生物多样性 ›› 2015, Vol. 23 ›› Issue (5): 601-609.doi: 10.17520/biods.2015083

所属专题: 森林动态监测样地专题

• • 上一篇    下一篇

浙江古田山亚热带常绿阔叶林开花物候:气候因素、系统发育关系和功能性状的影响

胡小丽1, 3, 张杨家豪2, 米湘成3, 杜彦君3, *(), 常朝阳1, *()   

  1. 1 西北农林科技大学生命科学学院, 陕西杨凌 712100
    2 台湾东海大学生命科学系, 台湾台中 40704
    3 中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
  • 收稿日期:2015-04-07 接受日期:2015-05-19 出版日期:2015-09-20
  • 通讯作者: 杜彦君,常朝阳 E-mail:yanjundu1981@gmail.com;czybbg@nwsuaf.edu.cn
  • 基金项目:
    国家自然科学基金(Y32H3A1001)和科技部国家标本资源共享平台项目(Y5217G1001)

Influence of climate, phylogeny, and functional traits on flowering phenology in a subtropical evergreen broad-leaved forest, East China

Xiaoli Hu1, 3, Chia-Hao Chang-Yang2, Xiangcheng Mi3, Yanjun Du3, *(), Zhaoyang Chang1, *()   

  1. 1 College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100
    2 Department of Life Science, Tunghai University, Taizhong, Taiwan 40704
    3 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
  • Received:2015-04-07 Accepted:2015-05-19 Online:2015-09-20
  • Contact: Du Yanjun,Chang Zhaoyang E-mail:yanjundu1981@gmail.com;czybbg@nwsuaf.edu.cn

植物的开花物候受气候因素、植物系统发育关系和功能性状的影响。然而当前植物开花物候研究中未见同时考虑这3个因素的报道。为了解它们相互之间的影响, 本研究利用中国东部地区浙江省古田山国家级自然保护区亚热带常绿阔叶林24 ha大样地(GTS; 118°03′50′′-118°11′12.2′′ E, 29°10′19′′-29°17′41′′ N)设置的130个种子雨收集器5年的开花数据检验这3个因素对开花的影响。结果表明, 古田山植物的开花高峰期集中在5月, 群落开花格局明显受温度和降雨的影响。利用植物DNA条形码数据研究发现, 植物间系统发育关系对古田山植物开花时间有显著影响, 亲缘关系近的物种开花时间更相近。植物的平均开花时间受最大树高的影响, 但不受传粉方式、花色、种子质量和扩散方式的影响。该研究结果说明气候因素、植物系统发育关系和功能性状都可能影响植物开花物候格局, 同时考虑这3个因素能够帮助我们更好地理解开花物候格局。

关键词: 气候, 功能性状, 古田山, 开花物候, 系统发育保守性

The flowering phenology of plants is influenced by climatic, phylogenetic and functional constraints. To our knowledge, this is the first study to examine the influence of these three factors on flowering phenology simultaneously. In order to investigate the relative impact of each of the three factors, we tested their importance in describing five-year of flowering data using 130 seed traps in a 24 ha plot in the Gutianshan forest in eastern China. Flowering of the subtropical evergreen forest peaked in May. The community flowering pattern was significantly correlated with climatic variables including temperature and rainfall. According to DNA barcoding data, closely related species had similar flowering dates. The mean flowering dates were also associated with maximum tree height, but not with pollinator mode, flower color, seed mass and dispersal mode. DNA barcoding data for testing phylogenetic constraint is strongly recommended in future studies. Our findings also suggest that climatic variables, phylogeny, and functional traits were associated with the community flowering pattern. Simultaneously considering these three factors will enhance our understanding of plant phenological patterns.

Key words: climate, functional traits, Gutianshan, flowering phenology, phylogenetic conservatism

图1

古田山亚热带常绿阔叶林开花物候极坐标图(向量的角度代表开花时间的中点, 向量长度代表开花时间上的聚集程度)"

图2

古田山植物开花物候及气候特征。(A)每月开花物种数; (B)每月盛花期物种数; (C)植物花期集中度分布图; (D)每月平均降水和温度分布。"

表1

古田山亚热带常绿阔叶林气候变量和开花物种数或盛花期物种数的多元回归分析结果"

响应变量
Response variables
回归分析
Regression
解释变量
Explanatory variables
R2 F 月降雨量
Monthly average rainfall (mm)
月均温
Monthly average temperature (℃)
每月开花物种数
Monthly number of flowering species
0.773 15.36 0.0063** 0.015*
每月盛花期物种数
Monthly number of peak flowering species
0.586 6.372 0.0102* 0.6552NS
[1] Allen RB, Platt KH (1990) Annual seedfall variation in Nothofagus solandri (Fagaceae), Canterbury, New Zealand.Oikos, 57, 199-206.
[2] Agostinelli C, Lund U (2013) R package ‘circular’: circular statistics (version 0.4-7). . accessed 2014-02-20)
[3] Ashton PS, Givnish TJ, Appanah S (1988) Staggered flowering in the Dipterocarpaceae: new insights into floral induction and the evolution of mast fruiting in the aseasonal tropics. The American Naturalist, 132, 44-66.
[4] Augspurger CK (1983) Phenology, flowering synchrony, and fruit-set of 6 Neotropical shrubs.Biotropica, 15, 257-267.
[5] Batschelet E (1981) Circular Statistics in Biology. Academic Press, New York.
[6] Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57, 717-745.
[7] Bolmgren K, Cowan PD (2008) Time-size tradeoffs: a phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora.Oikos, 117, 424-429.
[8] Bolmgren K, Eriksson O, Linder HP (2003) Contrasting flowering phenology and species richness in abiotically and biotically pollinated angiosperms.Evolution, 57, 2001-2011.
[9] Bolmgren K, Lonnberg K (2005) Herbarium data reveal an association between fleshy fruit type and earlier flowering time.International Journal of Plant Sciences, 166, 663-670.
[10] Borchert R (1996) Phenology and flowering periodicity of Neotropical dry forest species: evidence from herbarium collections.Journal of Tropical Ecology, 12, 65-80.
[11] Borchert R, Renner SS, Calle Z, Navarrete D, Tye A, Gautier L, Spichiger R, von Hildebrand P (2005) Photoperiodic induction of synchronous flowering near the Equator.Nature, 433, 627-629.
[12] Borchert R, Rivera G, Hagnauer W (2002) Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain.Biotropica, 34, 27-39.
[13] Boulter SL, Kitching RL, Howlett BG (2006) Family, visitors and the weather: patterns of flowering in tropical rain forests of northern Australia.Journal of Ecology, 94, 369-382.
[14] Boyle WA, Bronstein JL (2012) Phenology of tropical understory trees: patterns and correlates.Revista de Biología Tropical, 60, 1415-1430.
[15] Chang-Yang CH, Lu CL, Sun IF, Hsieh CF (2013) Flowering and fruiting patterns in a subtropical rain forest, Taiwan.Biotropica, 45, 165-174.
[16] Chapman C, Wrangham R, Chapman L, Kennard D, Zanne A (1999) Fruit and flower phenology at two sites in Kibale National Park, Uganda.Journal of Tropical Ecology, 15, 189-211.
[17] Craine JM, Wolkovich EM, Towne EG (2012) The roles of shifting and filtering in generating community-level flowering phenology.Ecography, 35, 1033-1038.
[18] Davies TJ, Wolkovich EM, Kraft NJB, Salamin N, Allen JM, Ault TR, Betancourt JL, Bolmgren K, Cleland EE, Cook BI, Crimmins TM, Mazer SJ, McCabe GJ, Pau S, Regetz J, Schwartz MD, Travers SE (2013) Phylogenetic conserva- tism in plant phenology.Journal of Ecology, 101, 1520-1530.
[19] DeBussche M, Garnier E, Thompson JD (2004) Exploring the causes of variation in phenology and morphology in Mediterranean geophytes: a genus-wide study of Cyclamen.Botanical Journal of the Linnean Society, 145, 469-484.
[20] Du YJ, Mao LF, Queenborough SA, Freckleton RP, Chen B, Ma KP (2015) Phylogenetic constraints and trait correlates of flowering phenology in the angiosperm flora of China.Global Ecology and Biogeography, 24, 928-938.
[21] Du YJ, Mi XC, Liu XJ, Chen L, Ma KP (2009) Seed dispersal phenology and dispersal syndromes in a subtropical broad-leaved forest of China.Forest Ecology and Management, 258, 1147-1152.
[22] Dyer AG, Whitney HM, Arnold SE, Glover BJ, Chittka L (2006) Behavioural ecology: bees associate warmth with floral colour.Nature, 442, 525.
[23] Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput.Nucleic Acids Research, 32, 1792-1797.
[24] Faegri K, van der Pijl L(1979) The Principles of Pollination Ecology. Pergamon Press, Oxford.
[25] Frankie GW, Baker HG, Opler PA (1974) Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica.Journal of Ecology, 62, 881-919.
[26] Gould SJ, Lewontin RC (1979) The spandrels of San-Marco and the panglossian paradigm: a critique of the adaptationist program.Proceedings of the Royal Society of London B: Biological Sciences, 205, 581-598.
[27] Hansen TF, Martins EP (1996) Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data.Evolution, 50, 1404-1417.
[28] Heinrich B (1976) Flowering phenologies: bog, woodland, and disturbed habitats.Ecology, 57, 890-899.
[29] Janzen DH (1967) Synchronization of sexual reproduction of trees within dry season in Central America.Evolution, 21, 620-637.
[30] Jia P, Bayaerta T, Li XQ, Du GZ (2011) Relationships between flowering phenology and functional traits in eastern Tibet alpine meadow.Arctic, Antarctic, and Alpine Research, 43, 585-592.
[31] Johnson SD (1993) Climatic and phylogenetic determinants of flowering seasonality in the Cape flora.Journal of Ecology, 81, 567-572.
[32] Jones CE (1978) Pollinator constancy as a pre-pollination isolating mechanism between sympatric species of Cercidium.Evolution, 32, 189-198.
[33] Kembel SW, Cowan PD, Helmu MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology.Bioinformatics, 26, 1463-1464.
[34] Kevan P (1978) Floral coloration, its colorimetric analysis and significance in anthecology. In: The Pollination of Flowers by Insects (ed. Richards AJ), pp. 51-78. Academic Press, London.
[35] Kochmer JP, Handel SN (1986) Constraints and competition in the evolution of flowering phenology.Ecological Monographs, 56, 303-325.
[36] Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjurb O, Bermingham E (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama.Proceedings of the National Academy of Sciences, USA, 106, 18621-18626.
[37] Lechowicz MJ (1995) Seasonality of flowering and fruiting in temperate forest trees.Canadian Journal of Botany, 73, 175-182.
[38] Lessard-Therrien M, Davies TJ, Bolmgren K (2013) A phylogenetic comparative study of flowering phenology along an elevational gradient in the Canadian subarctic.International Journal of Biometeorology, 58, 455-462.
[39] Li L (李立), Chen JH (陈建华), Ren HB (任海保), Mi XC (米湘成), Yu MJ (于明坚), Yang B (杨波) (2010) Spatial patterns of Castanopsis eyrei and Schima superba in mid-subtropical broad-leaved evergreen forest in Gutianshan National Reserve, China.Chinese Journal of Plant Ecology(植物生态学报), 34, 241-252. (in Chinese with English abstract)
[40] Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data.The American Naturalist, 149, 646-667
[41] Munguia-Rosas MA, Ollerton J, Parra-Tabla V, De-Nova JA (2011) Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured.Ecology Letters, 14, 511-521.
[42] Murali K, Sukumar R (1994) Reproductive phenology of a tropical dry forest in Mudumalai, southern India. Journal of Ecology, 82, 759-767.
[43] Ollerton J, Lack AJ (1992) Flowering phenology: an example of relaxation of natural selection?Trends in Ecology and Evolution, 7, 274-276.
[44] Opler PA, Frankie GW, Baker HG (1980) Comparative phenological studies of treelet and shrub species in tropical wet and dry forests in the lowlands of Costa Rica.Journal of Ecology, 68, 167-188.
[45] Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W (2013) caper: comparative analyses of phylogene- tics and evolution in R (version 0.5-2). . (accessed 2011-01-14)
[46] Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogeneticsand evolution in R language.Bioinformatics, 20, 289-290.
[47] Petersen CE, Ciesielski JB, McQuaid BA (2010) A two-year study of the reproductive phenology of Baptisia alba (Fabaceae).Transactions of the Illinois State Academy of Science, 103, 13-21.
[48] Primack RB (1987) Relationships among flowers, fruits, and seeds.Annual Review of Ecology and Systematics, 18, 409-430.
[49] R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
[50] Rabinowitz D, Rapp JK, Sork VL, Rathcke BJ, Reese GA, Weaver JC (1981) Phenological properties of wind- and insect-pollinated prairie plants.Ecology, 62, 49-56.
[51] Sakai S (2002) General flowering in lowland mixed dipterocarp forests of South-East Asia.Biological Journal of the Linnean Society, 75, 233-247.
[52] Silva IA, da Silva DM, de Carvalho GH, Batalha MA (2011) Reproductive phenology of Brazilian savannas and riparian forests: environmental and phylogenetic issues.Annals of Forest Science, 68, 1207-1215.
[53] Staggemeier VG, Diniz JAF, Morellato LPC (2010) The shared influence of phylogeny and ecology on the reproductive patterns of Myrteae (Myrtaceae).Journal of Ecology, 98, 1409-1421.
[54] Stevenson PR, Castellanos MC, Cortes AI, Link A (2008) Flowering patterns in a seasonal tropical lowland forest in western Amazonia.Biotropica, 40, 559-567.
[55] Stiles EW (1980) Patterns of fruit presentation and seed dispersal in bird-disseminated woody-plants in the eastern deciduous forest.The American Naturalist, 116, 670-688.
[56] Stiles EW (1982) Fruit flags: two hypotheses.The American Naturalist, 120, 500-509.
[57] Tyler G (2001) Relationships between climate and flowering of eight herbs in a Swedish deciduous forest.Annals of Botany, 87, 623-630.
[58] Westoby M, Leishman MR, Lord JM (1995) On misinterpre- ting the phylogenetic correction.Journal of Ecology, 83, 531-534.
[59] Whitehead DR (1969) Wind pollination in the angiosperms: evolutionary and environmental considerations.Evolution, 23, 28-35.
[60] Williams-Linera G (1997) Phenology of deciduous and broadleaved-evergreen tree species in a Mexican tropical lower montane forest.Global Ecology and Biogeography Letters, 6, 115-127.
[61] Wright SJ (1996) Phenological responses to seasonality in tropical forest plants.Tropical Forest Plant Ecophysiology (eds Stephen SM, Robin LC, Alan PS), pp. 440-446. Springer, New York.
[62] Wright SJ, Calderón O (1995) Phylogenetic patterns among tropical flowering phenologies.Journal of Ecology, 83, 937-948.
[63] Wright SJ, Cornejo FH (1990) Seasonal drought and leaf fall in a tropical forest.Ecology, 71, 1165-1175.
[64] Wright SJ, van Schaik CP (1994) Light and the phenology of tropical trees.The American Naturalist, 143, 192-199.
[65] Zar JH (1996) Biostatiscal Analysis. Prentice-Hall Interna- tional, London, UK.
[66] Zhang JL, Mi XC, Pei NC (2010) Phylotools: Phylogenetic Tools for Ecologists. R Package Version 0.0.7.4.201019.
[67] Zhu Y (祝燕), Zhao GF (赵谷风), Zhang LW (张俪文), Shen GC (沈国春), Mi XC (米湘成), Ren HB (任海保), Yu MJ (于明坚), Chen JH (陈建华), Chen SW (陈声文), Fang T (方腾), Ma KP (马克平) (2008) Community composition and structure of Gutianshan forest dynamic plot in a mid-subtropical evergreen broad-leaved forest, East China.Journal of Plant Ecology(植物生态学报), 32, 262-273. (in Chinese with English abstract)
[1] 符义稳, 田大栓, 汪金松, 牛书丽, 赵垦田. (2019) 内蒙古和青藏高原草原植物叶片与根系氮利用效率空间格局及影响因素. 植物生态学报, 43(7): 566-575.
[2] 顾菡娇, 张参参, 汪金松, 施雪文, 夏瑞雪, 刘斌, 陈伏生, 卜文圣. (2019) 中国竹类植物基本形态学功能性状的比较. 生物多样性, 27(6): 585-594.
[3] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. (2019) 未来气候变化对不同国家茶适宜分布区的影响. 生物多样性, 27(6): 595-606.
[4] 赵丹丹, 马红媛, 李阳, 魏继平, 王志春. (2019) 水分和养分添加对羊草功能性状和地上生物量的影响. 植物生态学报, 43(6): 501-511.
[5] 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. (2019) 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析. 植物生态学报, 43(6): 490-500.
[6] 黄玫, 王娜, 王昭生, 巩贺. (2019) 磷影响陆地生态系统碳循环过程及模型表达方法. 植物生态学报, 43(6): 471-479.
[7] 史娜娜, 肖能文, 王琦, 韩煜, 高晓奇, 冯瑾, 全占军. (2019) 锡林郭勒植被NDVI时空变化及其驱动力定量分析. 植物生态学报, 43(4): 331-341.
[8] 刘晓彤, 袁泉, 倪健. (2019) 中国植物分布模拟研究现状. 植物生态学报, 43(4): 273-283.
[9] 焦亮, 王玲玲, 李丽, 陈晓霞, 闫香香. (2019) 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应. 植物生态学报, 43(4): 320-330.
[10] 张富广, 曾彪, 杨太保. (2019) 气候变化背景下近30年祁连山高寒荒漠分布时空变化. 植物生态学报, 43(4): 305-319.
[11] 刘翔宇, 赵慈良, 许洺山, 梁启明, 朱晓彤, 李亮, 阎恩荣. (2019) 中国东部海岛维管植物的beta多样性及其驱动因素. 生物多样性, 27(4): 380-387.
[12] 谢立红,黄庆阳,曹宏杰,杨帆,王继丰,倪红伟. (2019) 五大连池火山色木槭叶功能性状特征. 生物多样性, 27(3): 286-296.
[13] 郝姝珺, 李晓宇, 侯嫚嫚, 赵秀海. (2019) 长白山温带森林不同演替阶段群落功能性状的空间变化. 植物生态学报, 43(3): 208-216.
[14] 董雪蕊, 张红, 张明罡. (2019) 基于系统发育的黄土高原地区木本植物多样性及特有性格局. 生物多样性, 27(12): 1269-1278.
[15] 张入匀,李艳朋,倪云龙,桂旭君,练琚愉,叶万辉. (2019) 鼎湖山南亚热带常绿阔叶林叶功能性状沿群落垂直层次的种内变异. 生物多样性, 27(12): 1279-1290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed