生物多样性 ›› 2016, Vol. 24 ›› Issue (4): 389-398.doi: 10.17520/biods.2015243

所属专题: 中国西南干旱河谷的植物多样性

• 研究报告 • 上一篇    下一篇

怒江河谷入侵植物与乡土植物丰富度的分布格局与影响因子

许玥1, 李鹏1, 刘晔2, 张婉君3, 秦思雨4, 沈泽昊1, *()   

  1. 1 北京大学城市与环境学院生态学系, 地表过程分析与模拟教育部重点实验室, 北京 100871。
    2 北京大学深圳研究生院城市规划与设计学院, 广东深圳 518055。
    3 北京国道通公路设计研究院股份有限公司, 北京 100053。
    4 Conservation International, 2011 Crystal Drive, Arlington, VA 22202
  • 收稿日期:2015-09-14 接受日期:2015-09-14 出版日期:2016-04-20
  • 通讯作者: 沈泽昊 E-mail:shzh@urban.pku.edu.cn
  • 基金项目:
    国家自然科学基金(41371190)和交通运输部西部计划项目(2008 318 799 17)

Spatial patterns and determinants of species richness of alien and native plants in the Nujiang River valley

Yue Xu1, Peng Li1, Ye Liu2, Wanjun Zhang3, Siyu Qin4, Zehao Shen1, *()   

  1. 1 Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871.
    2 School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055
    3 Beijing Guodaotong Highway Design & Research Institute CO., LTD, Beijing 100053.
    4 Conservation International, 2011 Crystal Drive, Arlington, VA 22202
  • Received:2015-09-14 Accepted:2015-09-14 Online:2016-04-20
  • Contact: Shen Zehao E-mail:shzh@urban.pku.edu.cn

外来物种入侵严重威胁着乡土植物多样性并削弱了生态系统服务功能。本文基于滇西北怒江河谷植被调查的样方数据, 从群落水平研究了乡土和入侵植物多样性的空间分布格局, 以及地形、气候、人类干扰等因子对两种格局的影响。本研究共记录到外来入侵植物26种, 隶属于13科21属; 乡土植物1,145种, 分属于158科628属。沿着怒江河谷, 入侵植物物种丰富度随纬度与海拔的增加而减少; 乡土物种丰富度则随纬度增加而增加, 并在海拔梯度上呈单峰格局。运用广义线性模型分析公路边缘效应(反映生境干扰)、气候、地形和土壤等环境因素对物种丰富度分布格局的影响。等级方差分离的结果显示, 公路两侧的生境干扰对入侵种和乡土种的丰富度格局均具有首要影响。在自然环境因子中, 降水量是入侵植物丰富度的主要限制因子, 而乡土物种丰富度则主要受到地形因子尤其是坡向的影响。结构方程模型的分析结果也表明, 乡土植物和入侵植物丰富度之间的负相关关系反映了二者对环境响应的差异。本文结果支持物种入侵的资源可利用性限制假说, 并强调了人类活动对生物多样性的负面影响; 乡土植物或已较好地适应了干旱河谷气候, 但并没有显示出对外来物种入侵的抵抗作用。

关键词: 入侵物种, 乡土物种, 空间格局, 气候, 人类活动

Biological invasion has attracted widespread attention because invasive species threaten native biodiversity and weaken ecosystem services. Based on field investigation of vegetation in Nujiang River valley, Northwest Yunnan, we analyzed the spatial patterns of native and invasive species richness, and the effects of topography, climate, and roadside habitat disturbance on the invasive versus native plant species richness. We recorded 26 exotic invasive plant species that belong to 13 families and 21 genera, and 1,145 native plant species, belonging to 158 families and 628 genera. Along the Nujiang River valley, species richness of invasive plants decreased with increasing latitude and altitude, while species richness of native plants increased with increasing latitude, and showed a hump-shaped pattern with elevation. A generalized linear model was used to estimate the roles of roadside disturbance, climate, topography and soil nutrients on the distribution of both native and invasive species richness. Results of hierarchical variation partitioning revealed that roadside habitat disturbance had primary impact on the distribution of two groups of species. Precipitation was the climatic determinant of invasive species diversity, and small-scale topographic factors, especially aspect, mainly affected native species diversity. It is likely that native species became drought-resistant in the evolutionary process while invasive species failed to adapt themselves to the local arid environments due to the short colonization time. This research supports the hypothesis that resource availability is the main factor limiting plant invasion, and highlights the negative effects of human activity on biodiversity. In addition, results of structural equation modelling revealed that native communities aren’t resistant to plant invasion. The negative relationship between invasive and native species richness reflects the different responses of the two group species to environmental factors.

Key words: invasive species, native species, spatial patterns, climate, human activity

图1

怒江地区公路沿线植物调查样方分布图"

图2

怒江河谷入侵(A)与乡土植物(B)丰富度随纬度和海拔的分布"

图3

基于等级方差分离的怒江河谷入侵(a)和乡土植物(b)物种丰富度格局的环境因子独立和联合解释能力。*表示在0.05水平显著。"

图4

入侵与乡土植物物种丰富度的关系"

表1

环境因子的主成分分析结果。表中的值为各因子在主成分中的载荷、各主成分的特征值及解释百分比。粗体为4个主成分中载荷较大的变量。"

环境因子 Environmental factors 第一主成分 PCA1 第二主成分 PCA2 第三主成分 PCA3 第四主成分 PCA4
公路等级 Road grade 0.108 -0.028 -0.056 0.021
与公路距离 Distance to roads -0.029 0.129 -0.153 -0.487
样方内是否存在乔木
Presence or absence of trees
0.029 -0.006 -0.046 -0.113
坡形 Shape -0.019 0.011 -0.007 0.024
坡位 Position 0.099 -0.151 0.086 -0.461
坡度 Slope 0.039 -0.062 0.050 -0.581
裸地比例 Bare land percentage -0.148 -0.087 0.077 0.420
年均温 Mean annual temperature -0.351 -0.082 -0.033 -0.048
最冷季均温 Mean temperature of coldest quarter -0.349 -0.112 -0.032 -0.042
最湿季均温 Mean temperature of wettest quarter -0.353 -0.022 -0.029 -0.054
年潜在蒸散 Potential evapotranspiration -0.351 -0.082 -0.032 -0.048
年降水 Mean annual precipitation -0.179 0.507 -0.162 0.002
最干季降水 Precipitation of driest quarter -0.185 0.415 0.376 -0.008
最湿季降水 Precipitation of wettest quarter -0.116 0.323 -0.611 0.019
年实际蒸散 Actural evapotranspiration -0.351 0.059 -0.049 -0.045
水分亏缺 Water deficit 0.311 0.275 0.003 0.047
温度季节性 Temperature seasonality 0.103 0.507 0.038 -0.052
降水季节性 Precipitation seasonality 0.164 -0.211 -0.637 0.055
特征值 Eigenvalue 8.288 2.662 1.578 1.203
解释百分比 Percentage explained (%) 48.600 15.600 9.300 7.100

图5

环境因子主成分(PCA1, PCA2, PCA3, PCA4)和乡土种丰富度(nat_ric)对入侵种丰富度(inv_ric)影响的结构方程模型。箭头方向表示因果关系, 数字表示路径相关系数, 方框旁的数字表示模型对变量变异的解释系数, 星号表示相关的显著性水平: *P < 0.05, **P < 0.01, ***P < 0.001。"

1 Baker HG (1974) The evolution of weeds. Annual Review of Ecology and Systematics, 5, 1-24.
2 Baruch Z, Fernandez DS (1993) Water relations of native and introduced C4 grasses in a neotropical savanna. Oecologia, 96, 179-185.
3 Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, Hobbs RJ, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. BioScience, 54, 677-688.
4 Brutsaert WH (1982) Evaporation in the atmosphere: theory, history and application. D. Reidel Publishing Company, Dordrecht.
5 Bulleri F, Bruno JF, Benedetti-Cecchi L (2008) Beyond competition: incorporating positive interactions between species to predict ecosystem invasibility. PLoS Biology, 6, 1136-1140.
6 Christian CE (2001) Consequences of a biological invasion reveal the importance of mutualism for plant communities. Nature, 413, 635-639.
7 Daehler CC (2005) Upper-montane plant invasions in the Hawaiian Islands: patterns and opportunities. Perspectives in Plant Ecology, Evolution and Systematics, 7, 203-216.
8 Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology, 88, 528-534.
9 Deutschewitz K, Lausch A, Kühn I, Klotz S (2003) Native and alien plant species in relation to spatial heterogeneity on a regional scale in Germany. Global Ecology and Biogeography, 12, 299-311.
10 Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 6, 503-523.
11 Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annual Review of Ecology, Evolution, and Systematics, 41, 59-80.
12 Elton CS (1958) The Ecology of Invasions by Animals and Plants. University of Chicago Press, Chicago.
13 Fang JY, Lechowicz MJ (2006) Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography, 33, 1804-1819.
14 Fang JY, Song YC, Liu HY, Piao SL (2002) Vegetation-climate relationship and its application in the division of vegetation zone in China. Acta Botanica Sinica, 44, 1105-1122.
15 Fargione J, Brown CS, Tilman D (2003) Community assembly and invasion: an experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences, USA, 100, 8916-8920.
16 Funk J, Zachary V (2010) Physiological responses to short-term water and light stress in native and invasive plant species in southern California. Biological Invasions, 12, 1685-1694.
17 Gerhardt F, Collinge SK (2007) Abiotic constraints eclipse biotic resistance in determining invasibility along experimental vernal pool gradients. Ecological Applications, 17, 922-933.
18 Giorgis MA, Tecco PA, Cingolani AM, Renison D, Marcora P, Paiaro V (2011) Factors associated with woody alien species distribution in a newly invaded mountain system of central Argentina. Biological Invasions, 13, 1423-1434.
19 Grotkopp E, Rejmánek M, Rost TL (2002) Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. The American Naturalist, 159, 396-419.
20 Halpern SL, Underwood N (2006) Approaches for testing herbivore effects on plant population dynamics. Journal of Applied Ecology, 43, 922-929.
21 Hamilton JG, Holzapfel C, Mahall BE (1999) Coexistence and interference between a native perennial grass and non-native annual grasses in California. Oecologia, 121, 518-526.
22 Hansen MJ, Clevenger AP (2005) The influence of disturbance and habitat on the presence of non-native plant species along transport corridors. Biological Conservation, 125, 249-259.
23 Harrison S (1999) Native and alien species diversity at the local and regional scales in a grazed California grassland. Oecologia, 121, 99-106.
24 Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr MJ, Mittelbach GG, Oberdorff T, O’Brien EM, Porter RE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.
25 Hu FG, Duan CF, Liu GH (2007) Exotic invasive weeds in farmland of dry-hot valley in Yunnan Nujiang region. Weed Sciences, (4), 20-23.(in Chinese)
[胡发广, 段春芳, 刘光华 (2007) 云南怒江干热河谷农田外来入侵杂草的调查. 杂草科学, (4), 20-23.]
26 Hulme PE, Pyšek P, Jarošík V, Pergl J, Schaffner U, Vila M (2013) Bias and error in understanding plant invasion impacts. Trends in Ecology & Evolution, 28, 212-218.
27 Kennedy TA, Naeem S, Howe KM, Knops JMH, Tilman D, Reich P (2002) Biodiversity as a barrier to ecological invasion. Nature, 417, 636-638.
28 Kissling WD, Lord JM, Schnittler M (2006) Agamospermous seed production of the invasive tussock grass Nardus stricta L. (Poaceae) in New Zealand: evidence from pollination experiments. Flora, 201, 144-151.
29 Kueffer C, P Pyšek, Richardson DM (2013) Integrative invasion science: model systems, multi-site studies, focused meta-analysis and invasion syndromes. New Phytologist, 200, 615-633.
30 Lembrechts JJ, Milbau A, Nijs I (2014) Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem. PloS ONE, 9, e89664.
31 Levine JM (2000) Species diversity and biological invasions: relating local process to community pattern. Science, 288, 852-854.
32 Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos, 1999, 15-26.
33 Li H, Bai Y, Yang SH, Zhu X, Zhao K (2009) Prediction of vegetations dynamic changes in central Nujiang watershed based on Markov process mode. Chinese Journal of Ecology, 28, 371-376.(in Chinese with English abstract)
[李晖, 白杨, 杨树华, 朱雪, 赵凯 (2009) 基于马尔柯夫模型的怒江流域中段植被动态变化预测. 生态学杂志, 28, 371-376.]
34 Liu J, Dong M, Miao SL, Li ZY, Song MH, Wang RQ (2006) Invasive alien plants in China: role of clonality and geographical origin. Biological Invasions, 8, 1461-1470.
35 Liu Y (2015) Plant diversity and biogeography of the arid valleys in Southwest China. PhD dissertation, Peking University, Beijing.(in Chinese with English abstract)
[刘晔 (2015) 中国西南干旱河谷的植物多样性地理格局. 博士学位论文, 北京大学, 北京.]
36 Liu Y, Shen LF, Wang T, Fang R, Jiang R, Shen ZH (2013) Invasive pattern and influential factors of Eupatorium adenophorum along the highway in three parallel rivers region in northwestern Yunnan. Highway Traffic Science and Technology, 5, 284-288.(in Chinese with English abstract)
[刘晔, 沈利峰, 王韬, 房锐, 姜睿, 沈泽昊 (2013) 滇西北三江并流地区公路沿线紫茎泽兰的入侵格局及影响因素. 公路交通科技, 5, 284-288.]
37 Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Global Ecological Biogeogrophy, 10, 3-13.
38 Lozon JD, MacIssac HJ (1997) Biological invasions: are they dependent on disturbance? Environmental Reviews, 5, 131-144.
39 Lu P, Sang WG, Ma KP (2005) Progress and prospects in research of exotic invasive species, Eupatorium adenophorum. Acta Phytoecologica Sinica, 29, 1029-1037.(in Chinese with English abstract)
[鲁萍, 桑卫国, 马克平 (2005) 外来入侵种紫茎泽兰研究进展与展望. 植物生态学报, 29, 1029-1037.]
40 Lu ZJ, Ma KP (2004) The influence of topographical factors on the invasion of the alien species, Eupatorium adenophorum. Acta Phytoecologica Sinica , 28, 761-767.(in Chinese with English abstract)
[卢志军, 马克平 (2004) 地形因素对外来入侵种紫茎泽兰的影响. 植物生态学报, 28, 761-767.]
41 Lu ZJ, Ma KP (2005) Scale dependent relationships between native plant diversity and the invasion of croftonweed (Eupatorium adenophorum) in Southwest China. Weed Science, 53, 600-604.
42 Nally RM (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodiversity and Conservation, 11, 1397-1401.
43 Marini L, Battisti A, Bona E, Federici G, Martini F, Pautasso M, Hulme PE (2012) Alien and native plant life-forms respond differently to human and climate pressures. Global Ecology and Biogeography, 21, 534-544.
44 Matzek V (2011) Superior performance and nutrient-use efficiency of invasive plants over non-invasive congeners in a resource-limited environment. Biological Invasions, 13, 3005-3014.
45 Mooney HA, Hobbs RJ (2000) Invasive Species in a Changing World. Island Press, Washington, DC.
46 Palmer MW, Maurer TA (1997) Does diversity beget diversity? A case study of crops and weeds. Journal of Vegetation Science, 8, 235-240.
47 Parendes LA, Jones JA (2000) Role of light availability and dispersal in exotic plant invasion along roads and streams in the H. J. Andrews experimental forest, Oregon. Conservation Biology, 14, 64-75.
48 Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. BioScience, 50, 53-65.
49 Pokorny ML, Sheley RL, Zabinski CA, Engel RE, Svejcar TJ, Borkowski JJ (2005) Plant functional group diversity as a mechanism for invasion resistance. Restoration Ecology, 13, 448-459.
50 Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography, 18, 200-205.
51 Rudgers JA, Mattingly WB, Koslow JM (2005) Mutualistic fungus promotes plant invasion into diverse communities. Oecologia, 144, 463-471.
52 Souza L, Bunn WA, Simberloff D, Lawton RM, Sanders NJ (2011) Biotic and abiotic influences on native and exotic richness relationship across spatial scales: favourable environments for native species are highly invasible. Functional Ecology, 25, 1106-1112.
53 Spence LA, Dickie IA, Coomes DA (2011) Arbuscular mycorrhizal inoculum potential: a mechanism promoting positive diversity-invasibility relationships in mountain beech forests in New Zealand? Mycorrhiza, 21, 309-314.
54 Stephenson NJ (1990) Climatic control of vegetation distribution: the role of the water balance. The American Naturalist, 135, 649-670.
55 Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. The American Naturalist, 140, 893-911.
56 Thornthwaite CW, Hare FK (1955) Climatic classification in forestry. Unasylva, 9, 51-59.
57 Toledo M, Poorter L, Pena-Claros M, Alarcon A, Balcazar J, Leano C, Licona JC, Llanque O, Vroomans V, Zuidema P, Bongers F (2011) Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology, 99, 254-264.
58 van Kleunen MV, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13, 235-245.
59 Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14, 702-708.
60 Wang DN (2012) Prevention and control situation and the countermeasures of exotic invasive species Mikania micrantha. Yunnan Agricultural Science and Technology, Suppl.1, 235-236.(in Chinese)
[王大能 (2012) 西盟县外来入侵有害生物薇甘菊防控现状及对策. , 云南农业科技, 235-236.]
61 Watkins RZ, Chen JQ, Pickens J, Brosofske KD (2003) Effects of forest roads on understory plants in a managed hardwood landscape. Conservation Biology, 17, 411-419.
62 Yunnan Province Three Parallel Rivers Administration Bureau (2010) An overview of the world natural heritage “Three Parallel Rivers” and the protection progress. Chinese Landscape Architecture, 26(5), 52-55.(in Chinese with English abstract)
[云南省三江并流管理局 (2010) 世界自然遗产地——“三江并流”的概况及其保护工作的进展 . 中国园林,26(5), 52-55.]
63 Zeiter M, Stampfli A (2012) Positive diversity-invasibility relationship in species-rich semi-natural grassland at the neighbourhood scale. Annals of Botany, 110, 1385-1393.
64 Zheng L, Feng YL (2005) The effects of ecophysiological traits on carbon gain in invasive plants. Acta Ecologica Sinica, 25, 2782-2787.(in Chinese with English abstract)
[郑丽, 冯玉龙 (2005) 入侵植物的生理生态特性对碳积累的影响. 生态学报, 25, 2782-2787.]
[1] 陈世苹 游翠海 胡中民 陈智 张雷明 王秋凤. (2020) 涡度相关技术及其在陆地生态系统通量研究中的应用(生态技术与方法专辑). 植物生态学报, 44(生态技术与方法专辑): 0-0.
[2] 白娥 薛冰. (2020) 土地利用与土地覆盖变化对生态系统的影响综述. 植物生态学报, 44(全球变化与生态系统专辑): 0-0.
[3] 宋垚彬,徐力,段俊鹏,张卫军,申屠晓露,李天翔,臧润国,董鸣. (2020) 西藏极小种群野生植物密叶红豆杉种群的性比及雌雄空间格局. 生物多样性, 28(3): 269-276.
[4] 白杨,陈声文,钱海源,余顺海,徐谊明,张芷昕,沈超,陈雨奇,张美琪,余建平,朱瑞良. (2020) 钱江源国家公园叶附生苔类植物的物种多样性. 生物多样性, 28(2): 231-237.
[5] 胡菀,张志勇,陈陆丹,彭焱松,汪旭. (2020) 末次盛冰期以来观光木的潜在地理分布变迁. 植物生态学报, 44(1): 44-55.
[6] 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. (2019) 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析. 植物生态学报, 43(6): 490-500.
[7] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. (2019) 未来气候变化对不同国家茶适宜分布区的影响. 生物多样性, 27(6): 595-606.
[8] 黄玫, 王娜, 王昭生, 巩贺. (2019) 磷影响陆地生态系统碳循环过程及模型表达方法. 植物生态学报, 43(6): 471-479.
[9] 李萌, 尉婷婷, 史博洋, 郝希阳, 徐海根, 孙红英. (2019) 环境DNA技术在淡水底栖大型无脊椎动物多样性监测中的应用. 生物多样性, 27(5): 480-490.
[10] 史娜娜, 肖能文, 王琦, 韩煜, 高晓奇, 冯瑾, 全占军. (2019) 锡林郭勒植被NDVI时空变化及其驱动力定量分析. 植物生态学报, 43(4): 331-341.
[11] 焦亮, 王玲玲, 李丽, 陈晓霞, 闫香香. (2019) 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应. 植物生态学报, 43(4): 320-330.
[12] 张富广, 曾彪, 杨太保. (2019) 气候变化背景下近30年祁连山高寒荒漠分布时空变化. 植物生态学报, 43(4): 305-319.
[13] 刘晓彤, 袁泉, 倪健. (2019) 中国植物分布模拟研究现状. 植物生态学报, 43(4): 273-283.
[14] 刘翔宇, 赵慈良, 许洺山, 梁启明, 朱晓彤, 李亮, 阎恩荣. (2019) 中国东部海岛维管植物的beta多样性及其驱动因素. 生物多样性, 27(4): 380-387.
[15] 董雪蕊, 张红, 张明罡. (2019) 基于系统发育的黄土高原地区木本植物多样性及特有性格局. 生物多样性, 27(12): 1269-1278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed