生物多样性 ›› 2022, Vol. 30 ›› Issue (8): 22067. DOI: 10.17520/biods.2022067
收稿日期:
2022-02-09
接受日期:
2022-03-18
出版日期:
2022-08-20
发布日期:
2022-08-31
通讯作者:
中村彰宏
作者简介:
*E-mail: a.nakamura@xtbg.ac.cn基金资助:
Runming Yang1,2, Akihiro Nakamura1,3,*()
Received:
2022-02-09
Accepted:
2022-03-18
Online:
2022-08-20
Published:
2022-08-31
Contact:
Akihiro Nakamura
摘要:
光污染被认为是“环境陷阱”, 可以聚集周围的昆虫。而昆虫的聚集和光源本身可能会吸引捕食性昆虫在光源附近定居繁殖, 从而改变昆虫群落的结构, 威胁昆虫多样性和生态系统服务功能。蚂蚁(膜翅目)是昆虫中的优势类群, 能提供多种生态系统服务功能, 其中有许多巢居型蚂蚁利用中空的树枝或者竹子筑巢繁殖, 是森林中非常重要的捕食者和分解者。然而, 光污染对巢居蚂蚁群落的影响尚不清楚。本研究以巢居蚂蚁为研究对象, 探究在雨季和干季3种不同生境(原始林、次生林、橡胶林)中发光二极管(LED灯)在空间距离上对巢居蚂蚁筑巢模式以及群落组成的影响。我们在3种生境中共安装了15个LED灯, 并在距离光源0 m、10 m、50 m和100 m处设置不同入口大小的人工竹巢, 7周后回收。竹巢中共发现蚂蚁40种形态种, 隶属于12个属, 其中弓背蚁属(Camponotus)是优势属。接近光源处的竹巢占用率最高, 且在干季最明显; 在远离光源处(10-100 m)占用率较低, 并且在3种不同的生境呈现相同的模式。竹巢入口大小对竹巢占用率没有显著影响。雨季和干季的蚂蚁群落组成差异显著; 干季原始林和次生林、次生林和橡胶林蚂蚁群落组成有弱显著差异; 在3种生境中不同灯距下蚂蚁群落组成没有显著差异。我们的研究表明, 光污染增加了巢居蚂蚁在光源处的筑巢密度, 影响蚂蚁群落组成和空间分布。
杨润明, 中村彰宏 (2022) 巢居蚂蚁更倾向于在人造光源附近定居繁殖. 生物多样性, 30, 22067. DOI: 10.17520/biods.2022067.
Runming Yang, Akihiro Nakamura (2022) Cavity-dwelling ants tend to colonize close to artificial light. Biodiversity Science, 30, 22067. DOI: 10.17520/biods.2022067.
图1 人工竹巢制作(a, b)和野外设置(c, d; 竹巢被水平固定在树干表面, 离地面约1.5 m, 保持开孔向下以防止雨水进入)
Fig. 1 Artificial bamboo nests production (a and b) and setting in the field (c and d; nests were fixed on the tree trunk, 1.5 m away from the ground and keeping the hole downward for prevent raining water)
属 Genus | 干季 Dry season | 雨季 Rainy season | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
原始林 Primary forest | 次生林 Secondary forest | 橡胶林 Rubber plantation | 原始林 Primary forest | 次生林 Secondary forest | 橡胶林 Rubber plantation | |||||||
NS | NN | NS | NN | NS | NN | NS | NN | NS | NN | NS | NN | |
弓背蚁属 Camponotus | 6 | 17 | 4 | 8 | 6 | 19 | 3 | 6 | 2 | 13 | 3 | 12 |
举腹蚁属 Crematogaster | 1 | 1 | 2 | 6 | 2 | 7 | 2 | 3 | 2 | 9 | 0 | 0 |
臭蚁属 Dolichoderus | 1 | 7 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
大头蚁属 Pheidole | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
菲臭蚁属 Philidris | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
多刺蚁属 Polyrhachis | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 6 | 0 | 0 | 2 | 2 |
棒角蚁属 Rhopalomastix | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
酸臭蚁属 Tapinoma | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 |
狡臭蚁属 Technomyrmex | 1 | 1 | 0 | 0 | 2 | 2 | 1 | 3 | 0 | 0 | 2 | 3 |
铺道蚁属 Tetramorium | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 |
虹臭蚁属 Iridomyrmex | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
小家蚁属 Monomorium | 0 | 0 | 1 | 1 | 2 | 5 | 0 | 0 | 0 | 0 | 2 | 10 |
合计 Total | 11 | 28 | 9 | 18 | 13 | 34 | 11 | 22 | 5 | 23 | 13 | 32 |
表1 雨季和干季3种生境中竹巢内蚂蚁属及形态种分类信息
Table 1 Taxonomic information of ants found in artificial bamboo nests
属 Genus | 干季 Dry season | 雨季 Rainy season | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
原始林 Primary forest | 次生林 Secondary forest | 橡胶林 Rubber plantation | 原始林 Primary forest | 次生林 Secondary forest | 橡胶林 Rubber plantation | |||||||
NS | NN | NS | NN | NS | NN | NS | NN | NS | NN | NS | NN | |
弓背蚁属 Camponotus | 6 | 17 | 4 | 8 | 6 | 19 | 3 | 6 | 2 | 13 | 3 | 12 |
举腹蚁属 Crematogaster | 1 | 1 | 2 | 6 | 2 | 7 | 2 | 3 | 2 | 9 | 0 | 0 |
臭蚁属 Dolichoderus | 1 | 7 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
大头蚁属 Pheidole | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
菲臭蚁属 Philidris | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
多刺蚁属 Polyrhachis | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 6 | 0 | 0 | 2 | 2 |
棒角蚁属 Rhopalomastix | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
酸臭蚁属 Tapinoma | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 |
狡臭蚁属 Technomyrmex | 1 | 1 | 0 | 0 | 2 | 2 | 1 | 3 | 0 | 0 | 2 | 3 |
铺道蚁属 Tetramorium | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 |
虹臭蚁属 Iridomyrmex | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
小家蚁属 Monomorium | 0 | 0 | 1 | 1 | 2 | 5 | 0 | 0 | 0 | 0 | 2 | 10 |
合计 Total | 11 | 28 | 9 | 18 | 13 | 34 | 11 | 22 | 5 | 23 | 13 | 32 |
模型 Model | 存在蚂蚁的竹巢 Bamboos with ants | 被蚂蚁占用的竹巢 Bamboos with nesting ants |
---|---|---|
AIC | AIC | |
R~ D + S + (1 | T) + D:S | 780 | 591 |
R ~ D + H + S + (1 | T) + D:S | 782 | 593 |
R ~ D + H + S + (1 | T) + D:S + D:H | 783 | 594 |
R ~ D + H + S + (1 | T) + D:S + S:H | 783 | 596 |
R~ D + S + (1 | T) | 784 | 592 |
R ~ D + H + S + (1 | T) + D:S + S:H + D:H | 784 | 597 |
R ~ D + H + S + (1 | T) + D:S + S:H + D:H + D:H:S | 785 | 596 |
表2 存在蚂蚁的竹巢和被蚂蚁占用的竹巢最佳glmmTMB模型筛选。加粗AIC值表示最小值, 模型为最佳模型。
Table 2 The glmmTMB best model selection of bamboos with ants and bamboos with nesting ants. The bold AIC values indicate lowest value which is the best model.
模型 Model | 存在蚂蚁的竹巢 Bamboos with ants | 被蚂蚁占用的竹巢 Bamboos with nesting ants |
---|---|---|
AIC | AIC | |
R~ D + S + (1 | T) + D:S | 780 | 591 |
R ~ D + H + S + (1 | T) + D:S | 782 | 593 |
R ~ D + H + S + (1 | T) + D:S + D:H | 783 | 594 |
R ~ D + H + S + (1 | T) + D:S + S:H | 783 | 596 |
R~ D + S + (1 | T) | 784 | 592 |
R ~ D + H + S + (1 | T) + D:S + S:H + D:H | 784 | 597 |
R ~ D + H + S + (1 | T) + D:S + S:H + D:H + D:H:S | 785 | 596 |
固定因子 Fixed effects | 存在蚂蚁的竹巢 Bamboos with ants | 被蚂蚁占用的竹巢 Bamboos with nesting ants | ||||
---|---|---|---|---|---|---|
χ2 | df | P | χ2 | df | P | |
D | 11.245 | 1 | < 0.001 | 11.518 | 1 | < 0.001 |
S | 6.109 | 1 | 0.013 | 4.235 | 1 | 0.039 |
D:S | 5.501 | 1 | 0.019 | 1.713 | 1 | 0.191 |
表3 存在蚂蚁的竹巢和被蚂蚁占用的竹巢glmmTMB最佳模型(加粗P值表示< 0.05)
Table 3 The glmmTMB best models of bamboos with ants and bamboos with nesting ants. The bold P values indicate P < 0.05.
固定因子 Fixed effects | 存在蚂蚁的竹巢 Bamboos with ants | 被蚂蚁占用的竹巢 Bamboos with nesting ants | ||||
---|---|---|---|---|---|---|
χ2 | df | P | χ2 | df | P | |
D | 11.245 | 1 | < 0.001 | 11.518 | 1 | < 0.001 |
S | 6.109 | 1 | 0.013 | 4.235 | 1 | 0.039 |
D:S | 5.501 | 1 | 0.019 | 1.713 | 1 | 0.191 |
图2 不同季节、生境和灯距下存在蚂蚁(a)和蚂蚁占用(b)的竹巢数量平均占比。 图上为标准误差线, 干季100 m处未设置竹巢, 上方数值表示灯距, PF为原始林, SF为次生林, RP为橡胶林。
Fig. 2 Mean proportion of bamboos occupied by ants (a) and nesting ants (b) at different distances away from the light source (0, 10, 50 and 100 m) across the three habitats and two seasons. Error bars are standard errors. Bamboo nests were not set at 100 m site in dry season. PF, Primary forest; SF, Secondary forest; RP, Rubber plantation.
图3 3种生境中存在蚂蚁(a)和蚂蚁占用(b)的不同竹巢数量平均占比。 图上为标准误差线, 上方数值表示竹巢入口大小, PF为原始林, SF为次生林, RP为橡胶林。
Fig. 3 Mean proportion of bamboos with different entrance size occupied by ants (a) and nesting ants (b) across the three habitats. Error bars are standard errors. PF, Primary forest; SF, Secondary forest; RP, Rubber plantation.
图4 雨季和干季3种生境中竹巢内蚂蚁群落非度量多维尺度分析(NMDS)
Fig. 4 Non-metric multidimensional scaling (NMDS) ordination of the ant assemblages found in the bamboo sticks placed in primary forest (PF), secondry forest (SF) and rubber plantation (RP) in dry and rainy seasons.
图5 3种生境中沿着灯距竹巢内蚂蚁群落组成非度量多维尺度分析(NMDS)。 原始林10 m处发现稀有种, 致使NMDS分析中出现极端离群值, 在图中已被移除。
Fig. 5 Non-metric multidimensional scaling (NMDS) ordination of the ant assemblages found in the bamboo sticks placed in primary forest (PF), secondry forest (SF) and rubber plantation (RP) along the distance. Rare species were found at 10 m in the primary forest, caused extreme outlier in NMDS analysis, which had been removed in the figure.
[1] | Agosti ED, Majer JD, Alonso LE, Schultz TR (2000) Ant:Standard Methods for Measuring and Monitoring Biodiversity. Smithsonian Institution Press, Washington. |
[2] |
Andersen AN (1995) A classification of Australian ant communities, based on functional groups which parallel plant life-forms in relation to stress and disturbance. Journal of Biogeography, 22, 15.
DOI URL |
[3] |
Armbrecht I, Perfecto I, Silverman E (2006) Limitation of nesting resources for ants in Colombian forests and coffee plantations. Ecological Entomology, 31, 403-410.
DOI URL |
[4] |
Arruda FV, Pesquero MA, Marcelino DG, Leite GA, Delabie JHC, Fagundes R (2016) Size and condition of bamboo as structural factors behind the vertical stratification of the bamboo-nesting ant community. Insectes Sociaux, 63, 99-107.
DOI URL |
[5] |
Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Mächler M, Bolker BM (2017) Modeling zero-inflated count data with glmmTMB. bioRxiv, doi: 10.1101/132753.
DOI |
[6] |
Czaczkes TJ, Bastidas-Urrutia AM, Ghislandi P, Tuni C (2018) Reduced light avoidance in spiders from populations in light-polluted urban environments. The Science of Nature, 105, 64.
DOI URL |
[7] |
Davies TW, Bennie J, Cruse D, Blumgart D, Inger R, Gaston KJ (2017) Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages. Global Change Biology, 23, 2641-2648.
DOI URL |
[8] |
Deblauwe I, Dekoninck W (2007) Diversity and distribution of ground-dwelling ants in a lowland rainforest in southeast Cameroon. Insectes Sociaux, 54, 334-342.
DOI URL |
[9] | Debout GDG, Dalecky A, Ngomi AN, McKey DB (2009) Dynamics of species coexistence: Maintenance of a plant- ant competitive metacommunity. Oikos, 118, 873-884. |
[10] |
Duarte C, Quintanilla-Ahumada D, Anguita C, Manríquez PH, Widdicombe S, Pulgar J, Silva-Rodríguez EA, Miranda C, Manríquez K, Quijón PA (2019) Artificial light pollution at night (ALAN) disrupts the distribution and circadian rhythm of a sandy beach isopod. Environmental Pollution, 248, 565-573.
DOI URL |
[11] |
Durrant J, Botha LM, Green MP, Jones TM (2018) Artificial light at night prolongs juvenile development time in the black field cricket, Teleogryllus commodus. Journal of Experimental Zoology, Part B: Molecular and Developmental Evolution, 330, 225-233.
DOI PMID |
[12] |
Dwyer RG, Bearhop S, Campbell HA, Bryant DM (2013) Shedding light on light: Benefits of anthropogenic illumination to a nocturnally foraging shorebird. Journal of Animal Ecology, 82, 478-485.
DOI PMID |
[13] |
Firebaugh A, Haynes KJ (2016) Experimental tests of light-pollution impacts on nocturnal insect courtship and dispersal. Oecologia, 182, 1203-1211.
PMID |
[14] | Frank KD (2009) Exploitation of artificial light at night by a diurnal jumping spider. Peckhamia, 52, 277-287. |
[15] |
Friedrich R, Philpott SM (2009) Nest-site limitation and nesting resources of ants (Hymenoptera: Formicidae) in urban green spaces. Environmental Entomology, 38, 600-607.
PMID |
[16] |
Grenis K, Tjossem B, Murphy SM (2015) Predation of larval Lepidoptera in habitat fragments varies spatially and temporally but is not affected by light pollution. Journal of Insect Conservation, 19, 559-566.
DOI URL |
[17] | Hammond J, Yi DZ, McLellan T, Zhao JW (2015) Situational Analysis Report: Xishuangbanna Autonomous Dai Prefecture, Yunnan Province, China. World Agroforestry Centre. |
[18] | Holldobler B, Wilson E (1990) The Ants. Harvard University Press, Cambridge, MA. |
[19] |
Jiménez-Soto E, Philpott SM (2015) Size matters: Nest colonization patterns for twig-nesting ants. Ecology and Evolution, 5, 3288-3298.
DOI PMID |
[20] |
Kalinkat G, Grubisic M, Jechow A, Schroer S, Hölker F (2021) Assessing long-term effects of artificial light at night on insects: What is missing and how to get there. Insect Conservation and Diversity, 14, 260-270.
DOI URL |
[21] | Keroumi AE, Naamani K, Soummane H, Dahbi A (2012) Seasonal dynamics of ant community structure in the Moroccan Argan Forest. Journal of Insect Science, 12, 94. |
[22] | Klimes P (2017) Diversity and specificity of ant-plant interactions in canopy communities:Insights from primary and secondary tropical forests in new Guinea. In: Ant-Plant Interactions (eds Oliveira PS, Koptur S), pp. 26-51. Cambridge University Press, Cambridge. |
[23] |
Knop E, Zoller L, Ryser R, Gerpe C, Hörler M, Fontaine C (2017) Artificial light at night as a new threat to pollination. Nature, 548, 206-209.
DOI URL |
[24] |
Longino JT, Coddington J, Colwell RK (2002) The ant fauna of a tropical rain forest: Estimating species richness three different ways. Ecology, 83, 689-702.
DOI URL |
[25] | Miller CR, Barton BT, Zhu LK, Radeloff VC, Oliver KM, Harmon JP, Ives AR (2017) Combined effects of night warming and light pollution on predator-prey interactions. Proceedings of the Royal Society B: Biological Sciences, 284, 20171195. |
[26] |
Mottl O, Yombai J, Fayle TM, Novotný V, Klimeš P (2020) Experiments with artificial nests provide evidence for ant community stratification and nest site limitation in a tropical forest. Biotropica, 52, 277-287.
DOI URL |
[27] | Narendra A, Reid SF, Raderschall CA (2013) Navigational efficiency of nocturnal Myrmecia ants suffers at low light levels. PLoS ONE, 8, e58801. |
[28] |
Owens ACS, Cochard P, Durrant J, Farnworth B, Perkin EK, Seymoure B (2020) Light pollution is a driver of insect declines. Biological Conservation, 241, 108259.
DOI URL |
[29] |
Philpott SM, Foster PF (2005) Nest-site limitation in coffee agroecosystems: Artificial nests maintain diversity of arboreal ants. Ecological Applications, 15, 1478-1485.
DOI URL |
[30] | Pilosof S, Porter MA, Pascual M, Kéfi S (2017) The multilayer nature of ecological networks. Nature Ecology & Evolution, 1, 101. |
[31] |
Powell S (2009) How ecology shapes caste evolution: Linking resource use, morphology, performance and fitness in a superorganism. Journal of Evolutionary Biology, 22, 1004-1013.
DOI PMID |
[32] |
Powell S, Costa AN, Lopes CT, Vasconcelos HL (2011) Canopy connectivity and the availability of diverse nesting resources affect species coexistence in arboreal ants. Journal of Animal Ecology, 80, 352-360.
DOI PMID |
[33] | Sanders D, Gaston KJ (2018) How ecological communities respond to artificial light at night. Journal of Experimental Zoology, Part A: Ecological and Integrative Physiology, 329, 394-400. |
[34] | Sullivan SMP, Hossler K, Meyer LA (2019) Artificial lighting at night alters aquatic-riparian invertebrate food webs. Ecological Applications, 29, e01821. |
[35] |
Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329, 853-856.
DOI PMID |
[36] | Ugolini A, Boddi V, Mercatelli L, Castellini C (2005) Moon orientation in adult and young sandhoppers under artificial light. Proceedings of the Royal Society B: Biological Sciences, 272, 2189-2194. |
[37] |
van Geffen KG, van Eck E, de Boer RA, Salis L, Berendse F, Veenendaal EM (2015) Artificial light at night inhibits mating in a Geometrid moth. Insect Conservation and Diversity, 8, 282-287.
DOI URL |
[38] |
van Langevelde F, Ettema JA, Donners M, WallisDeVries MF, Groenendijk D (2011) Effect of spectral composition of artificial light on the attraction of moths. Biological Conservation, 144, 2274-2281.
DOI URL |
[39] | Wielgoss A, Tscharntke T, Rumede A, Fiala B, Seidel H, Shahabuddin S, Clough Y (2014) Interaction complexity matters:Disentangling services and disservices of ant communities driving yield in tropical agroecosystems. Proceedings of the Royal Society B: Biological Sciences, 281, 20132144. |
[40] | Xu ZH (1999) An analysis on the ant fauna of the tropical rain forest in Xishuangbanna of China. Zoological Research, 20, 379-384. (in Chinese with English abstract) |
[徐正会 (1999) 西双版纳热带雨林蚁科昆虫区系分析. 动物学研究, 20, 379-384.] | |
[41] | Zhang NN, Chen YQ, Lu ZX, Zhang W, Li KL (2013) Species diversity, community structure difference and indicator species of leaf-litter ants in rubber plantations and secondary natural forests in Yunnan, southwestern China. Acta Entomologica Sinica, 56, 1314-1323. (in Chinese with English abstract) |
[张念念, 陈又清, 卢志兴, 张威, 李可力 (2013) 云南橡胶林和天然次生林枯落物层蚂蚁物种多样性、群落结构差异及指示种. 昆虫学报, 56, 1314-1323.] |
[1] | 杨清, 张鹏, 安瑞志, 乔楠茜, 达珍, 巴桑. 拉萨河中下游纤毛虫群落时空分布模式及其驱动机制[J]. 生物多样性, 2022, 30(6): 22012-. |
[2] | 王定一, 倪祥银, 岳楷, 张潇月, 康自佳, 朱玲, 吴福忠. 白蚁活动对中亚热带次生林和人工林的危害差异[J]. 生物多样性, 2022, 30(3): 21324-. |
[3] | 陈燕南, 梁铖, 陈军. 亚热带不同树种组成森林中土壤甲螨群落结构特征:以江西新岗山为例[J]. 生物多样性, 2022, 30(12): 22334-. |
[4] | 易浪, 董亚坤, 苗白鸽, 彭艳琼. 云南高黎贡山地区蝴蝶群落多样性[J]. 生物多样性, 2021, 29(7): 950-959. |
[5] | 王楠, 黄菁华, 霍娜, 杨盼盼, 张欣玥, 赵世伟. 宁南山区不同植被恢复方式下土壤线虫群落特征:形态学鉴定与高通量测序法比较[J]. 生物多样性, 2021, 29(11): 1513-1529. |
[6] | 吴二焕, 李东海, 杨小波, 左永令, 李龙, 张培春, 陈琳, 田路嘉, 李晨笛. 海南苏铁种群结构与森林群落郁闭度的关系[J]. 生物多样性, 2021, 29(11): 1461-1469. |
[7] | 余宏昌, 毕宝帅, 唐文乔, 张亚, 郭弘艺. 上海苏州河治理中鱼类多样性及群落结构变化[J]. 生物多样性, 2021, 29(1): 32-42. |
[8] | 尚素琴, 吴兴波, 王召龙, 彭鹤年, 周惠丽, 张红勇, 白映禄. 兴隆山国家级自然保护区不同生境的蝴蝶群落结构与种-多度分布[J]. 生物多样性, 2020, 28(8): 983-992. |
[9] | 向颖, 刘素群, 黄兴龙, 刘志霄, 张佑祥, 马方舟. 湖南高望界国家级自然保护区及其周边蝶类多样性与影响因素[J]. 生物多样性, 2020, 28(8): 940-949. |
[10] | 王剑, 董乙乂, 马丽滨, 潘勃, 马方舟, 丁晖, 胡亚萍, 彭艳琼, 吴孝兵, 王波. 西双版纳国家级自然保护区蚂蚁-树互作网络空间变异[J]. 生物多样性, 2020, 28(6): 695-706. |
[11] | 赵志霞, 赵常明, 邓舒雨, 申国珍, 谢宗强, 熊高明, 李俊清. 重度砍伐后极小种群野生植物崖柏群落结构动态[J]. 生物多样性, 2020, 28(3): 333-339. |
[12] | 胡芮, 王儒晓, 杜诗雨, 李萌, 邢雨辉, 潘达, 徐海根, 孙红英. 扬州宝应湖底栖大型无脊椎动物的生物多样性及其变化[J]. 生物多样性, 2020, 28(12): 1558-1569. |
[13] | 宋础良. 结构稳定性: 概念、方法和应用[J]. 生物多样性, 2020, 28(11): 1345-1361. |
[14] | 孙蓓蓓, 俞存根, 刘惠, 颜文超, 张文俊, 戴冬旭. 南麂列岛东侧海域春秋季虾蟹类生物多样性[J]. 生物多样性, 2019, 27(7): 787-795. |
[15] | 邢圆,吴小平,欧阳珊,张君倩,徐靖,银森录,谢志才. 赣江水系大型底栖动物多样性与受胁因子初探[J]. 生物多样性, 2019, 27(6): 648-657. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn