生物多样性 ›› 2018, Vol. 26 ›› Issue (2): 191-201.doi: 10.17520/biods.2017324

• 研究报告 • 上一篇    下一篇

喜马拉雅山哺乳动物物种多样性垂直分布格局

胡一鸣1, 2, 3, 梁健超3, 4, 金崑5, 丁志锋3, 周智鑫3, 胡慧建3, *, 蒋志刚1, 2, *   

  1. 1 .中国科学院动物研究所, 北京 100101
    2 .中国科学院大学, 北京 100049
    3 .广东省生物资源应用研究所, 广东省动物保护与资源利用重点实验室, 广东省野生动物保护与利用公共实验室, 广州 510260
    4 .北京林业大学自然保护区学院, 北京 100083
    5 .中国林业科学研究院森林生态环境与保护研究所, 北京 100091
  • 收稿日期:2017-12-06 接受日期:2018-01-26 出版日期:2018-04-02
  • 通讯作者: 胡慧建,蒋志刚
  • 作者简介:

    # 共同第一作者

  • 基金项目:
    国家自然科学基金(31400361, 31372175)和科技基础性专项(2013FY110300)

The elevational patterns of mammalian richness in the Himalayas

Yiming Hu1, 2, 3, Jianchao Liang3, 4, Kun Jin5, Zhifeng Ding3, Zhixin Zhou3, Huijian Hu3, *, Zhigang Jiang1, 2, *   

  1. 1 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
    2 University of Chinese Academy of Sciences, Beijing 100049
    3 Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260
    4 School of Nature Conservation, Beijing Forestry University, Beijing 100083
    5 Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091
  • Received:2017-12-06 Accepted:2018-01-26 Online:2018-04-02
  • Contact: Hu Huijian,Jiang Zhigang
  • About author:

    # Co-first authors

生物多样性的空间分布及其相关机制一直是生态学、生物地理学和保护生物学研究的热点问题。山地生态系统生境异质性和生物多样性高, 适合研究生物多样性空间分布及其相关机制。喜马拉雅山脉位于青藏高原南缘, 是全球生态热点区域。其地形复杂, 海拔落差大(100-8,844 m), 具有明显的垂直气候带。本研究通过整合野外调查和文献资料, 系统地分析了10目23科160属313种喜马拉雅山地区哺乳动物物种多样性的垂直分布格局, 发现该区域哺乳动物总体及其子集的物种多样性垂直分布格局都为左偏倚的中峰格局, 物种多样性在海拔900-1,400 m之间最高, 不同物种子集的物种多样性垂直分布格局的模式有所不同。UPGMA聚类分析表明, 喜马拉雅山地区哺乳动物群落沿海拔梯度可以划分为5个聚类簇(海拔100-1,500 m、1,500-2,000 m、2,000-3,000 m、3,000-4,200 m以及4,200-6,000 m的地区), 大致与该地区植被的垂直带分布相吻合。喜马拉雅山地区哺乳动物物种多样性在中低海拔最为丰富, 可能跟东洋界与古北界生物群扩散后的交汇地带相关。喜马拉雅山区贯通南北的沟谷是生物扩散和迁移的通道, 沟谷内水热资源较好, 气候稳定性高, 为高山生态系统内各种生物创造了栖息条件。综上, 喜马拉雅山沟谷地区是生物多样性热点地区, 也是生物扩散和交流关键的“生态走廊”, 应加强对喜马拉雅山沟谷地区的保护, 以维系该区域较高的生物多样性。

关键词: 喜马拉雅山, 哺乳动物物种多样性, 垂直分布格局, 空间分布格局

Studies of the distribution of biodiversity are hotspots in ecology and biogeography. Mountain ecosystems, which contain high habitat heterogeneity and biodiversity, play an important role in biodiversity conservation. The Himalayas are located in the southern rim of the Qinghai-Tibetan Plateau. The complicated geological topography, vast elevational gradients (100-8,844 m), significant vertical climatic zonation, and diverse biodiversity make it an ideal study area for biodiversity distribution research. By combining field data and data from museum records and literature, 313 mammal species were found for each 100 m elevational band along the gradient from 100 to 6,000 m above sea level (a.s.l.) in the Himalayas. Most of the elevational species richness patterns were hump-shaped. Species richness of the overall mammals peaked at an elevation of 900-1,400 m. Species composition along the elevational gradient in the Himalayas can be classified into five groups (100-1,500 m, 1,500-2,000 m, 2,000-3,000 m, 3,000-4,200 m and 4,200-6,000 m a.s.l.) using UPGMA clustering of elevation-based species assemblages, which was similar to the divisions of the vertical vegetation zone. The distribution of mammals is uneven, with low diversity found in the northern slope of the Himalayas and high diversity in the southern slope; the valleys on south slope of the Himalayas that contain higher biodiversity are biological corridors connecting the northern and southern fauna. To maintain the exchange of biodiversity, we should sustainably strengthen protection to the valley ecosystems.

Key words: Himalayas, mammal species diversity, elevational patterns, distribution

图1

喜马拉雅山脉-青藏高原地理位置和地形图。带阴影虚线内为研究区域, 黑色虚线为西、中以及东喜马拉雅山的分界线。黑色圆点代表本研究的野外调查区域, 从左到右分别为: 吉隆县、聂拉木县、定日县、定结县、亚东县、洛扎县、错那县和隆子县。NP: 南迦帕尔巴特峰; NB: 南迦巴瓦峰。"

图2

喜马拉雅山地区哺乳动物不同子集物种多样性垂直分布格局。 a: 哺乳动物总体; b: 特有种; c: 非特有种; d-g: 垂直分布幅一组、二组、三组和四组。"

图3

喜马拉雅山地区哺乳动物不同习性与体型子集物种多样性垂直分布格局。a: 总体; b: 飞行哺乳动物(翼手目); c: 非飞行哺乳动物; d: 非飞行小型哺乳动物; e: 非飞行大中型哺乳动物。"

表1

喜马拉雅山地区哺乳动物不同子集的物种多样性沿海拔梯度的多项式回归"

物种分组
Species groups
物种数
Number of species
一阶 Order 1 二阶 Order 2
R2 ∆AICc R2 ∆AICc
总体 All mammals 312 0.8772 12,550 0.9215 0
特有种 Endemic mammals 72 0.2935 5,236 0.7948 0
非特有种 Non-endemic mammals 240 0.9030 1,573 0.9102 0
分布幅一组 First range 90 0.7380 1,594.7 0.8478 0
分布幅二组 Second range 153 0.8287 3,201.6 0.8726 0
分布幅三组 Third range 58 0.6379 5,977 0.8482 0
分布幅四组 Fourth range 11 0.3018 356.537 0.9289 0
飞行哺乳动物 Chiroptera 80 0.8075 1,995.6 0.8675 0
非飞行哺乳动物 Non-volant mammals 232 0.7592 24,569 0.9254 0
非飞行小型哺乳动物 Non-volant small mammals 127 0.6295 9,999.2 0.8751 0
非飞行大中型哺乳动物
Non-volant large and medium mammals
105 0.8619 3,453.9 0.9557 0

图4

基于喜马拉雅山各海拔区间βsim相异性矩阵的UPGMA聚类树图。聚类指数为0.993。X-轴为各100 m海拔区间的编号, 例如“1”代表了100-200 m海拔区间, Y-轴为βsim指数的值。不同颜色的聚类分簇代表了不同的分组。"

图5

喜马拉雅山地区高程图(a)和哺乳动物物种多样性空间分布格局(b)"

[49] [王应祥 (2003) 中国哺乳动物种和亚种分类名录与分布大全. 中国林业出版社, 北京.]
[50] Wu YJ, Yang QS, Wen ZX, Xia L, Zhang Q, Zhou HM (2013a) What drives the species richness patterns of non-volant small mammals along a subtropical elevational gradient? Ecography, 36, 185-196.
[51] Wu Y, Colwell RK, Rahbek C, Zhang C, Quan Q, Wang C, Lei F (2013b) Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. Journal of Biogeography, 40, 2310-2323.
[52] Wu YJ, Lei FM (2013) Species richness patterns and mechanisms along the elevational gradients. Chinese Journal of Zoology, 48, 797-807. (in Chinese with English abstract)
[吴永杰, 雷富民 (2013) 物种丰富度垂直分布格局及影响机制. 动物学杂志, 48, 797-807.]
[53] Zhang RZ (2011) Zoogeography of China. Science Press, Beijing. (in Chinese)
[1] Acharya BK, Chettri B, Vijayan L (2011a) Distribution pattern of trees along an elevation gradient of eastern Himalaya, India. Acta Oecologica, 37, 329-336.
[2] Acharya BK, Sanders NJ, Vijayan L, Chettri B (2011b) Elevational gradients in bird diversity in the eastern Himalaya: An evaluation of distribution patterns and their underlying mechanisms. PLoS ONE, 6, e29097.
[3] Bhattarai KR, Vetaas OR (2003) Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecology and Biogeography, 12, 327-340.
[4] Blyth S (2002) Mountain Watch: Environmental Change and Sustainable Developmental in Mountains. UNEP/Earthprint, London.
[5] Chang CW, Chiang S (1973) Primary study on the vertical vegetation belt of Mount Jolmo-Lungma (Everest) region and its relationship with horizontal zone. Acta Botanica Sinica, 15, 77-94. (in Chinese with English abstract)
[张经炜, 姜恕 (1973) 珠穆朗玛峰地区的植被垂直分带及其与水平地带关系的初步研究. 植物学报, 15, 77-94.]
[6] Charrad M, Ghazzali N, Boiteau V, Niknafs A (2014) Nbclust: An R package for determining the relevant number of clusters in a data set. BMC Health Services Research, 61, 1-36.
[7] Chettri B, Bhupathy S, Acharya BK (2010) Distribution pattern of reptiles along an eastern Himalayan elevation gradient, India. Acta Oecologica, 36, 16-22.
[8] Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144, 570-595.
[9] Colwell RK, Rahbek C, Gotelli NJ (2005) The mid-domain effect: There’s a baby in the bathwater. The American Naturalist, 166, E149-E154.
[10] Fu CZ, Hua X, Li J, Chang Z, Pu ZC, Chen JK (2006) Elevational patterns of frog species richness and endemic richness in the Hengduan Mountains, China: Geometric constraints, area and climate effects. Ecography, 29, 919-927.
[11] Hammer Ø, Harper DAT, Ryan PD (2001) Past: Paleontological statistics software: Package for education and data analysis. Palaeontologia Electronica, 4, 1-9.
[12] Heaney LR (2001) Small mammal diversity along elevational gradients in the Philippines: An assessment of patterns and hypotheses. Global Ecology and Biogeography, 10, 15-39.
[13] Hu YM, Jin K, Huang ZW, Ding ZF, Liang JC, Pan XY, Hu HJ, Jiang ZG (2017) Elevational patterns of non-volant small mammal species richness in Gyirong Valley, Central Himalaya: Evaluating multiple spatial and environmental drivers. Journal of Biogeography, 44, 2764-2777.
[14] Hu YM, Yao ZJ, Huang ZW, Tian Y, Li HB, Pu Q, Yang DD, Hu HJ (2014) Mammalian fauna and its vertical changes in Mt. Qomolangma National Nature Reserve, Tibet, China. Acta Theriologica Sinica, 34, 28-37. (in Chinese with English abstract)
[胡一鸣, 姚志军, 黄志文, 田园, 李海滨, 普琼, 杨道德, 胡慧建 (2014) 西藏珠穆朗玛峰国家级自然保护区哺乳动物区系及其垂直变化. 兽类学报, 34, 28-37.]
[15] IUCN (2017) The IUCN Red List of Threatened Species, Version 2017-2. . (accessed on 2017-09-14
[16] Jetz W, Rahbek C (2001) Geometric constraints explain much of the species richness pattern in African birds. Proceedings of the National Academy of Sciences, USA, 98, 5661-5666.
[17] Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548-1551.
[18] Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature, 491, 444-448.
[19] Jiang ZG, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Feng ZJ (2015) China’s Mammal Diversity and Geographic Distribution. Science Press, Beijing. (in Chinese)
[蒋志刚, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 冯祚建 (2015) 中国哺乳动物多样性及地理分布. 科学出版社, 北京.]
[20] Joshi K, Bhatt D (2015) Avian species distribution along elevation at doon valley (foot hills of western Himalayas), Uttarakhand, and its association with vegetation structure. Journal of Asia-Pacific Biodiversity, 8, 158-167.
[21] Kratochwil A (1999) Biodiversity in Ecosystems: Principles and Case Studies of Different Complexity Levels. Springer, Dor¬drecht.
[22] Krzanowski WJ, Lai YT (1988) A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics, 44, 23-34.
[23] Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ (2001) The geographical structure of British bird distributions: Diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966-979.
[24] Li JJ, Han LX, Cao HF, Tian Y, Peng BY, Wang B, Hu HJ (2013) The fauna and vertical distribution of birds in Mount Qomolangma National Nature Reserve. Zoological Research, 34, 531-548. (in Chinese with English abstract)
[李晶晶, 韩联宪, 曹宏芬, 田园, 彭波涌, 王斌, 胡慧建 (2013) 珠穆朗玛峰国家级自然保护区鸟类区系及其垂直分布特征. 动物学研究, 34, 531-548.]
[25] Li YM, Xu L, Ma Y, Yang JY, Yang YH (2003) The species richness of nonvolant mammals in Shennongjia Nature Reserve, Hubei Province, China: Distribution patterns along elevational gradient. Biodiversity Science, 11, 1-9. (in Chinese with English abstract)
[李义明, 许龙, 马勇, 杨敬元, 杨玉慧 (2003) 神农架自然保护区非飞行哺乳动物的物种丰富度: 沿海拔梯度的分布格局. 生物多样性, 11, 1-9.]
[26] McCain CM, Beck J (2016) Species turnover in vertebrate communities along elevational gradients is idiosyncratic and unrelated to species richness. Global Ecology and Biogeography, 25, 299-310.
[27] McCain CM (2004) The mid-domain effect applied to elevational gradients: Species richness of small mammals in Costa Rica. Journal of Biogeography, 31, 19-31.
[28] McCain CM (2005) Elevational gradients in diversity of small mammals. Ecology, 86, 366-372.
[29] McCain CM (2007) Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography, 16, 1-13.
[30] McCain CM (2009) Global analysis of bird elevational diversity. Global Ecology and Biogeography, 18, 346-360.
[31] McCain CM (2010) Global analysis of reptile elevational diversity. Global Ecology and Biogeography, 19, 541-553.
[32] Mena JL, Vázquez-Domínguez E (2005) Species turnover on elevational gradients in small rodents. Global Ecology and Biogeography, 14, 539-547.
[33] Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
[34] Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests MASS (2007) The vegan package. Community Ecology Package, 10, 631-637.
[35] Olson DM, Dinerstein E (1998) The Global 200: A representation approach to conserving the Earth’s most biologically valuable ecoregions. Conservation Biology, 12, 502-515.
[36] Oommen MA, Shanker K (2005) Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants. Ecology, 86, 3039-3047.
[37] Pan HJ, Yang DD, Qin HH, Zhang L, Jiang K, Hu HJ (2013) Herpetofauna of Mount Qomolangma National Nature Reserve in Tibet, China. Biodiversity Science, 21, 610-615. (in Chinese with English abstract)
[潘虎君, 杨道德, 覃海华, 张亮, 蒋珂, 胡慧建 (2013) 珠穆朗玛峰国家级自然保护区两栖爬行动物多样性及区系. 生物多样性, 21, 610-615.]
[38] Pan XY, Ding ZF, Hu YM, Liang JC, Wu YJ, Si XF, Guo MF, Hu HJ, Jin K (2016) Elevational pattern of bird species richness and its causes along a central Himalaya gradient, China. PeerJ, 4, e2636.
[39] Price TD, Hooper DM, Buchanan CD, Johansson US, Tietze DT, Alström P, Olsson P, Ghosh-Harihar M, Ishtiaq F, Gupta SK, Martens J, Harr B, Singh P, Martens J (2014) Niche filling slows the diversification of Himalayan songbirds. Nature, 509, 222-225.
[40] Rahbek C (1995) The elevational gradient of species richness: A uniform pattern? Ecography, 18, 200-205.
[41] Rahbek C (1997) The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist, 149, 875-902.
[42] Rickart EA (2001) Elevational diversity gradients, biogeography and the structure of montane mammal communities in the intermountain region of North America. Global Ecology and Biogeography, 10, 77-100.
[43] Rowe RJ, Heaney LR, Rickart EA (2015) Scale effects on the pattern and predictors of small mammal diversity along a local elevational gradient in the Great Basin. Journal of Biogeography, 42, 1964-1974.
[44] Sánchez-Cordero V (2001) Elevation gradients of diversity for rodents and bats in Oaxaca, Mexico. Global Ecology and Biogeography, 10, 63-76.
[45] Simpson GG (1943) Mammals and the nature of continents. American Journal of Science, 241, 1-31.
[46] Singh JS, Singh SP (1987) Forest vegetation of the Himalaya. The Botanical Review, 53, 80-192.
[47] The Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Chinese Academy of Sciences(1986) The Mammals of Xizang. Science Press, Beijing. (in Chinese)
[中国科学院青藏高原综合科学考察队(1986) 西藏哺乳类. 科学出版社, 北京.]
[48] Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 11, 291-301.
[49] Wang YX (2003) A Complete Checklist of Mammal Species and Subspecies in China: A Taxonomic and Geographic Reference. China Forestry Publishing House, Beijing. (in Chinese)
[53] [张荣祖 (2011) 中国动物地理. 科学出版社, 北京.]
[1] 颜文博,吉晟男,帅凌鹰,赵雷刚,朱大鹏,曾治高. (2019) 秦岭南坡陕西洋县辖区哺乳动物物种多样性的空间分布格局. 生物多样性, 27(2): 177-185.
[2] 陈怡超, 赵莹, 宋希强, 任明迅. (2018) 海南杜鹃在河岸带弯道两侧的空间分布格局和年龄结构差异. 植物生态学报, 42(8): 841-849.
[3] 张璞进, 清华, 张雷, 徐延达, 木兰, 晔薷罕, 邱晓, 常虹, 沈海花, 杨劼. (2017) 内蒙古灌丛化草原毛刺锦鸡儿种群结构和空间分布格局. 植物生态学报, 41(2): 165-174.
[4] 李艳朋, 许涵, 李意德, 骆土寿, 陈德祥, 周璋, 林明献, 杨怀. (2016) 海南尖峰岭热带山地雨林物种多样性空间分布格局的尺度效应. 植物生态学报, 40(9): 861-870.
[5] 吴毅, 刘文耀, 宋亮, 陈曦, 卢华正, 李苏, 石贤萌. (2016) 基于林冠塔吊的附生植物生态学研究进展. 植物生态学报, 40(5): 508-522.
[6] 农友, 郑路, 贾宏炎, 卢立华, 黄德卫, 黄柏华, 雷丽群. (2015) 广西大青山次生林的群落特征及主要乔木种群的空间分布格局. 生物多样性, 23(3): 321-331.
[7] 姚蓓, 余建平, 刘晓娟, 米湘成, 马克平. (2015) 亚热带常绿阔叶林种子性状对木本植物聚集格局的影响. 生物多样性, 23(2): 157-166.
[8] 马松梅, 聂迎彬, 耿庆龙, 王荣学. (2014) 气候变化对蒙古扁桃适宜分布范围和空间格局的影响. 植物生态学报, 38(3): 262-269.
[9] 高末, 胡仁勇, 陈贤兴, 李伟成, 丁炳扬. (2011) 干扰、地形和土壤对温州入侵植物分布的影响. 生物多样性, 19(4): 424-431.
[10] 李立, 陈建华, 任海保, 米湘成, 于明坚, 杨波. (2010) 古田山常绿阔叶林优势树种甜槠和木荷的空间格局分析. 植物生态学报, 34(3): 241-252.
[11] 赵成章, 高福元, 王小鹏, 盛亚萍, 石福习. (2010) 黑河上游高寒退化草地狼毒种群小尺度点格局分析. 植物生态学报, 34(11): 1319-1326.
[12] 蔡永久, 龚志军, 秦伯强. (2010) 太湖大型底栖动物群落结构及多样性. 生物多样性, 18(1): 50-59.
[13] 魏新增, 黄汉东, 江明喜, 杨敬元. (2008) 神农架地区河岸带中领春木种群数量特征与空间分布格局. 植物生态学报, 32(4): 825-837.
[14] 葛军旗, 孙肖红, 龚正达, 梁国栋, 李镜辉, 冯星明, 张丽云, 李斌, 付士红. (2008) 三江并流”自然遗产地澜沧江流域居民区蚊类多样性的空间分布格局. 生物多样性, 16(1): 24-33.
[15] 赵常明, 陈伟烈, 黄汉东, 田自强, 陈玥, 谢宗强. (2007) 三峡库区移民区和淹没区植物群落物种多样性的空间分布格局. 生物多样性, 15(5): 510-522.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed