.43a 28.17 ± 14.24a 13.19 ± 6.38bc 7.03 ± 5.25bc
猪毛蒿 A. scoparia 4.68 ± 3.65c 29.33 ± 20.56bc 38.42 ± 3.47bc 69.63 ± 13.99ab 73.83 ± 30.46ab

表2

不同土岛植物群落多样性及生物量(平均值±标准差)"

物种数
Species richness
Simpson指数
Simpson index
Shannon-Wiener指数
Shannon-Wiener index
均匀度指数
Evenness index
β多样性
β diversity
生物量
Biomass
内部
Inside
大土岛 Large island 10.1 ± 2.26a 0.89 ± 0.2a 2.48 ± 0.39a 0.98 ± 0.19a 2.93 ± 0.67a 44.34 ± 5.45bc
中土岛 Medium island 9.64 ± 2.98a 0.85 ± 0.19a 2.27 ± 0.28a 0.93 ± 0.14a 2.49 ± 0.57ab 55.29 ± 2.13abc
小土岛 Small island 9.66 ± 1.23a 0.87 ± 0.17a 2.25 ± 0.20a 0.91 ± 0.12a 2.24 ± 0.6ab 34.66 ± 6.41c
外部
Outside
大土岛 Large island 11.15 ± 3.36a 0.83 ± 0.16a 2.11 ± 0.39ab 0.82 ± 0.05a 1.89 ± 0.4b 86.46 ± 41.13a
中土岛 Medium island 8.89 ± 1.86a 0.73 ± 0.15a 1.83 ± 0.46ab 0.78 ± 0.20a 2.59 ± 0.3ab 89.48 ± 32.24a
小土岛 Small island 7.5 ± 0.94a 0.61 ± 0.02a 1.48 ± 0.15b 0.74 ± 0.13a 2.6 ± 0.52ab 81.54 ± 7.64ab

表3

基于零模型土岛不同生境植物群落共存格局分析"

土岛 Soil island 实际值C-score
Observed C-score
模拟值C-score
Simulated C-score
实际值小于模拟值的P值
P-observed < P-simulated
实际值大于模拟值的P值
P-observed > P-simulated
标准效应量
Standardized effect size
内部
Inside
大土岛 Large island 25.11 25.05 0.64 0.36 0.29
中土岛 Medium island 10.25 10.23 0.6 0.41 0.16
小土岛 Small island 7.8 7.63 0.95 0.05 1.85
外部
Outside
大土岛 Large island 9.32 9.27 0.72 0.29 0.5
中土岛 Medium island 9.44 9.15 0.02 0.02 2.22
小土岛 Small island 11.99 11.8 0.94 0.06 1.62

图2

基于零模型共存物种对标准效应量的频率分布。A: 大土岛内; B: 中土岛内; C: 小土岛内; D: 大土岛外; E: 中土岛外; F: 小土岛外。竖线表示95%置信区间。"

图3

不同土岛生境群落显著物种对meta分析。A: 大土岛内; B: 中土岛内; C: 小土岛内; D: 大土岛外; E: 中土岛外; F: 小土岛外。"

图4

群落中显著物种对之间正负相互作用强度meta分析。A: 大土岛内; B: 中土岛内; C: 小土岛内; D: 大土岛外; E: 中土岛外; F: 小土岛外。"

表4

土岛内部显著物种对相互作用强度meta分析异质性来源检验"

参数 Parameter 总异质性
Total heterogeneity
混合效应模型 Mixed-Effects Model
PC1 PC2 PC3 Area
土岛内部
Inside the soil islands
模型方差 tau2 Estimated amount of total heterogeneity 0.97 0.1565 0.1897 2.1863 1.7245
标准差 SD 1.16 0.4067 0.4516 3.3815 2.8083
R2 (amount of heterogeneity accounted for) 85.36% 80.44% 0% 0%
异质性检验结果 Test for heterogeneity
自由度 Q (df = 2) 12.68 2.1946 5.1145 0.0039 0.2431
P-val P < 0.01 0.017 0.0237 0.9504 0.622
土岛内外
Outside and inside the soil islands
模型方差 tau2 Estimated amount of total heterogeneity 0.29 - - - -
自由度 Q (df = 5) 14.45 1.06 0.3759 0.745 -
P-val P 0.01 0.7867 0.5398 0.3881 -

表5

不同土岛内部群落环境因子生态位重叠度指标(Olk)"

环境变量
Environment
variables
实测值
Observed
value
模拟值
Mean of
simulated value
标准效应量
SES
实测值大于模拟值的P值
P-observed > P-simulated
实测值小于模拟值的P值
P-observed < P-simulated
大土岛 Large island PC1 0.61 0.60 1.01 0.86 0.14
PC2 0.61 0.54 6.62 0.00 1.00
中土岛 Medium island PC1 0.54 0.54 0.53 0.24 0.76
PC2 0.55 0.47 5.61 0.00 1.00
小土岛 Small island PC1 0.49 0.44 2.39 0.03 0.97
[1] Albrecht M, Gotelli NJ (2001) Spatial and temporal niche partitioning in grassland ants. Oecologia, 126, 134-141.
[2] Bao SD (2000) Soil Agro-chemistrical Analysis. China Agriculture Press, Beijing. (in Chinese)
[鲍士旦 (2000) 土壤农化分析. 中国农业出版社, 北京.]
[3] Bergholz K, May F, Giladi I, Ristow M, Ziv Y, Jeltsch F (2017) Environmental heterogeneity drives fine-scale species assembly and functional diversity of annual plants in a semi-arid environment. Perspectives in Plant Ecology, Evolution and Systematics, 24, 138-146.
[4] Boeye J, Kubisch A, Bonte D (2014) Habitat structure mediates spatial segregation and therefore coexistence. Landscape Ecology, 29, 593-604.
[5] Borcard D, Gillet F, Legendre P (translated by Lai JS) (2014) Numerical Ecology with R, pp. 332-334. Higher Education Press, Beijing. (in Chinese)
[赖江山 (译) (2014) 数量生态学——R语言的应用, 332-334页. 高等教育出版社, 北京.]
[6] Briers R (2006) Ecology: From individuals to ecosystems. Freshwater Biology, 51, 1787-1788.
[7] Brown CD, Boutin C (2009) Linking past land use, recent disturbance, and dispersal mechanism to forest composition. Biological Conservation, 142, 1647-1656.
[8] Chai YF, Yue M (2017) Research advances in plant community assembly mechanisms. Acta Ecologica Sinica, 36, 4557-4572. (in Chinese with English abstract)
[柴永福, 岳明 (2017) 植物群落构建机制研究进展. 生态学报, 36, 4557-4572.]
[9] Chen L, Mi XC, Ma KP (2014) Niche differentiation and its consequence on biodiversity maintenance in forest communities. Chinese Bulletin of Life Sciences, 26, 112-117. (in Chinese)
[陈磊, 米湘成, 马克平 (2014) 生态位分化与森林群落物种多样性维持研究展望. 生命科学, 26, 112-117.]
[10] Chu CJ, Wang YS, Liu Y, Jiang L, He FL (2017) Advances in species coexistence theory. Biodiversity Science, 25, 345-354. (in Chinese with English abstract)
[储诚进, 王酉石, 刘宇, 蒋林, 何芳良 (2017) 物种共存理论研究进展. 生物多样性, 25, 345-354.]
[11] Collins CD, Banks-Leite C, Brudvig LA, Foster BL, Cook WM, Damschen EI, Andrade A, Austin M, Camargo JL, Driscoll DA (2017) Fragmentation affects plant community composition over time. Ecography, 40, 119-130.
[12] Duan HL, Zhao A, Yao Z (2017) Analysis of wetland plant-soil relationships and population niches in Chayegang marshland near Henghu farm in the Poyang Lake region during the dry season. Acta Ecologica Sinica, 37, 3744-3754. (in Chinese with English abstract)
[段后浪, 赵安, 姚忠 (2017) 恒湖农场茶叶港草洲枯水期湿地植物与土壤关系及种群生态位分析. 生态学报, 37, 3744-3754.]
[13] Gao M, He P, Zhang X (2014) Relative roles of spatial factors, environmental filtering and biotic interactions in fine-scale structuring of a soil mite community. Soil Biology & Biochemistry, 79, 68-77.
[14] Gonzalez M, Ladet S, Deconchat M, Cabanettes A, Alard D, Balent G (2010) Relative contribution of edge and interior zones to patch size effect on species richness: An example for woody plants. Forest Ecology and Management, 259, 266-274.
[15] Gotelli NJ, McCabe DJ (2002) Species co-occurrence: A meta-analysis of JM Diamond’s assembly rules model. Ecology, 83, 2091-2096.
[16] Gotelli NJ, Ulrich W (2010) The empirical Bayes approach as a tool to identify non-random species associations. Oecologia, 162, 463-477.
[17] Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052.
[18] Han DY, Yang YF (2014) Species abundance-distribution relationship and its interpretation in plant communities on the Songnen grasslands, China. Biodiversity Science, 22, 348-357. (in Chinese with English abstract)
[韩大勇, 杨允菲 (2014) 松嫩草地植物群落物种多度-分布关系及其解释. 生物多样性, 22, 348-357.]
[19] Hu G, Feeley KJ, Yu M (2016) Habitat fragmentation drives plant community assembly processes across life stages. PLoS ONE, 11, e0159572.
[20] Hu GL, Zhao WZ, Wang G (2011) Reviews on spatial pattern and sand-binding effect of patch vegetation in arid desert area. Acta Ecologica Sinica, 31, 7609-7616. (in Chinese with English abstract)
[胡广录, 赵文智, 王岗 (2011) 干旱荒漠区斑块状植被空间格局及其防沙效应研究进展. 生态学报, 31, 7609-7616. ]
[21] Jiménez JJ, Decaëns T, Rossi JP (2012) Soil environmental heterogeneity allows spatial co-occurrence of competitor earthworm species in a gallery forest of the Colombian “Llanos”. Oikos, 121, 915-926.
[22] Krasnov BR, Shenbrot GI, Khokhlova IS (2011) Aggregativestructure is the rule in communities of fleas: Null model analysis. Ecography, 34, 751-761.
[23] Li XR, Zhao Y, Hui R, Su JQ, Gao YH (2014) Progress and trend of development of restoration ecology research in the arid regions of China. Progress in Geography, 33, 1435-1443. (in Chinese with English abstract)
[李新荣, 赵洋, 回嵘, 苏洁琼, 高艳红 (2014) 中国干旱区恢复生态学研究进展及趋势评述. 地理科学进展, 33, 1435-1443.]
[24] Ma KM, Zhang JY, Guo XD, Fu BJ (2002) Plant diversity distribution of mountains in rural landscapes: The combined influences of topography and land use. Acta Phytoecologica Sinica, 26, 575-588. (in Chinese with English abstract)
[马克明, 张洁瑜, 郭旭东, 傅伯杰 (2002) 农业景观中山体的植物多样性分布: 地形和土地利用的综合影响. 植物生态学报, 26, 575-588.]
[25] May R, Mclean A (1976) Theoretical Ecology: Principles and Applications, pp. 1147-1152. Oxford University Press, New York.
[26] Miguel JM, Martín-Forés I, Acosta-Gallo B, del Pozo A, Ovalle C, Sánchez-Jardón L, Castro I, Casado MA (2016) Non-random co-occurrence of native and exotic plant species in Mediterranean grasslands. Acta Oecologica, 77, 18-26.
[27] Patiño J, Whittaker RJ, Borges PAV, Fernández-Palacios JM, Ah-Peng C, Araújo MB, Ávila SP, Cardoso P, Cornuault J, de Boer EJ, de Nascimento L, Gil A, Gon?alez-Castro A, Gruner DS, Heleno R, Horta J, Illera GJ, Kaiser-Bunbury CN, Matthews TJ, Papadopoulou A, Pettorelli N, Price JP, Santos AMC, Steinbauer MJ,Triantis KA, Valente L, Vargas P, Weigelt P, Emerson BC (2017) A roadmap for island biology: 50 fundamental questions after 50 years of The Theory of Island Biogeography. Journal of Biogeography, 44, 963-983.
[28] Shang KK, Da LJ (2013) Microtopographic spatial differentiation pattern and coexistence mechanism of relict deciduous broadleaved trees: A review. Chinese Journal of Ecology, 32, 1912-1919. (in Chinese with English abstract)
[商侃侃, 达良俊 (2013) 孑遗落叶阔叶树种微地形空间分异格局及共存机制研究概述. 生态学杂志, 32, 1912-1919.]
[29] Walter H (1985) Vegetation of the Earth and Ecological Systems of the Geo-biosphere. Springer-Verlag, New York.
[30] Wu J, Yu XC, Liu ZM, Hou XZ, Qian JQ, Xing BZ (2017) Effects of “habitat island” area on plant species diversity and its distribution pattern in Horqin Sand Land. Chinese Journal of Ecology, 36, 43-53. (in Chinese with English abstract)
[武晶, 余新春, 刘志民, 侯宪章, 钱建强, 邢宝振 (2017) 科尔沁沙地“生境岛屿”面积对植物物种多样性及其分布格局的影响. 生态学杂志, 36, 43-53.]
[31] Zhang JT (2004) Numerical Ecology. Science Press, Beijing. (in Chinese)
[张金屯 (2004) 数量生态学. 科学出版社, 北京.]
[32] Zhang Q (2011) Biodiversity Patterns and Environmental Interpretation of Stipa breviflora Grassland in Inner Mongolia. PhD dissertation, Inner Mongolia University, Hohhot. (in Chinese with English abstract)
[张庆 (2011) 内蒙古短花针茅草原生物多样性格局及环境解释. 博士学位论文, 内蒙古大学, 呼和浩特.]
[33] Zhou SR, Zhang DY (2006) Neutral theory in community ecology. Journal of Plant Ecology (Chinese Version), 30, 868-877. (in Chinese with English abstract)
[周淑荣, 张大勇 (2006) 群落生态学的中性理论. 植物生态学报, 30, 868-877.]
[34] Zou XH (2015) Ecological Effects and Dynamic Mechanisms of Vegetattion Patches in Alkali-Saline Grassland Landscape on the Songnen Plains. PhD dissertation, Northeast Normal University, Changchun. (in Chinese with English abstract)
[邹雪辉 (2015) 松嫩盐碱化草地景观植被斑块的生态效应与动态机制. 博士学位论文, 东北师范大学, 长春.]
[1] 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. (2020) 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响. 植物生态学报, 44(1): 80-92.
[2] 陈立军,束祖飞,肖治术. (2019) 应用红外相机数据研究动物活动节律——以广东车八岭保护区鸡形目鸟类为例. 生物多样性, 27(3): 266-272.
[3] 张入匀,李艳朋,倪云龙,桂旭君,练琚愉,叶万辉. (2019) 鼎湖山南亚热带常绿阔叶林叶功能性状沿群落垂直层次的种内变异. 生物多样性, 27(12): 1279-1290.
[4] 陈林, 王磊, 杨新国, 宋乃平, 李月飞, 苏莹, 卞莹莹, 祝忠有, 孟文婷. (2019) 荒漠草原猪毛蒿种群繁殖特征的土壤驱动因子分析. 植物生态学报, 43(1): 65-76.
[5] 徐开达, 卢衎尔, 卢占晖, 戴乾. (2018) 韭山列岛自然保护区虾类优势种生态位. 生物多样性, 26(6): 601-610.
[6] 靳宇曦, 刘芳, 张军, 韩梦琪, 王忠武, 屈志强, 韩国栋. (2018) 不同载畜率处理下短花针茅荒漠草原生态系统净碳交换特征. 植物生态学报, 42(3): 361-371.
[7] 闫宝龙, 王忠武, 屈志强, 王静, 韩国栋. (2018) 围封对内蒙古典型草原与荒漠草原植被-土壤系统碳密度的影响. 植物生态学报, 42(3): 327-336.
[8] 郑珊珊, 陈旭波, 许微楠, 骆争荣, 夏更寿. (2018) 外来种-本地种亲缘关系对外来植物归化和入侵的影响. 植物生态学报, 42(10): 990-999.
[9] 黄菊莹, 余海龙, 王丽丽, 马凯博, 康扬眉, 杜雅仙. (2017) 不同氮磷比处理对甘草生长与生态化学计量特征的影响. 植物生态学报, 41(3): 325-336.
[10] 孙燕, 周忠实, 王瑞, HeinzMüller-Schärer. (2017) 气候变化预计会减少东亚地区豚草的生物防治效果**. 生物多样性, 25(12): 1285-1294.
[11] 龚雪伟, 吕光辉. (2017) 艾比湖流域杜加依林荒漠植物群落多样性及优势种生态位. 生物多样性, 25(1): 34-45.
[12] 黄菊莹, 余海龙. (2016) 四种荒漠草原植物的生长对不同氮添加水平的响应. 植物生态学报, 40(2): 165-.
[13] 胡成业, 水玉跃, 田阔, 李良, 覃胡林, 张春草, 冀萌萌, 水柏年. (2016) 浙江七星列岛海洋特别保护区主要鱼类功能群划分及生态位分析. 生物多样性, 24(2): 175-184.
[14] 李永强, 李治国, 董智, 王忠武, 屈志强, 韩国栋. (2016) 内蒙古荒漠草原放牧强度对风沙通量和沉积物粒径的影响. 植物生态学报, 40(10): 1003-1014.
[15] 黄琛, 张宇, 王静, 李元恒, 五十六, 塔娜, 赵萌莉, 韩国栋, 朗巴达拉呼, 赵艳芳. (2014) 不同放牧强度下短花针茅荒漠草原植被的空间异质性. 植物生态学报, 38(11): 1184-1193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed