生物多样性 ›› 2018, Vol. 26 ›› Issue (9): 951-961.doi: 10.17520/biods.2018012

• 研究报告 • 上一篇    下一篇

印度野牛在中国的分布及其栖息地适宜性分析

丁晨晨1, 2#, 胡一鸣1, 2#, 李春旺1, 2, 蒋志刚1, 2, *()   

  1. 1 (中国科学院动物研究所动物生态与保护生物学重点实验室, 北京 100101)
    2 (中国科学院大学, 北京 100049);
  • 收稿日期:2018-01-11 接受日期:2018-05-26 出版日期:2018-09-20
  • 通讯作者: 蒋志刚 E-mail:jiangzg@ioz.ac.cn
  • 作者简介:

    # 共同第一作者

  • 基金项目:
    国家重点研发计划项目(2016YFC0503304, 2016YFC0503303)、国家自然科学基金(31372175)和全国第二次陆生野生动物资源调查专项调查资助

Distribution and habitat suitability assessment of the gaur Bos gaurus in China

Chenchen Ding1, 2#, Yiming Hu1, 2#, Chunwang Li1, 2, Zhigang Jiang1, 2, *()   

  1. 1 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences,Beijing 100101
    2 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2018-01-11 Accepted:2018-05-26 Online:2018-09-20
  • Contact: Jiang Zhigang E-mail:jiangzg@ioz.ac.cn
  • About author:

    # Co-first authors

印度野牛(Bos gaurus)在中国分布在云南省南部和西藏藏南地区。2016年2-3月和2016年11-12月, 我们在西双版纳州、普洱市及高黎贡山区域开展印度野牛调查, 并对藏南地区进行文献调研, 共获得47处印度野牛有效出现位点数据。目前云南地区印度野牛种群数量约180-210头, 面临着严重的生存危机; 在高黎贡山未发现印度野牛。利用印度野牛分布位点数据, 选取地形、土地覆被类型、人类足迹指数、距水源和道路距离以及气候共5类14种因子作为自变量建立MaxEnt生态位模型, 通过模拟云南和西藏印度野牛的适宜分布区, 分析各环境因子对该物种分布的影响。结果表明: 模型预测精度较高, 平均AUC (area under the curve)值为0.994。印度野牛潜在适宜栖息地可划分为高适宜、次适宜、低适宜和不适宜4个等级。高适宜栖息地主要分布在云南省西双版纳和藏南地区, 其中西双版纳部分镶嵌有次适宜和低适宜栖息地斑块, 面积为4,987 km²; 藏南部分高适宜栖息地面积为13,995 km²。次适宜栖息地主要分布于云南省南部、高黎贡山区域以及藏南高适宜栖息地区的边缘, 总面积为32,778 km²。低适宜和不适宜栖息地区连接成片, 位于云南省中部、北部地区和藏南地区北部。Jackknife检验结果显示, 季节温度变化和等温线对印度野牛潜在分布区的影响较大, 而地形因子和降水变化的影响较弱。遥感地物分类结果表明: 橡胶林等人工经济林的种植占据了西双版纳野牛的适宜栖息地, 降低了景观连接度。建议管理部门加大对天然林的保护力度, 控制橡胶林等人工林在野牛适宜栖息地的扩张, 提高景观连接度, 以促进该物种种群的恢复。

关键词: 云南, 藏南, 印度野牛, 生态位模型, 橡胶林, 栖息地适宜性

Gaur (Bos gaurus) are found in the Yunnan Province and Zangnan in southern Tibet in China. We conducted two field surveys in Xishuangbanna, Pu’er and Mt. Gaoligongshan in Yunnan Province, from February to March and November to December in 2016. We collected 47 valid occurrence locations of gaur by combining survey data and records from literature. Our analysis suggests that there are 180-210 gaurs in the Yunnan Province which face a serious survival crisis. No gaur signs were found in Mt. Gaoligongshan. Next, we used MaxEnt models to predict the potentially suitable habitats for gaur. We grouped 14 habitat predictor variables into five classes—terrain, land cover type, human footprint index, the distance to water and road, as well as climatic factors, and determined the contribution of each habitat factor to habitat suitability for gaur. The accuracy of our prediction models was accessed by the area under the curve (AUC) values for a receiver operating characteristic (ROC) curve. The validation showed that the results had high average AUC value of 0.994. The simulated potential habitat was divided into four classes—the most suitable habitat, moderately suitable habitat, low suitability habitat, and unsuitable habitat. The most suitable habitats for gaur are mainly located in southern Yunnan and Zangnan and spanned 4,987 km² and 13,995 km² respectively. Habitats with moderate suitability (total area = 32,778 km²) were located in the marginal areas of the most suitable habitats and in the Mt. Gongligongshan area. The most suitable habitats were mixed with habitat patches of moderate and low suitability for gaur in the southern parts of Xishuangbanna. In contrast, the central and northern parts of the study area were classified entirely as low suitable habitats and unsuitable habitats. The results of a Jackknife test indicated that temperature seasonality and isothermality had the strongest influence on habitat suitability for gaur, whereas terrain factor and precipitation had little effect. Temperature difference, land cover type and human footprint index were the main variables that explained patterns of gaur distribution. The results of land cover classification (using remote sensing) showed that rubber plantations have fragmented the suitable habitat and reduced landscape connectivity for gaur. We recommend that the relevant management authorities should protect natural forests, control the development of rubber plantations and other agricultural development in habitats suitable for gaur, and improve landscape connectivity to restore gaur populations in the landscape.

Key words: Yunnan, Zangnan, Bos gaurus, ecological niche model, rubber plantations, habitat suitability assessment

图1

中国印度野牛出现点分布图"

表1

模拟印度野牛适宜分布区时所用的环境变量"

编码 Code 描述 Description 来源 Source
BIO1 年均温 Annual mean temperature WorldClim database Version 1.4
BIO3 等温线 Isothermality WorldClim database Version 1.4
BIO4 季节温度变化 Temperature seasonality WorldClim database Version 1.4
BIO7 气温年较差 Temperature annual range WorldClim database Version 1.4
BIO9 最旱季均温 Mean temperature of driest quarter WorldClim database Version 1.4
BIO12 年均降水量 Annual precipitation WorldClim database Version 1.4
BIO15 降水季节性 Precipitation seasonality WorldClim database Version 1.4
BIO19 最冷季均温 Precipitation of coldest quarter WorldClim database Version 1.4
LCT 土地覆被类型 Land cover type Global Land Cover Facility
HFI 人类足迹指数 Human footprint influence Last of the Wild Data Version 2
ALT 海拔 Altitude Chinese Natural Resources Database
Slop 坡度 Slope Chinese Natural Resources Database
Dis_road 距主要道路距离 Distance to major roads National Catalogue Service for Geographic Information
Dis_water 距水源地距离 Distance to water source National Catalogue Service for Geographic Information

图2

环境因子对印度野牛分布作用的Jackknife刀切法评价"

图3

中国印度野牛潜在适宜栖息地分布图"

图4

2016年西双版纳土地覆被类型"

[1] Araujo M, Pearson R, Thuiller WM (2005) Validation of species-climate impact models under climate change. Global Change Biology, 11, 1504-1513.
[2] Ball GH, Hall DJ (1967) A clustering technique for summarizing multivariate data. Behavioral Science, 12, 153-155.
[3] Catry FX, Rego FC, Bação F, Moreira F (2009) Modeling and mapping wildfire ignition risk in Portugal. International Journal of Wildland Fire, 18, 921-931.
[4] Chen LD, Fu BJ (1996) The ecological significance and application of landscape connectivity. Chinese Journal of Ecology, 15, 37-42. (in Chinese with English abstract)
[陈利顶, 傅伯杰 (1996) 景观连接度的生态学意义及其应用. 生态学杂志, 15, 37-42.]
[5] China’s State Forestry Administration(2009) National Survey on Key Terrestrial Wildlife Resources in China. China Forestry Publishing House, Beijing.
[国家林业局(2009) 中国重点陆生野生动物资源调查. 中国林业出版社, 北京.]
[6] Choudhury A (2002) Distribution and conservation of the gaur Bos gaurus, in the Indian subcontinent. Mammal Review, 32, 199-226.
[7] Conry PJ (1989) Gaur Bos gaurus, and development in Malaysia. Biological Conservation, 49, 47-65.
[8] Costanza R, D’Arge R, Groot RD, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, Neill R, Paruelo J, Raskin RG, Sutton P, Belt M (1997) The value of the world’s ecosystem services and natural capital. World Environment, 25, 3-15.
[9] Duckworth JW, Sankar K, Williams AC, Samba KN, Timmins RJ (2016) Bos gaurus. The IUCN Red List of Threatened Species.2016) Bos gaurus. The IUCN Red List of Threatened Species.
[10] Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice C, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science, 309, 570-574.
[11] Gan HX, Hu HB (2008) Biodiversity conservation corridor design based on habitat selection of gaur (Bos gaurus): A case study from Xishuangbanna, China. Chinese Journal of Ecology, 27, 2153-2158. (in Chinese with English abstract)
[甘宏协, 胡华斌 (2008) 基于野牛生境选择的生物多样性保护廊道设计: 来自西双版纳的案例. 生态学杂志, 27, 2153-2158.]
[12] Hall LS, Krausman PR, Morrison ML (1997) The habitat concept and a plea for standard terminology. Wildlife Society Bulletin, 25, 173-182.
[13] Heinen JT, Sompoad S (1996) Status and protection of Asian wild cattle and buffalo. Conservation Biology, 10, 931-934.
[14] Hirzel AH, Helfer V, Metral F (2001) Assessing habitat-suitability models with a virtual species. Ecological Modelling, 145, 111-121.
[15] Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG (2016) Red List of China’s Vertebrates. Biodiversity Science, 24, 500-551. (in Chinese and in English)
[蒋志刚, 江建平, 王跃招, 张鹗, 张雁云, 李立立, 谢锋, 蔡波, 曹亮, 郑光美, 董路, 张正旺, 丁平, 罗振华, 丁长青, 马志军, 汤宋华, 曹文宣, 李春旺, 胡慧建, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 陈跃英, 李家堂, 冯祚建, 王燕, 王斌, 李成, 宋雪琳, 蔡蕾, 臧春鑫, 曾岩, 孟智斌, 方红霞, 平晓鸽 (2016) 中国脊椎动物红色名录. 生物多样性, 24, 500-551.]
[16] Jiang ZG, Liu SY, Wu Y, Jiang XL, Zhou KY (2017) China’ mammalian diversity(2nd edition). Biodiversity Science, 25, 886-895. (in Chinese with English abstract)
[蒋志刚, 刘少英, 吴毅, 蒋学龙, 周开亚 (2017) 中国哺乳动物多样性(第2版). 生物多样性, 25, 886-895.]
[17] Leshowitz B (1969) Comparison of ROC curves from one- and two- interval rating-scale procedures. Journal of the Acoustical Society of America, 46, 399-402.
[18] Li H, Aide TM, Ma Y, Liu W, Cao M (2007) Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodiversity & Conservation, 16, 1731-1745.
[19] Li MY, Ju YW, Kumar S, Stohlgren TJ (2009) Modeling of potential habitat for endangered wild animals: A case study of gaur Bos gaurus. Journal of Northeast Forestry University, 37, 88-91. (in Chinese with English abstract)
[李明阳, 巨云为, Kumar S, Stohlgren TJ (2009) 濒危野生动物潜在生境空间建模方法——以印度野牛(Bos gaurus)为例. 东北林业大学学报, 37, 88-91.]
[20] Liao CH, Li P, Feng ZM, Zhang JH (2014) Area monitoring by remote sensing and spatiotemporal variation of rubber plantations in Xishuangbanna. Transactions of the Chinese Society of Agricultural Engineering, 30, 170-180. (in Chinese with English abstract)
[廖谌婳, 李鹏, 封志明, 张景华 (2014) 西双版纳橡胶林面积遥感监测和时空变化. 农业工程学报, 30, 170-180.]
[21] Lian ZM, Yu GZ (2000) Edge effect and biodiversity. Chinese Biodiversity, 8, 120-125. (in Chinese with English abstract)
[廉振民, 于广志 (2000) 边缘效应与生物多样性. 生物多样性, 8, 120-125.]
[22] Liu XN, Feng ZM, Jiang LG, Zhang JH (2012) Rubber plantations in Xishuangbanna: Remote sensing identification and digital mapping. Resources Science, 34, 1769-1780. (in Chinese with English abstract)
[刘晓娜, 封志明, 姜鲁光, 张景华 (2012) 西双版纳橡胶林地的遥感识别与数字制图. 资源科学, 34, 1769-1780.]
[23] Margules CR, Pressey RL (2000) Systematic conservation planning. Nature, 405, 243-253.
[24] Mishra C, Madhusudan MD, Datta A (2006) Mammals of the high altitudes of western “Arunachal Pradesh”, eastern Himalaya: An assessment of threats and conservation needs. Oryx, 40, 1-7.
[25] Myers N, Mittermeier RA, Mittermeier CG, Da FG, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
[26] Pan QH, Wang YX, Yan K (2007) A Field Guide to the Mammals of China. China Forestry Publishing House, Beijing. (in Chinese)
[潘清华, 王应祥, 岩崑 (2007) 中国哺乳动物彩色图鉴. 中国林业出版社, 北京.]
[27] Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology & Biogeography, 12, 361-371.
[28] Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
[29] Shou ZH, Cai XT (1958) New record for gaur in Xishuangbanna, Yunnan. Science Bulletin, 3, 112-113. (in Chinese)
[寿振黄, 蔡希陶 (1958) 云南西双版纳发现的野牛. 科学通报, 3, 112-113.]
[30] Smith AT, Xie Y (2009) A Guide to the Mammals of China. Hunan Education Press, Changsha. (in Chinese)
[Smith AT, 解焱 (2009) 中国兽类野外手册. 湖南教育出版社, 长沙.]
[31] Sreekar R, Huang G, Yasuda M, Quan RC, Goodale E, Richard T, Corlett RT, Tomlinson KW (2016) Effects of forests, roads and mistletoe on bird diversity in monoculture rubber plantations. Scientific Reports, 6, 21822.
[32] Swets JA (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
[33] Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2007) Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Science, 15, 365-372. (in Chinese with English abstract)
[王运生, 谢丙炎, 万方浩, 肖启明, 戴良英 (2007) ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 15, 365-372.]
[34] Yang DH, Zhang JY (1988) Population and distribution of Bos gaurus in Yunnan. Chinese Journal of Zoology, 23(1), 39-41. (in Chinese)
[杨德华, 张家银 (1988) 云南野牛的数量分布. 动物学杂志, 23(1), 39-41.]
[35] Yin F, Ma K, Liu DZ (2015) Population status, ecological habitat and threatened factors of wild gaur (Bos gaurus): A review. Journal of Beijing Normal University (Natural Science), 51, 504-510. (in Chinese with English abstract)
[尹峰, 马凯, 刘定震 (2015) 野牛的种群现状、生态习性及致危因素. 北京师范大学学报(自然科学版), 51, 504-510.]
[36] Yunnan Institute of Forest Inventory and Planning(1989) The Nature Reserve in Yunnan. China Forestry Publishing House, Beijing. (in Chinese)
[云南省林业调查规划院(1989) 云南自然保护区. 中国林业出版社, 北京.]
[37] Zhang HL, Li ZX, Wang RC (2000) A study on Bos gaurus habitat using multivariate statistical techniques and GIS—Taking the Naban River Basin Biosphere Reserve in Xishuangbanna as an example. Tropical Geography, 20, 152-155. (in Chinese with English abstract)
[张洪亮, 李芝喜, 王人潮 (2000) 应用多元统计技术和GIS技术进行印度野牛生境定量分析——以西双版纳纳板河流域生物圈保护区为例. 热带地理, 20, 152-155.]
[38] Zhang HL, Wang RC (1999) GIS-based ecotope types and their relationship with survival of Bos gaurus. Chinese Journal of Applied Ecology, 10, 619-622. (in Chinese with English abstract)
[张洪亮, 王人潮 (1999) 基于GIS的生境类型及其与印度野牛生存关系的研究. 应用生态学报, 10, 619-622.]
[39] Zhang ZY, Yang HP, Luo AD (2016) Population, distribution and conservation status of gaur (Bos gaurus) in Xishuangbanna Prefecture. Forest Inventory and Planning, 41, 115-119. (in Chinese with English abstract)
[张忠员, 杨鸿培, 罗爱东 (2016) 西双版纳印度野牛种群数量、分布和保护现状. 林业调查规划, 41, 115-119.]
[40] Zhu ZH, Wu QA, Yang LP (2003) Present status and conservation strategy of wild animal and plant resources in Gaoligongshan National Nature Reserve. Forestry Science & Technology, 28, 63-65. (in Chinese with English abstract)
[朱振华, 毋其爱, 杨礼攀 (2003) 高黎贡山自然保护区野生动植物资源现状及保护. 林业科技, 28, 63-65.]
[1] 胡菀,张志勇,陈陆丹,彭焱松,汪旭. (2020) 末次盛冰期以来观光木的潜在地理分布变迁. 植物生态学报, 44(1): 44-55.
[2] 范靖宇, 李汉芃, 杨琢, 朱耿平. (2019) 基于本土最优模型模拟入侵物种水盾草在中国的潜在分布. 生物多样性, 27(2): 140-148.
[3] 申佳艳, 李帅锋, 黄小波, 雷志全, 施兴全, 苏建荣. (2019) 南盘江流域云南松径向生长对气候暖干化的响应. 植物生态学报, 43(11): 946-958.
[4] 朱鑫鑫, 王君, 廖帅, 马金双. (2019) 中国马兜铃属和关木通属(马兜铃科)概览. 生物多样性, 27(10): 1143-1146.
[5] 王波, 黄勇, 李家堂, 戴强, 王跃招, 杨道德. (2018) 西南喀斯特地貌区两栖动物丰富度分布格局与环境因子的关系. 生物多样性, 26(9): 941-950.
[6] 周中一, 刘冉, 时书纳, 苏艳军, 李文楷, 郭庆华. (2018) 基于激光雷达数据的物种分布模拟: 以美国加州内华达山脉南部区域食鱼貂分布模拟为例. 生物多样性, 26(8): 878-891.
[7] 张琴, 张东方, 吴明丽, 郭杰, 孙成忠, 谢彩香. (2017) 基于生态位模型预测天麻全球潜在适生区. 植物生态学报, 41(7): 770-778.
[8] 叶俊伟, 袁永革, 蔡荔, 王晓娟. (2017) 中国东北温带针阔混交林植物物种的谱系地理研究进展. 生物多样性, 25(12): 1339-1349.
[9] 黄小波, 李帅锋, 苏建荣, 刘万德, 郎学东. (2017) 云南松天然次生林物种丰富度与生态系统多功能性的关系. 生物多样性, 25(11): 1182-1191.
[10] 邵桦, 薛达元. (2017) 云南佤族传统文化对蔬菜种质多样性的影响. 生物多样性, 25(1): 46-52.
[11] 苏凯文, 陈路红, 郑伟, 潘瑶, 尹华军, 巩合德. (2017) 云南杨梅碳、氮、磷化学计量特征. 植物生态学报, 41(1): 136-146.
[12] 方晓峰, 杨庆松, 刘何铭, 马遵平, 董舒, 曹烨, 袁铭皎, 费希旸, 孙小颖, 王希华. (2016) 天童常绿阔叶林中常绿与落叶物种的物种多度分布格局. 生物多样性, 24(6): 629-638.
[13] 崔相艳, 王文娟, 杨小强, 李述, 秦声远, 戎俊. (2016) 基于生态位模型预测野生油茶的潜在分布. 生物多样性, 24(10): 1117-1128.
[14] 朱耿平, 乔慧捷. (2016) Maxent模型复杂度对物种潜在分布区预测的影响. 生物多样性, 24(10): 1189-1196.
[15] 李苏, 刘文耀, 石贤萌, 柳帅, 胡涛, 黄俊彪, 陈曦, 宋亮, 武传胜. (2015) 亚热带森林系统4种附生蓝藻地衣的分布对生境变化的响应. 植物生态学报, 39(3): 217-228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed