Biodiv Sci ›› 2023, Vol. 31 ›› Issue (3): 22600. DOI: 10.17520/biods.2022600
Special Issue: 土壤生物与土壤健康
• Original Papers: Plant Diversity • Previous Articles
Hao Wu1,2, Yurong Yu1,2, Jiayu Wang1,2, Yuanbo Zhao1,2, Yafei Gao1,2, Xiaoling Li2,3, Guijun Bu1,2, Dan Xue4, Lin Wu1,2,*()
Received:
2022-10-24
Accepted:
2023-01-16
Online:
2023-03-20
Published:
2023-03-20
Contact:
Lin Wu
Hao Wu, Yurong Yu, Jiayu Wang, Yuanbo Zhao, Yafei Gao, Xiaoling Li, Guijun Bu, Dan Xue, Lin Wu. Lower water table increase shrub plant diversity and biomass but decrease soil organic carbon content: A case study of oligotrophic peatland in the Southwestern Hubei Province[J]. Biodiv Sci, 2023, 31(3): 22600.
水位 Water table (cm) | 土壤pH Soil pH | 土壤容重 Soil bulk density (g/cm) | 土壤含水量 Soil water content (%) | 溶解氧 Dissolved oxygen (mg/L) | 总酚 Total phenols (μg/mL) | 土壤有机碳 Soil organic carbon (%) |
---|---|---|---|---|---|---|
-4 | 3.97 ± 0.15a | 0.20 ± 0.01a | 83.51 ± 0.79c | 5.27 ± 0.48a | 6.23 ± 0.37b | 33.88 ± 2.17b |
-8 | 4.18 ± 0.05a | 0.22 ± 0.01a | 81.57 ± 1.22bc | 5.72 ± 0.42a | 6.01 ± 1.38b | 33.20 ± 0.92b |
-12 | 4.22 ± 0.17a | 0.29 ± 0.03b | 78.10 ± 1.74ab | 7.23 ± 0.18b | 3.99 ± 0.58ab | 23.58 ± 1.12a |
-20 | 4.40 ± 0.18a | 0.33 ± 0.02b | 74.17 ± 0.87a | 7.13 ± 0.23b | 2.80 ± 0.55a | 24.31 ± 2.36a |
Table 1 Soil physicochemical properties under different water table level gradients in a oligotrophic peatland in the Southwestern Hubei Province
水位 Water table (cm) | 土壤pH Soil pH | 土壤容重 Soil bulk density (g/cm) | 土壤含水量 Soil water content (%) | 溶解氧 Dissolved oxygen (mg/L) | 总酚 Total phenols (μg/mL) | 土壤有机碳 Soil organic carbon (%) |
---|---|---|---|---|---|---|
-4 | 3.97 ± 0.15a | 0.20 ± 0.01a | 83.51 ± 0.79c | 5.27 ± 0.48a | 6.23 ± 0.37b | 33.88 ± 2.17b |
-8 | 4.18 ± 0.05a | 0.22 ± 0.01a | 81.57 ± 1.22bc | 5.72 ± 0.42a | 6.01 ± 1.38b | 33.20 ± 0.92b |
-12 | 4.22 ± 0.17a | 0.29 ± 0.03b | 78.10 ± 1.74ab | 7.23 ± 0.18b | 3.99 ± 0.58ab | 23.58 ± 1.12a |
-20 | 4.40 ± 0.18a | 0.33 ± 0.02b | 74.17 ± 0.87a | 7.13 ± 0.23b | 2.80 ± 0.55a | 24.31 ± 2.36a |
科 Family | 水位 Water table | 全部Total | |||
---|---|---|---|---|---|
-4 cm | -8 cm | -12 cm | -20 cm | ||
蔷薇科 Rosaceae | 1 | 1 | 1 | 4 | 4 |
杜鹃花科 Ericaceae | 1 | 3 | 3 | 3 | 3 |
樟科 Lauraceae | - | 1 | 1 | - | 1 |
槭树科 Aceraceae | - | 1 | 1 | - | 1 |
壳斗科 Fagaceae | - | 1 | 1 | 1 | 1 |
大戟科 Euphorbiaceae | - | - | 1 | - | 1 |
冬青科 Aquifoliaceae | 1 | 1 | 1 | 1 | 1 |
虎耳草科 Saxifragaceae | 1 | - | 1 | 1 | 1 |
三尖杉科 Cephalotaxaceae | - | - | 1 | - | 1 |
金丝桃科 Hypericaceae | 1 | - | 1 | - | 1 |
忍冬科 Caprifoliaceae | - | - | 2 | 1 | 2 |
柏科 Cupressaceae | - | - | 1 | - | 1 |
莎草科 Cyperaceae | 1 | 1 | 1 | - | 1 |
碗蕨科 Dennstaedtiaceae | - | - | 1 | 1 | 1 |
石松科 Lycopodiaceae | - | - | - | 1 | 1 |
禾本科 Gramineae | 1 | 1 | - | 1 | 2 |
金星蕨科 Thelypteridaceae | - | 1 | 1 | - | 1 |
百合科 Liliaceae | - | - | 1 | - | 1 |
灯芯草科 Juncaceae | 1 | - | - | 1 | 1 |
龙胆科 Gentianaceae | 1 | - | - | - | 1 |
泥炭藓科 Sphagnaceae | 1 | 1 | 1 | 1 | 1 |
金发藓科 Polytrichaceae | - | - | 1 | 1 | 2 |
合计 Total | 10 | 12 | 21 | 17 | 30 |
Table 2 No. of species composition under different water table level gradients in oligotrophic peatland in the Southwestern Hubei Province
科 Family | 水位 Water table | 全部Total | |||
---|---|---|---|---|---|
-4 cm | -8 cm | -12 cm | -20 cm | ||
蔷薇科 Rosaceae | 1 | 1 | 1 | 4 | 4 |
杜鹃花科 Ericaceae | 1 | 3 | 3 | 3 | 3 |
樟科 Lauraceae | - | 1 | 1 | - | 1 |
槭树科 Aceraceae | - | 1 | 1 | - | 1 |
壳斗科 Fagaceae | - | 1 | 1 | 1 | 1 |
大戟科 Euphorbiaceae | - | - | 1 | - | 1 |
冬青科 Aquifoliaceae | 1 | 1 | 1 | 1 | 1 |
虎耳草科 Saxifragaceae | 1 | - | 1 | 1 | 1 |
三尖杉科 Cephalotaxaceae | - | - | 1 | - | 1 |
金丝桃科 Hypericaceae | 1 | - | 1 | - | 1 |
忍冬科 Caprifoliaceae | - | - | 2 | 1 | 2 |
柏科 Cupressaceae | - | - | 1 | - | 1 |
莎草科 Cyperaceae | 1 | 1 | 1 | - | 1 |
碗蕨科 Dennstaedtiaceae | - | - | 1 | 1 | 1 |
石松科 Lycopodiaceae | - | - | - | 1 | 1 |
禾本科 Gramineae | 1 | 1 | - | 1 | 2 |
金星蕨科 Thelypteridaceae | - | 1 | 1 | - | 1 |
百合科 Liliaceae | - | - | 1 | - | 1 |
灯芯草科 Juncaceae | 1 | - | - | 1 | 1 |
龙胆科 Gentianaceae | 1 | - | - | - | 1 |
泥炭藓科 Sphagnaceae | 1 | 1 | 1 | 1 | 1 |
金发藓科 Polytrichaceae | - | - | 1 | 1 | 2 |
合计 Total | 10 | 12 | 21 | 17 | 30 |
Fig. 2 Root distribution depth of different dominant families of plants in oligotrophic peatland in the Southwestern Hubei Province (mean ± SE). Different lowercase letters indicate significant differences among different families (P < 0.05).
Fig. 3 Number of species in shrub, herb and moss layers under different water table level gradients in oligotrophic peatland in the Southwestern Hubei Province (mean ± SE). Different lowercase letters indicate significant differences among different water table level gradients in the same vegetation layer (P < 0.05).
Fig. 4 Species diversity of shrub and herb layers under different water table level gradients in oligotrophic peatland in the Southwestern Hubei Province (mean ± SE). Different lowercase letters indicate significant differences among different water table level gradients in the same vegetation layer (P < 0.05).
Fig. 5 Biomass of shrub, herb and moss layers under different water table level gradients in oligotrophic peatland in the Southwestern Hubei Province. Different lowercase letters indicate significant differences among different water table level gradients in the same vegetation layer (P < 0.05).
[1] |
Aerts R, Verhoeven JTA, Whigham DF (1999) Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology, 80, 2170-2181.
DOI URL |
[2] |
Antala M, Juszczak R, Tol CVD, Rastogi A (2022) Impact of climate change-induced alterations in peatland vegetation phenology and composition on carbon balance. Science of the Total Environment, 827, 154294.
DOI URL |
[3] |
Armstrong W, Justin SHFW, Beckett PM, Lythe S (1991) Root adaptation to soil waterlogging. Aquatic Botany, 39, 57-73.
DOI URL |
[4] |
Bakker C, Bodegom VPM, Nelissen HJM, Aerts R, Ernst WHO (2007) Preference of wet dune species for waterlogged conditions can be explained by adaptations and specific recruitment requirements. Aquatic Botany, 86, 37-45.
DOI URL |
[5] |
Bragazza L, Buttler A, Habermacher J, Brancaleoni L, Gerdol R, Fritze H, Hanajík P, Laiho R, Johnson D (2012) High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation. Global Change Biology, 18, 1163-1172.
DOI URL |
[6] |
Breeuwer A, Robroek BJM, Limpens J, Heijmans MMPD, Schouten MGC, Berendse F (2009) Decreased summer water table depth affects peatland vegetation. Basic and Applied Ecology, 10, 330-339.
DOI URL |
[7] |
Buttler A, Robroek BJM, Laggoun DF, Jassey VEJ, Pochelon C, Bernard G, Delarue F, Gogo S, Mariotte P, Mitchell EAD (2015) Experimental warming interacts with soil moisture to discriminate plant responses in an ombrotrophic peatland. Journal of Vegetation Science, 26, 964-974.
DOI URL |
[8] |
Chimner RA, Pypker TG, Hribljan JA, Moore PA, Waddington JM (2016) Multi-decadal changes in water table levels alter peatland carbon cycling. Ecosystems, 20, 1042-1057.
DOI URL |
[9] | Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Bryophyte Ecology (ed. Smith AJ), pp. 229-289. Springer, London. |
[10] |
Dargie GC, Lewis SL, Lawson IT, Mitchard ET, Page SE, Bocko YE, Ifo SA (2017) Age, extent and carbon storage of the central Congo Basin peatland complex. Nature, 542, 86-90.
DOI |
[11] |
Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z (2015) Climate change drives a shift in peatland ecosystem plant community: Implications for ecosystem function and stability. Global Change Biology, 21, 388-395.
DOI PMID |
[12] | Dimitrov DD, Grant RF, Lafleur PM, Humphreys ER (2010) Modeling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog. Journal of Geophysical Research, 116, G04010. |
[13] |
Dise NB (2009) Peatland response to global change. Science, 326, 810-811.
DOI URL |
[14] |
Ellis T, Hill PW, Fenner N, Williams GG, Godbold D, Freeman C (2009) The interactive effects of elevated carbon dioxide and water table draw-down on carbon cycling in a Welsh ombrotrophic bog. Ecological Engineering, 35, 978-986.
DOI URL |
[15] |
Evans CD, Peacock M, Baird AJ, Artz RRE, Burden A, Callaghan N, Chapman PJ, Cooper HM, Coyle M, Craig E, Cumming A, Dixon S, Gauci V, Grayson RP, Helfter C, Heppell CM, Holden J, Jones DL, Kaduk J, Levy P, Matthews R, McNamara NP, Misselbrook T, Oakley S, Page SE, Rayment M, Ridley LM, Stanley KM, Williamson JL, Worrall F, Morrison R (2021) Overriding water table control on managed peatland greenhouse gas emissions. Nature, 15, 1-20.
DOI |
[16] |
Fenner N, Ostle N, Freeman Chris, Sleep D, Reynolds B (2004) Peatland carbon efflux partitioning reveals that Sphagnum photosynthate contributes to the DOC pool. Plant and Soil, 259, 345-354.
DOI URL |
[17] | Freeman C, Ostle N, Kang H (2001) An enzymic ‘latch’ on a global carbon store. Nature, 409, 149. |
[18] |
Gorham E (1991) Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195.
DOI URL |
[19] |
Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature, 466, 478-481.
DOI |
[20] |
Gunnarsson U (2005) Global patterns of Sphagnum productivity. Journal of Bryology, 27, 269-279.
DOI URL |
[21] |
Halsey LA, Vitt DH, Gignac LD (2000) Sphagnum-dominated peatlands in North America since the last glacial maximum: Their occurrence and extent. Bryologist, 103, 334-352.
DOI URL |
[22] |
Hogg EH, Maimer N, Wallen B (1994) Microsite and regional variation in the potential decay rate of Sphagnum magellanicum in South Swedish raised bogs. Ecography, 17, 50-59.
DOI URL |
[23] | Hribljan JA, Kane ES, Pypker TG, Chimner RA (2014) The effect of long-term water table manipulations on dissolved organic carbon dynamics in a poor fen peatland. Journal of Geophysical Research, 119, 577-595. |
[24] |
Jassey VEJ, Reczuga MK, Zielińska M, Słowińska S, Robroek BJM, Mariotte P, Seppey CVW, Lara E, Barabach J, Słowiński M (2018) Tipping point in plant-fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration. Global Change Biology, 24, 972-986.
DOI PMID |
[25] |
Jassey VEJ, Signarbieux C (2019) Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits. Global Change Biology, 25, 3859-3870.
DOI URL |
[26] | Johnson LC, Damman AWH (1991) Species-controlled Sphagnum decay on a south Swedish raised bog. Oikos, 61, 234-242. |
[27] |
Kluge B, Wessolek G, Facklam M, Lorenz M, Schwärzel K (2008) Long-term carbon loss and CO2-C release of drained peatland soils in Northeast Germany. European Journal of Soil Science, 59, 1076-1086.
DOI URL |
[28] |
Kozlowski TT (1986) Soil aeration and growth of forest trees. Scandinavian Journal of Forest Research, 1, 113-123.
DOI URL |
[29] |
Laiho R (2006) Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biology and Biochemistry, 38, 2011-2024.
DOI URL |
[30] |
Li CJ, Grayson R, Holden J, Li PF (2018) Erosion in peatlands: Recent research progress and future directions. Earth-Science Reviews, 185, 870-886.
DOI URL |
[31] |
Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Gabriela SS (2008) Peatlands and the carbon cycle: From local processes to global implications—A synthesis. Biogeosciences, 5, 1475-1491.
DOI URL |
[32] |
Liu LF, Chen H, Jiang L, Hu J, Zhan W, He YX, Zhu D, Zhong QP, Yang G (2018) Water table drawdown reshapes soil physicochemical characteristics in Zoige peatlands. Catena, 170, 119-128.
DOI URL |
[33] | Liu XF, Yu XJ, Hong L, Wu L (2018) Distribution characteristics of soil organic carbon of the Sphagnum wetland in Qizimei Mountains of Southwestern Hubei. Hubei Forestry Science and Technology, 47(6), 21-26. (in Chinese with English abstract) |
[刘雪飞, 余夏君, 洪柳, 吴林 (2018) 鄂西南七姊妹山两种泥炭藓湿地土壤有机碳分布特征的对比研究. 湖北林业科技, 47(6), 21-26.] | |
[34] | Ma GL, Zhang QL, Zheng JX (2012) A review of ecological studies on Sphagnum mire in subtropical China. Journal of Anhui Agricultural Sciences, 40, 7859-7860. (in Chinese with English abstract) |
[马广礼, 张巧莲, 郑俊霞 (2012) 亚热带泥炭藓沼泽生态学研究概述. 安徽农业科学, 40, 7859-7860.] | |
[35] |
Ma XY, Xu H, Cao ZY, Shu L, Zhu RL (2022) Will climate change cause the global peatland to expand or contract? Evidence from the habitat shift pattern of Sphagnum mosses. Global Change Biology, 28, 6419-6432.
DOI URL |
[36] |
Mäkiranta P, Laiho R, Mehtätalo L, Straková P, Sormunen J, Minkkinen K, Penttilä T, Fritze H, Tuittila ES (2018) Responses of phenology and biomass production of boreal fens to climate warming under different water-table level regimes. Global Change Biology, 24, 944-956.
DOI PMID |
[37] | Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander SH, Feron SC, Hanson PJ, Iversen CM (2020) Peatland warming strongly increases fine-root growth. Proceedings of the National Academy of Sciences, USA, 117, 17627-17634. |
[38] | McNeil P, Waddington JM (2003) Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. Journal of Applied Ecology, 40, 354-367. |
[39] |
McPartland MY, Kane ES, Falkowski MJ, Kolka R, Turetsky MR, Palik B, Montgomery RA (2019) The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide. Global Change Biology, 25, 93-107.
DOI PMID |
[40] | Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT (2002) Plant biomass and production and CO2 exchange in an ombrotrophic bog. Journal of Ecology, 90, 25-36. |
[41] |
Murphy MT, Moore TR (2010) Linking root production to aboveground plant characteristics and water table in a temperate bog. Plant and Soil, 336, 219-231.
DOI URL |
[42] |
Nieveen JP, Campbell DI, Schipper LA, Blair IJ (2005) Carbon exchange of grazed pasture on a drained peat soil. Global Change Biology, 11, 607-618.
DOI URL |
[43] |
Pezeshki SR (2001) Wetland plant responses to soil flooding. Environmental and Experimental Botany, 46, 299-312.
DOI URL |
[44] |
Potvin LR, Kane ES, Chimner RA, Kolka RK, Lilleskov EA (2015) Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm). Plant and Soil, 387, 277-294.
DOI URL |
[45] |
Rousk J, Smith AR, Jones DL (2013) Investigating the long-term legacy of drought and warming on the soil microbial community across five European shrubland ecosystems. Global Change Biology, 19, 3872-3884.
DOI PMID |
[46] |
Rydin H, McDonald AJS (1985) Tolerance of Sphagnum to water level. Journal of Bryology, 13, 571-578.
DOI URL |
[47] |
Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423.
DOI URL |
[48] |
Silvola J, Alm J, Ahlholm U, Nykanen H, Martikainen PJ (1996) CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. Journal of Ecology, 84, 219-228.
DOI URL |
[49] |
Simola H, Pitkänen A, Turunen J (2012) Carbon loss in drained forestry peatlands in Finland, estimated by resampling peatlands surveyed in the 1980s. European Journal of Soil Science, 63, 798-807.
DOI URL |
[50] |
Simpson EH (1949) Measurement of diversity. Nature, 163, 688-688.
DOI |
[51] |
Sonesson M, Carlsson BÅ, Callaghan TV, Halling S, Björn LO, Bertgren M, Johanson U (2002) Growth of two peat-forming mosses in subarctic mires: Species interactions and effects of simulated climate change. Oikos, 99, 151-160.
DOI URL |
[52] |
Strack M, Waddington JM, Bourbonniere RA, Buckton EL, Shaw K, Whittington P, Price JS (2008) Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrological Processes, 22, 3373-3385.
DOI URL |
[53] | Strack M, Waddington JM, Rochefort L, Tuittila ES (2006) Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown. Journal of Geophysical Research, 111, G02006. |
[54] |
Strack M, Zuback Y, McCarter C, Price J (2015) Changes in dissolved organic carbon quality in soils and discharge 10 years after peatland restoration. Journal of Hydrology, 527, 345-354.
DOI URL |
[55] |
Straková P, Anttila J, Spetz P, Kitunen V, Tapanila T, Laiho R (2010) Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant and Soil, 335, 501-520.
DOI URL |
[56] |
Sulman BN, Desai AR, Cook BD, Saliendra N, Mackay DS (2009) Contrasting carbon dioxide fluxes between a drying shrub wetland in Northern Wisconsin, USA, and nearby forests. Biogeosciences, 6, 1115-1126.
DOI URL |
[57] |
Talbot J, Richard PJH, Roulet NT, Booth RK (2010) Assessing long-term hydrological and ecological responses to drainage in a raised bog using paleoecology and a hydrosequence. Journal of Vegetation Science, 21, 143-156.
DOI URL |
[58] | Turetsky MR, Treat CC, Waldrop MP, Waddington JM, Harden JW, McGuire AD (2008) Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. Journal of Geophysical Research, 113, G00A10. |
[59] | Turetsky MR, Donahue WF, Benscoter BW (2011) Experimental drying intensifies burning and carbon losses in a northern peatland. Nature Communications, 2, 1523. |
[60] |
Waddington JM, Rochefort L, Campeau S (2003) Sphagnum production and decomposition in a restored cutover peatland. Wetlands Ecology and Management, 11, 85-95.
DOI URL |
[61] | Wang H, Wu L, Xue D, Liu XF, Hong L, Mou L, Li XL (2020) Distribution and environmental characteristics of sphagnum peat bogs in Taishanmiao in Enshi City, Hubei Province. Wetland Science, 18, 266-274. (in Chinese with English abstract) |
[王涵, 吴林, 薛丹, 刘雪飞, 洪柳, 牟利, 李小玲 (2020) 湖北省恩施市太山庙泥炭藓泥炭沼泽分布及其环境特征研究. 湿地科学, 18, 266-274.] | |
[62] |
Wang H, Yu LF, Zhang ZH, Liu W, Chen LT, Cao GG, Yue HW, Zhou JZ, Yang YF, Tang YH (2017) Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland. Global Change Biology, 23, 815-829.
DOI PMID |
[63] |
Ward SE, Bardgett RD, McNamara NP, Ostle NJ (2009) Plant functional group identity influences short-term peatland ecosystem carbon flux: Evidence from a plant removal experiment. Functional Ecology, 23, 454-462.
DOI URL |
[64] |
Weltzin JF, Bridgham SD, Pastor J, Chen J, Harth C (2003) Potential effects of warming and drying on peatland plant community composition. Global Change Biology, 9, 141-151.
DOI URL |
[65] |
Weltzin JF, Harth C Bridgham SD, Pastor J, Vonderharr M (2001) Production and microtopography of bog bryophytes: Response to warming and water-table manipulations. Oecologia, 128, 557-565.
DOI PMID |
[66] |
Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT (2000) Response of bog and fen plant communities to warming and water-table manipulations. Ecology, 81, 3464-3478.
DOI URL |
[67] |
Wang YY, Wang H, He JS, Feng XJ (2017) Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nature Communications, 8, 15972.
DOI PMID |
[68] |
Wu GL, Ren GH, Wang D, Shi ZH, Warrington D (2013) Above and below-ground response to soil water change in an alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China. Journal of Hydrology, 476, 120-127.
DOI URL |
[69] | Yang G, Wen XR, Bai YP, Lu J, Liu YZ (2018) Review of accumulation differences of phenolic compounds and their effect on carbon export in degradation peatland. Ecological Science, 37, 229-232. (in Chinese with English abstract) |
[杨刚, 温晓荣, 白银萍, 芦静, 刘银占 (2018) 酚类物质对退化泥炭地碳输出的影响研究进展. 生态科学, 37, 229-232.] | |
[70] | Yu ZC, Loisel J, Brosseau DP, Beilman DW, Hunt SJ (2010) Global peatland dynamics since the last glacial maximum. Geophysical Research Letters, 37, L13402. |
[71] | Zeng J, Chen H, Liu JL, Yang SZ, Yan F, Cao Q, Yang G (2022) The decrease of peatland water table on the Qinghai-Tibet Plateau caused the increase of soil phenolic substances and vegetation biomass which promoted the accumulation of soil carbon. Acta Ecologica Sinica, 42, 625-634. (in Chinese with English abstract) |
[曾嘉, 陈槐, 刘建亮, 杨随庄, 严飞, 曹芹, 杨刚 (2022) 青藏高原泥炭地水位下降促进土壤碳积累的影响机制. 生态学报, 42, 625-634.] | |
[72] |
Zhang QG, Zhang DY (2003) Biodiversity and ecosystem functioning: Recent advances and trends. Biodiversity Science, 11, 351-363. (in Chinese with English abstract)
DOI URL |
[张全国, 张大勇 (2003) 生物多样性与生态系统功能: 最新的进展与动向. 生物多样性, 11, 351-363.]
DOI |
|
[73] | Zhou WC, SuoLang DEJ, Cui LJ, Wang YF, Li W (2016) Effects of drainage on soil organic carbon stock in the Zoige peatlands, eastern Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 36, 2123-2132. (in Chinese with English abstract) |
[周文昌, 索郎夺尔基, 崔丽娟, 王义飞, 李伟 (2016) 排水对若尔盖高原泥炭地土壤有机碳储量的影响. 生态学报, 36, 2123-2132.] | |
[74] | Zhu RL (2022) Peat mosses (Sphagnum): Ecologically, economically, and scientifically important group of carbon sequestration plants. Chinese Bulletin of Botany, 57, 559-578. (in Chinese with English abstract) |
[朱瑞良 (2022) 泥炭藓: 一类具有重要生态、经济和科学价值的碳封存植物. 植物学报, 57, 559-578.]
DOI |
[1] | Jiali Lian, Jing Chen, Xueqin Yang, Ying Zhao, Xu Luo, Cui Han, Yaxin Zhao, Jianping Li. Responses of desert steppe plant diversity and microbial diversity to precipitation change [J]. Biodiv Sci, 2024, 32(6): 24044-. |
[2] | Lejie Wu, Zekang Liu, Xing Tian, Qun Zhang, Bo Li, Jihua Wu. Effects of genotypic diversity on vegetative growth and reproductive strategies of Scirpus mariqueter population [J]. Biodiv Sci, 2024, 32(4): 23478-. |
[3] | Fengming Wan, Huawei Wan, Zhiru Zhang, Jixi Gao, Chenxi Sun, Yongcai Wang. The application potential of unmanned aerial vehicle surveys in grassland plant diversity [J]. Biodiv Sci, 2024, 32(3): 23381-. |
[4] | Zhang Naipeng, Liang Hongru, Zhang Yan, Sun Chao, Chen Yong, Wang Lulu, Xia Jiangbao, Gao FangLei. Effects of soil type and groundwater depth on spatial differentiation of typical salt marsh plant communities in the Yellow River Delta [J]. Biodiv Sci, 2024, 32(2): 23370-. |
[5] | Yun Han, Xiaofeng Chi, Jingya Yu, Xujie Ding, Shilong Chen, Faqi Zhang. A checklist of wild vascular plants in Qinghai, China [J]. Biodiv Sci, 2023, 31(9): 23280-. |
[6] | Yousheng Chen, Zhuqiu Song, Ran Wei, Yan Luo, Wenli Chen, Fusheng Yang, Lianming Gao, Yuan Xu, Zhuoxin Zhang, Pengcheng Fu, Chunlei Xiang, Huanchong Wang, Jiachen Hao, Shiyong Meng, Lei Wu, Bo Li, Shengxiang Yu, Shuren Zhang, Li He, Xinqiang Guo, Wenguang Wang, Yihua Tong, Qi Gao, Wenqun Fei, Youpai Zeng, Lin Bai, Zichao Jin, Xingjie Zhong, Buyun Zhang, Siyi Du. A dataset on inventory and geographical distribution of vascular plants in Xizang, China [J]. Biodiv Sci, 2023, 31(9): 23188-. |
[7] | Zhuqiu Song, Wen Ye, Shiyong Dong, Zichao Jin, Xingjie Zhong, Zhen Wang, Buyun Zhang, Yechun Xu, Wenli Chen, Shijin Li, Gang Yao, Zhoufeng Xu, Shuai Liao, Yihua Tong, Youpai Zeng, Yunbao Zeng, Yousheng Chen. A dataset on inventory and geographical distributions of higher plants in Guangdong, China [J]. Biodiv Sci, 2023, 31(9): 23177-. |
[8] | Caiqun Liang, Yukai Chen, Xiaobo Yang, Kai Zhang, Donghai Li, Yuexin Jiang, Jinghan Li, Chongyang Wang, Shunwei Zhang, Zicheng Zhu. A dataset on inventory and geographical distributions of wild vascular plants in Hainan Province, China [J]. Biodiv Sci, 2023, 31(6): 23067-. |
[9] | Shiyu Li, Yiqi Zhang, Pu Zou, Zulin Ning, Jingping Liao. Ex situ conservation of plant diversity status and suggestions for the development of botanical gardens in Guangdong Province [J]. Biodiv Sci, 2023, 31(6): 22647-. |
[10] | Xinyang Zhou, Yutao Wang, Jianping Li. Response of plant community composition to precipitation changes in typical grasslands in the Loess Plateau [J]. Biodiv Sci, 2023, 31(3): 22118-. |
[11] | Cui Xiao, Bing Liu, Chaoran Wu, Jinshuang Ma, Jianfei Ye, Xiaofei Xia, Qinwen Lin. A dataset on inventory and geographical distributions of vascular plants in Beijing, China [J]. Biodiv Sci, 2022, 30(6): 22064-. |
[12] | Qinwen Lin, Cui Xiao, Jinshuang Ma. A dataset on catalogue of alien plants in China [J]. Biodiv Sci, 2022, 30(5): 22127-. |
[13] | Ping Liu, Hongwen Liu, Miao Zhang, Yan Gao, Mengting Zhang, Aizhen Liang, Shixiu Zhang. Latitude distribution and associated environmental factors of soil nematodes in a typical black soil region [J]. Biodiv Sci, 2022, 30(12): 22269-. |
[14] | Renwu Wu, Xinge Nan, Hai Yan, Fan Yang, Yan Shi, Zhiyi Bao. Review of the legacy of Frank Nicholas Meyer by teasing apart his itineraries and introduced plants in Asia and Europe [J]. Biodiv Sci, 2022, 30(11): 22063-. |
[15] | Yuanli Ouyang, Cancan Zhang, Xiaofan Lin, Lixin Tian, Hanjiao Gu, Fusheng Chen, Wensheng Bu. Growth differences and characteristics of root and leaf morphological traits for different mycorrhizal tree species in the subtropical China: A case study of Xingangshan, Jiangxi Province [J]. Biodiv Sci, 2021, 29(6): 746-758. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn