Biodiv Sci ›› 2025, Vol. 33 ›› Issue (4): 24579. DOI: 10.17520/biods.2024579 cstr: 32101.14.biods.2024579
• Reviews • Previous Articles Next Articles
Song Wei(), Cheng Cai(
), Wang Jiawei(
), Wu Jihua*(
)(
)
Received:
2024-12-21
Accepted:
2025-04-02
Online:
2025-04-20
Published:
2025-04-14
Contact:
*E-mail: jihuawu@fudan.edu.cn
Supported by:
Song Wei, Cheng Cai, Wang Jiawei, Wu Jihua. Soil microbes regulate the relationships between plant diversity and ecosystem functions[J]. Biodiv Sci, 2025, 33(4): 24579.
Fig. 1 Conceptual diagram illustrating the role of soil microorganisms in regulating the plant diversity-ecosystem functions relationships. The arrows indicate the pathways. Plant diversity directly influences ecosystem functions (pathway 1), and indirectly influences ecosystem functions through its effects on soil microorganisms (pathway 2). Soil microorganisms directly mediate the plant diversity-ecosystem functions relationships (pathway 3). AMF, Arbuscular mycorrhizal fungi; EMF, Ectomycorrhizal fungi.
Fig. 2 Conceptual figure illustrating the mechanisms by which mycorrhizal fungi drive plant diversity-productivity relationships. Black and white circles represent plant species associated with arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF), respectively, with varying line styles denoting different plant species, and the size of the circles indicating the relative strength of resource utilization capabilities of the plant species. For plants in association with arbuscular mycorrhizal fungi, under high plant diversity conditions, AM fungi primarily enhance the positive effect of plant diversity on productivity by promoting complementary resource use among hosts (A). For plants associated with ectomycorrhizal fungi, although complementary utilization among hosts is present, they primarily strengthen the relationship between plant diversity and productivity by enhancing the resource utilization capacity of specific hosts (B). When hosts coexist with both types of mycorrhizal fungi, both of these effects are concurrent (C).
Fig. 3 Three hypotheses on pathogen-driven plant diversity-productivity relationships. When pathogens exert equivalent suppressive effects on plant communities of varying diversities, the slope of the plant diversity-productivity relationship remains unchanged after the disappearance of pathogens (A). When a dominant species occupies a leading position in a high-diversity plant community, due to its relatively high abundance, the suppressive effect of pathogens on high-diversity communities is stronger than on low-diversity communities, thus the slope of the plant diversity-productivity relationship will increase after the disappearance of pathogens (B). When pathogen host specificity and negative density dependence effects function, the suppressive effect of pathogens on low-diversity plant communities is stronger than on high-diversity communities, then the slope of the plant diversity-productivity relationship will decrease after the disappearance of pathogens (C).
[1] | Abrahão A, Marhan S, Boeddinghaus RS, Nawaz A, Wubet T, Hölzel N, Klaus VH, Kleinebecker T, Freitag M, Hamer U, Oliveira RS, Lambers H, Kandeler E (2022) Microbial drivers of plant richness and productivity in a grassland restoration experiment along a gradient of land-use intensity. New Phytologist, 236, 1936-1950. |
[2] | Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences, USA, 105, 11512-11519. |
[3] | Averill C, Fortunel C, Maynard DS, van den Hoogen J, Dietze MC, Bhatnagar JM, Crowther TW (2022) Alternative stable states of the forest mycobiome are maintained through positive feedbacks. Nature Ecology & Evolution, 6, 375-382. |
[4] |
Bakker PAHM, Pieterse CMJ, de Jonge R, Berendsen RL (2018) The soil-borne legacy. Cell, 172, 1178-1180.
DOI PMID |
[5] | Banerjee S, van der Heijden MGA(2023) Soil microbiomes and one health. Nature Reviews Microbiology, 21, 6-20. |
[6] | Bardgett RD, van der Putten WH(2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511. |
[7] |
Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68, 1-13.
DOI PMID |
[8] | Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: The utility of the feedback approach. Journal of Ecology, 85, 561-573. |
[9] |
Birkhofer K, Fliessbach A, Gavín-Centol MP, Hedlund K, Ingimarsdóttir M, Jørgensen HB, Kozjek K, Meyer S, Montserrat M, Moreno SS, Laraño JM, Scheu S, Serrano-Carnero D, Truu J, Kundel D (2021) Conventional agriculture and not drought alters relationships between soil biota and functions. Scientific Reports, 11, 23975.
DOI PMID |
[10] | Brundrett MC (2017) Global diversity and importance of mycorrhizal and nonmycorrhizal plants. In: Biogeography of Mycorrhizal Symbiosis (ed. Tedersoo L), pp. 533-556. Springer-Verlag, New York. |
[11] | Byun C, de Blois S, Brisson J (2013) Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. Journal of Ecology, 101, 128-139. |
[12] | Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature, 427, 731-733. |
[13] | Cesarz S, Craven D, Auge H, Bruelheide H, Castagneyrol B, Gutknecht J, Hector A, Jactel H, Koricheva J, Messier C, Muys B, O’Brien MJ, Paquette A, Ponette Q, Potvin C, Reich PB, Scherer-Lorenzen M, Smith AR, Verheyen K, Eisenhauer N, Xu XF (2022) Tree diversity effects on soil microbial biomass and respiration are context dependent across forest diversity experiments. Global Ecology and Biogeography, 31, 872-885. |
[14] | Chen DM, Pan QM, Bai YF, Hu SJ, Huang JH, Wang QB, Naeem S, Elser JJ, Wu JG, Han XG (2016) Effects of plant functional group loss on soil biota and net ecosystem exchange: A plant removal experiment in the Mongolian grassland. Journal of Ecology, 104, 734-743. |
[15] | Chen QL, Ding J, Zhu YG, He JZ, Hu HW (2020) Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. Environment International, 140, 105766. |
[16] |
Chen WQ, Wang JY, Meng ZX, Xu R, Chen J, Zhang YJ, Hu TM (2020) Fertility-related interplay between fungal guilds underlies plant richness-productivity relationships in natural grasslands. New Phytologist, 226, 1129-1143.
DOI PMID |
[17] | Chen YL, Xu TL, Veresoglou SD, Hu HW, Hao ZP, Hu YJ, Liu L, Deng Y, Rillig MC, Chen BD (2017) Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biology and Biochemistry, 110, 12-21. |
[18] | Chen YX, Huang XB, Lang XD, Tang R, Zhang R, Li SF, Su JR (2023) Effects of plant diversity, soil microbial diversity, and network complexity on ecosystem multifunctionality in a tropical rainforest. Frontiers in Plant Science, 14, 1238056. |
[19] | Cheng C, Liu ZK, Zhang Q, Tian X, Ju RT, Li B, van Kleunen M, Chase JM, Wu JH (2024) Genotype diversity enhances invasion resistance of native plants via soil biotic feedbacks. Ecology Letters, 27, e14384. |
[20] |
Cheng C, Song W, Liu ZK, Li B, van Kleunen M, Wu JH (2025) Intraspecific diversity mitigates the negative soil-legacy impacts of an invasive plant. New Phytologist, 245, 1277-1287.
DOI PMID |
[21] | Craig H, Kennedy JP, Devlin DJ, Bardgett RD, Rowntree JK (2020) Effects of maternal genotypic identity and genetic diversity of the red mangrove Rhizophora mangle on associated soil bacterial communities: A field-based experiment. Ecology and Evolution, 10, 13957-13967. |
[22] | Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, Averill C, Maynard DS (2019) The global soil community and its influence on biogeochemistry. Science, 365, eaav0550. |
[23] | Dawson W, Schrama M (2016) Identifying the role of soil microbes in plant invasions. Journal of Ecology, 104, 1211-1218. |
[24] | de Vries FT, Hoffland E, van Eekeren N, Brussaard L, Bloem J (2006) Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology and Biochemistry, 38, 2092-2103. |
[25] | Degens BP, Schipper LA, Sparling GP, Vojvodic-Vukovic M (2000) Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biology and Biochemistry, 32, 189-196. |
[26] |
Delavaux CS, Smith-Ramesh LM, Kuebbing SE (2017) Beyond nutrients: A meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology, 98, 2111-2119.
DOI PMID |
[27] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541.
DOI PMID |
[28] | Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, García-Velázquez L, Hart SC, Hayes PE, He JZ, Hseu ZY, Hu HW, Kirchmair M, Neuhauser S, Pérez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang JT, Weber-Grullon L, Williams MA, Singh BK (2020) Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4, 210-220. |
[29] | Deng M, Hu S, Guo L, Jiang L, Huang Y, Schmid B, Liu C, Chang P, Li S, Liu X, Ma K, Liu L (2023) Tree mycorrhizal association types control biodiversity-productivity relationship in a subtropical forest. Science Advances, 9, eadd4468. |
[30] | Domeignoz-Horta LA, Cappelli SL, Shrestha R, Gerin S, Lohila AK, Heinonsalo J, Nelson DB, Kahmen A, Duan P, Sebag D, Verrecchia E, Laine AL (2024) Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils. Nature Communications, 15, 8065. |
[31] | Dong LZ, Yao XD, Zhang HJ, Deng YY, Hu T, Baquerizo MD, Wang W (2024) Microbial diversity is especially important for supporting soil function in low nitrogen ecosystems. Soil Biology and Biochemistry, 194, 109442. |
[32] | Dong ZH, Zhang JH, He J, Wang JY, Li YY, Ji YB, Liu KX, Wang ZG, Chen WQ (2024) Soil microbial network complexity predicts the multifunctionality of afforestation restoration ecosystems on the Loess Plateau. Acta Ecologica Sinica, 44, 2544-2560. (in Chinese with English abstract) |
[董政宏, 张君红, 何佳, 王健宇, 李玉玉, 冀泳標, 刘凯茜, 王振刚, 陈文青 (2024) 土壤微生物网络复杂性预测黄土高原造林恢复生态系统多功能性. 生态学报, 44, 2544-2560.] | |
[33] | Eagar AC, Abu PH, Brown MA, Moledor SM, Smemo KA, Phillips RP, Case AL, Blackwood CB (2024) Setting the stage for plant-soil feedback: Mycorrhizal influences over conspecific recruitment, plant and fungal communities, and coevolution. Journal of Ecology, doi: 10.1111/1365-2745.14393. |
[34] | Ebeling A, Pompe S, Baade J, Eisenhauer N, Hillebrand H, Proulx R, Roscher C, Schmid B, Wirth C, Weisser WW (2014) A trait-based experimental approach to understand the mechanisms underlying biodiversity-ecosystem functioning relationships. Basic and Applied Ecology, 15, 229-240. |
[35] |
Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP, Mommer L (2017) Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports, 7, 44641.
DOI PMID |
[36] | Eisenhauer N, Mueller K, Ebeling A, Gleixner G, Huang YY, Madaj AM, Roscher C, Weigelt A, Bahn M, Bonkowski M, Brose U, Cesarz S, Feilhauer H, Guimaraes-Steinicke C, Heintz-Buschart A, Hines J, Lange M, Meyer ST, Mohanbabu N, Mommer L, Neuhauser S, Oelmann Y, Rahmanian S, Sasaki T, Scheu S, Schielzeth H, Schmid B, Schloter M, Schulz S, Unsicker SB, Vogel C, Weisser WW, Isbell F (2024) The multiple-mechanisms hypothesis of biodiversity-stability relationships. Basic and Applied Ecology, 79, 153-166. |
[37] | Eisenhauer N, Scheu S, Jousset A (2012) Bacterial diversity stabilizes community productivity. PLoS ONE, 7, e34517. |
[38] | Eisenhauer N, Schulz W, Scheu S, Jousset A (2013) Niche dimensionality links biodiversity and invasibility of microbial communities. Functional Ecology, 27, 282-288. |
[39] | Fahey C, Flory SL (2022) Soil microbes alter competition between native and invasive plants. Journal of Ecology, 110, 404-414. |
[40] | Fahey C, Parker WC, Paquette A, Messier C, Antunes PM (2023) Soil fungal communities contribute to the positive diversity-productivity relationship of tree communities under contrasting water availability. Journal of Ecology, 111, 2023-2037. |
[41] | Fargione J, Tilman D, Dybzinski R, HilleRisLambers J, Clark C, Harpole WS, Knops JMH, Reich PB, Loreau M (2007) From selection to complementarity:Shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proceedings of the Royal Society B: Biological Sciences, 274, 871-876. |
[42] |
Faust K, Raes J (2012) Microbial interactions: From networks to models. Nature Reviews Microbiology, 10, 538-550.
DOI PMID |
[43] | Ferlian O, Cesarz S, Craven D, Hines J, Barry KE, Bruelheide H, Buscot F, Haider S, Heklau H, Herrmann S, Kühn P, Pruschitzki U, Schädler M, Wagg C, Weigelt A, Wubet T, Eisenhauer N (2018) Mycorrhiza in tree diversity- ecosystem function relationships: Conceptual framework and experimental implementation. Ecosphere, 9, e02226. |
[44] |
Fu W, Wang N, Pang F, Huang YL, Wu J, Qi SS, Dai ZC, Du DL (2017) Soil microbiota and plant invasions: Current and future. Biodiversity Science, 25, 1295-1302. (in Chinese with English abstract)
DOI |
[付伟, 王宁, 庞芳, 黄玉龙, 吴俊, 祁珊珊, 戴志聪, 杜道林 (2017) 土壤微生物与植物入侵: 研究现状与展望. 生物多样性, 25, 1295-1302.]
DOI |
|
[45] | Gan HY, Li XC, Wang YL, Lü PP, Ji NN, Yao H, Li S, Guo LD (2022) Plants play stronger effects on soil fungal than bacterial communities and co-occurrence network structures in a subtropical tree diversity experiment. Microbiology Spectrum, 10, e00134-00122. |
[46] | Gehring CA, Sthultz CM, Flores-Rentería L, Whipple AV, Whitham TG (2017) Tree genetics defines fungal partner communities that may confer drought tolerance. Proceedings of the National Academy of Sciences, USA, 114, 11169-11174. |
[47] |
Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: Potential and significance in plant stress tolerance. Frontiers in Microbiology, 7, 332.
DOI PMID |
[48] | Guerrero-Ramírez NR, Craven D, Reich PB, Ewel JJ, Isbell F, Koricheva J, Parrotta JA, Auge H, Erickson HE, Forrester DI, Hector A, Joshi J, Montagnini F, Palmborg C, Piotto D, Potvin C, Roscher C, van Ruijven J, Tilman D, Wilsey B, Eisenhauer N (2017) Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nature Ecology & Evolution, 1, 1639-1642. |
[49] | Gundale MJ, Almeida JP, Wallander H, Wardle DA, Kardol P, Nilsson MC, Fajardo A, Pauchard A, Peltzer DA, Ruotsalainen S, Mason B, Rosenstock N (2016) Differences in endophyte communities of introduced trees depend on the phylogenetic relatedness of the receiving forest. Journal of Ecology, 104, 1219-1232. |
[50] | He JZ, Li J, Zheng YM (2013) Thoughts on the microbial diversity-stability relationship in soil ecosystems. Biodiversity Science, 21, 412-421. (in Chinese with English abstract) |
[贺纪正, 李晶, 郑袁明 (2013) 土壤生态系统微生物多样性-稳定性关系的思考. 生物多样性, 21, 412-421.] | |
[51] |
Hong PB, Schmid B, De Laender F, Eisenhauer N, Zhang XW, Chen HZ, Craven D, De Boeck HJ, Hautier Y, Petchey OL, Reich PB, Steudel B, Striebel M, Thakur MP, Wang SP (2021) Biodiversity promotes ecosystem functioning despite environmental change. Ecology Letters, 25, 555-569.
DOI PMID |
[52] |
Hu WG, Ran JZ, Dong LW, Du QJ, Ji MF, Yao SR, Sun Y, Gong CM, Hou QQ, Gong HY, Chen RF, Lu JL, Xie SB, Wang ZQ, Huang H, Li XW, Xiong JL, Xia R, Wei MH, Zhao DM, Zhang YH, Li JH, Yang HX, Wang XT, Deng Y, Sun Y, Li HL, Zhang L, Chu QP, Li XW, Aqeel M, Manan A, Akram MA, Liu XH, Li R, Li F, Hou C, Liu JQ, He JS, An LZ, Bardgett RD, Schmid B, Deng JM (2021) Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nature Communications, 12, 5350.
DOI PMID |
[53] | Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer TM, Bonin C, Bruelheide H, de Luca E, Ebeling A, Griffin JN, Guo QF, Hautier Y, Hector A, Jentsch A, Kreyling J, Lanta V, Manning P, Meyer ST, Mori AS, Naeem S, Niklaus PA, Polley HW, Reich PB, Roscher C, Seabloom EW, Smith MD, Thakur MP, Tilman D, Tracy BF, van der Putten WH, van Ruijven J, Weigelt A, Weisser WW, Wilsey B, Eisenhauer N (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526, 574-577. |
[54] | Jayaramaiah RH, Martins CSC, Egidi E, Macdonald CA, Wang JT, Liu H, Reich PB, Delgado-Baquerizo M, Singh BK (2025) Soil function-microbial diversity relationship is impacted by plant functional groups under climate change. Soil Biology and Biochemistry, 200, 109623. |
[55] | Jiang P, Wang YZ, Zhang YP, Fei JC, Rong XM, Peng JW, Yin LC, Zhou X, Luo GW (2024) Enhanced productivity of maize through intercropping is associated with community composition, core species, and network complexity of abundant microbiota in rhizosphere soil. Geoderma, 442, 116786. |
[56] | Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17, 164-170. |
[57] | Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecology Letters, 3, 137-141. |
[58] | Landi P, Minoarivelo HO, Brännström Å, Hui C, Dieckmann U (2018) Complexity and stability of ecological networks: A review of the theory. Population Ecology, 60, 319-345. |
[59] |
Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6, 6707.
DOI PMID |
[60] | Lange M, Habekost M, Eisenhauer N, Roscher C, Bessler H, Engels C, Oelmann Y, Scheu S, Wilcke W, Schulze ED, Gleixner G (2014) Biotic and Abiotic Properties Mediating Plant Diversity Effects on Soil Microbial Communities in an Experimental Grassland. PLoS ONE, 9, e96182. |
[61] | Latz E, Eisenhauer N, Rall BC, Allan E, Roscher C, Scheu S, Jousset A (2012) Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. Journal of Ecology, 100, 597-604. |
[62] | Li Y, Wang J, Shen CC, Wang JC, Singh BK, Ge Y (2022) Plant diversity improves resistance of plant biomass and soil microbial communities to drought. Journal of Ecology, 110, 1656-1672. |
[63] | Li YN, Qian ZY, Li DJ (2023) Effects of tree diversity on soil microbial community in a subtropical forest in Southwest China. European Journal of Soil Biology, 116, 103490. |
[64] |
Liang MX, Johnson D, Burslem DFRP, Yu SX, Fang M, Taylor JD, Taylor AFS, Helgason T, Liu XB (2020) Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nature Communications, 11, 2636.
DOI PMID |
[65] | Liang MX, Liu XB, Parker IM, Johnson D, Zheng Y, Luo S, Gilbert GS, Yu SX (2019) Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest. Science Advances, 5, eaax5088. |
[66] | Liu L, Zhu K, Wurzburger N, Zhang J (2020) Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere, 11, e02999. |
[67] |
Liu SE, Plaza C, Ochoa-Hueso R, Trivedi C, Wang JT, Trivedi P, Zhou GY, Piñeiro J, Martins CSC, Singh BK, Delgado-Baquerizo M (2023) Litter and soil biodiversity jointly drive ecosystem functions. Global Change Biology, 29, 6276-6285.
DOI PMID |
[68] | Loranger-Merciris G, Barthes L, Gastine A, Leadley P (2006) Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems. Soil Biology and Biochemistry, 38, 2336-2343. |
[69] | Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76. |
[70] | Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA, Doebeli M, Parfrey LW (2018) Function and functional redundancy in microbial systems. Nature Ecology & Evolution, 2, 936-943. |
[71] | Luo S, Png GK, Ostle NJ, Zhou H, Hou X, Luo C, Quinton JN, Schaffner U, Sweeney C, Wang D, Wu J, Wu Y, Bardgett RD (2023) Grassland degradation-induced declines in soil fungal complexity reduce fungal community stability and ecosystem multifunctionality. Soil Biology and Biochemistry, 176, 108865. |
[72] | Luo S, Schmid B, De Deyn GB, Yu SX (2018) Soil microbes promote complementarity effects among co-existing trees through soil nitrogen partitioning. Functional Ecology, 32, 1879-1889. |
[73] |
Ma KP (2024) The Chinese Forest Biodiversity Monitoring Network (CForBio) plays a significant role in advancing Chinese ecology onto the global stage. Biodiversity Science, 32, 25039. (in Chinese with English abstract)
DOI |
[马克平 (2024) 中国森林生物多样性监测网络(CForBio)助力中国生态学走向世界. 生物多样性, 32, 25039.]
DOI |
|
[74] |
Mallon CA, Poly F, Le Roux X, Marring I, van Elsas JD, Salles JF (2015) Resource pulses can alleviate the biodiversity- invasion relationship in soil microbial communities. Ecology, 96, 915-926.
PMID |
[75] | Mariotte P, Canarini A, Dijkstra FA (2017) Stoichiometric N∶P flexibility and mycorrhizal symbiosis favour plant resistance against drought. Journal of Ecology, 105, 958-967. |
[76] |
Maron JL, Marler M, Klironomos JN, Cleveland CC (2011) Soil fungal pathogens and the relationship between plant diversity and productivity. Ecology Letters, 14, 36-41.
DOI PMID |
[77] | Marquard E, Schmid B, Roscher C, De Luca E, Nadrowski K, Weisser WW, Weigelt A (2013) Changes in the abundance of grassland species in monocultures versus mixtures and their relation to biodiversity effects. PLoS ONE, 8, e75599. |
[78] |
Marquard E, Weigelt A, Temperton VM, Roscher C, Schumacher J, Buchmann N, Fischer M, Weisser WW, Schmid B (2009) Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology, 90, 3290-3302.
PMID |
[79] |
Milcu A, Allan E, Roscher C, Jenkins T, Meyer ST, Flynn D, Bessler H, Buscot F, Engels C, Gubsch M, König S, Lipowsky A, Loranger J, Renker C, Scherber C, Schmid B, Thébault E, Wubet T, Weisser WW, Scheu S, Eisenhauer N (2013) Functionally and phylogenetically diverse plant communities key to soil biota. Ecology, 94, 1878-1885.
PMID |
[80] | Mittelbach GG, McGill BJ (2019) Biodiversity and ecosystem functioning. In: Community Ecology (eds Mittelbach GG, McGill BJ), pp. 38-60. Oxford University Press, New York. |
[81] |
Mommer L, Cotton TEA, Raaijmakers JM, Termorshuizen AJ, van Ruijven J, Hendriks M, van Rijssel SQ, van de Mortel JE, van der Paauw JW, Schijlen EGWM, Smit-Tiekstra AE, Berendse F, de Kroon H, Dumbrell AJ (2018) Lost in diversity: The interactions between soil-borne fungi, biodiversity and plant productivity. New Phytologist, 218, 542-553.
DOI PMID |
[82] | Montoya JM, Pimm SL, Solé RV (2006) Ecological networks and their fragility. Nature, 442, 259-264. |
[83] |
Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, de Hollander M, Soto RL, Bouffaud M-L, Buée M, Dimmers W, Duyts H, Geisen S, Girlanda M, Griffiths RI, Jørgensen H-B, Jensen J, Plassart P, Redecker D, Schmelz RM, Schmidt O, Thomson BC, Tisserant E, Uroz S, Winding A, Bailey MJ, Bonkowski M, Faber JH, Martin F, Lemanceau P, de Boer W, van Veen JA, van der Putten WH(2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 8, 14349.
DOI PMID |
[84] | Oliver TH, Heard MS, Isaac NJB, Roy DB, Procter D, Eigenbrod F, Freckleton R, Hector A, Orme CDL, Petchey OL, Proença V, Raffaelli D, Suttle KB, Mace GM, Martín-López B, Woodcock BA, Bullock JM (2015) Biodiversity and resilience of ecosystem functions. Trends in Ecology & Evolution, 30, 673-684. |
[85] | Pellkofer S, van der Heijden MGA, Schmid B, Wagg C (2016) Soil communities promote temporal stability and species asynchrony in experimental grassland communities. PLoS ONE, 11, e0148015. |
[86] | Pennekamp F, Pontarp M, Tabi A, Altermatt F, Alther R, Choffat Y, Fronhofer EA, Ganesanandamoorthy P, Garnier A, Griffiths JI, Greene S, Horgan K, Massie TM, Mächler E, Palamara GM, Seymour M, Petchey OL (2018) Biodiversity increases and decreases ecosystem stability. Nature, 563, 109-112. |
[87] |
Porazinska DL, Farrer EC, Spasojevic MJ, Sartwell SA, Smith JG, White CT, King AJ, Suding KN, Schmidt SK (2018) Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology, 99, 1942-1952.
DOI PMID |
[88] |
Powell JR, Rillig MC (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist, 220, 1059-1075.
DOI PMID |
[89] |
Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD, Cleland EE, DeCrappeo NM, DeLorenze E, Hagenah N, Hautier Y, Hofmockel KS, Kirkman KP, Knops JMH, La Pierre KJ, MacDougall AS, McCulley RL, Mitchell CE, Risch AC, Schuetz M, Stevens CJ, Williams RJ, Fierer N (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 18, 85-95.
DOI PMID |
[90] | Raza W, Jiang GF, Eisenhauer N, Huang YS, Wei Z, Shen QR, Kowalchuk GA, Jousset A (2024) Microbe-induced phenotypic variation leads to overyielding in clonal plant populations. Nature Ecology & Evolution, 8, 392-399. |
[91] |
Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytologist, 170, 445-457.
DOI PMID |
[92] | Rettenmaier H, Lingens F (1985) Purification and some properties of two isofunctional juglone hydroxylases from Pseudomonas putida J1. Biological Chemistry Hoppe- Seyler, 366, 637-646. |
[93] | Schmid MW, Hahl T, van Moorsel SJ, Wagg C, De Deyn GB, Schmid B (2019) Feedbacks of plant identity and diversity on the diversity and community composition of rhizosphere microbiomes from a long-term biodiversity experiment. Molecular Ecology, 28, 863-878. |
[94] |
Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology, 92, 296-303.
PMID |
[95] | Shen CC, Wang J, Jing ZW, Qiao NH, Xiong C, Ge Y (2022) Plant diversity enhances soil fungal network stability indirectly through the increase of soil carbon and fungal keystone taxa richness. Science of the Total Environment, 818, 151737. |
[96] | Sikes BA, Cottenie K, Klironomos JN (2009) Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. Journal of Ecology, 97, 1274-1280. |
[97] | Simard SW, Durall DM (2004) Mycorrhizal networks: A review of their extent, function, and importance. Canadian Journal of Botany, 82, 1140-1165. |
[98] | Smith SE, Read DJ (2010) Mycorrhizal Symbiosis, 3rd edn. Academic Press, Oxford. |
[99] | Soliveres S, van der Plas F, Manning P, Prati D, Gossner MM, Renner SC, Alt F, Arndt H, Baumgartner V, Binkenstein J, Birkhofer K, Blaser S, Blüthgen N, Boch S, Böhm S, Börschig C, Buscot F, Diekötter T, Heinze J, Hölzel N, Jung K, Klaus VH, Kleinebecker T, Klemmer S, Krauss J, Lange M, Morris EK, Müller J, Oelmann Y, Overmann J, Pasalic E, Rillig MC, Schaefer HM, Schloter M, Schmitt B, Schöning I, Schrumpf M, Sikorski J, Socher SA, Solly EF, Sonnemann I, Sorkau E, Steckel J, Steffan-Dewenter I, Stempfhuber B, Tschapka M, Türke M, Venter PC, Weiner CN, Weisser WW, Werner M, Westphal C, Wilcke W, Wolters V, Wubet T, Wurst S, Fischer M, Allan E (2016) Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 536, 456-459. |
[100] |
Song CY, Liu CC, Guo K (2023) Plan and construction progress of the Steppe and Desert Plants Diversity Observation Network. Biodiversity Science, 31, 23383. (in Chinese with English abstract)
DOI |
[宋创业, 刘长成, 郭柯 (2023) 草原和荒漠植物多样性监测网规划与建设进展. 生物多样性, 31, 23383.]
DOI |
|
[101] |
Spence LA, Dickie IA, Coomes DA (2011) Arbuscular mycorrhizal inoculum potential: A mechanism promoting positive diversity-invasibility relationships in mountain beech forests in New Zealand? Mycorrhiza, 21, 309-314.
DOI PMID |
[102] | Sprent JI, Parsons R (2000) Nitrogen fixation in legume and non-legume trees. Field Crops Research, 65, 183-196. |
[103] | Tamburini G, Bommarco R, Wanger TC, Kremen C, van der Heijden MGA, Liebman M, Hallin S (2020) Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances, 6, eaba1715. |
[104] |
Tao SQ, Veen GF, Zhang NL, Yu TH, Qu LY (2023) Tree and shrub richness modifies subtropical tree productivity by regulating the diversity and community composition of soil bacteria and archaea. Microbiome, 11, 261.
DOI PMID |
[105] | Tao ZB, Zhang KP, Callaway RM, Siemann E, Liu YJ, Huang W (2024) Native plant diversity generates microbial legacies that either promote or suppress non-natives, depending on drought history. Ecology Letters, 27, e14504. |
[106] | Tedersoo L, Bahram M, Cajthaml T, Polme S, Hiiesalu I, Anslan S, Harend H, Buegger F, Pritsch K, Koricheva J, Abarenkov K (2016) Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. The ISME Journal, 10, 346-362. |
[107] | Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Poldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science, 346, 1256688. |
[108] |
Thakur MP, Milcu A, Manning P, Niklaus PA, Roscher C, Power S, Reich PB, Scheu S, Tilman D, Ai FX, Guo HY, Ji R, Pierce S, Ramirez NG, Richter AN, Steinauer K, Strecker T, Vogel A, Eisenhauer N (2015) Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Global Change Biology, 21, 4076-4085.
DOI PMID |
[109] |
Thibaut LM, Connolly SR (2013) Understanding diversity- stability relationships: Towards a unified model of portfolio effects. Ecology Letters, 16, 140-150.
DOI PMID |
[110] | Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature, 367, 363-365. |
[111] |
Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845.
DOI PMID |
[112] |
Tobner CM, Paquette A, Reich PB, Gravel D, Messier C (2014) Advancing biodiversity-ecosystem functioning science using high-density tree-based experiments over functional diversity gradients. Oecologia, 174, 609-621.
DOI PMID |
[113] | Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu HW, Anderson IC, Jeffries TC, Zhou JZ, Singh BK (2016) Microbial regulation of the soil carbon cycle: Evidence from gene-enzyme relationships. The ISME Journal, 10, 2593-2604. |
[114] |
van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310.
DOI PMID |
[115] | van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72. |
[116] | van der Heijden MGA, Wagg C (2013) Soil microbial diversity and agro-ecosystem functioning. Plant and Soil, 363, 1-5. |
[117] | van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, Atkinson B, Benham S, Carroll C, Cools N, De Vos B, Dietrich H-P, Eichhorn J, Gehrmann J, Grebenc T, Gweon HS, Hansen K, Jacob F, Kristöfel F, Lech P, Manninger M, Martin J, Meesenburg H, Merilä P, Nicolas M, Pavlenda P, Rautio P, Schaub M, Schröck H-W, Seidling W, Šrámek V, Thimonier A, Thomsen IM, Titeux H, Vanguelova E, Verstraeten A, Vesterdal L, Waldner P, Wijk S, Zhang Y, Žlindra D, Bidartondo MI (2018) Environment and host as large-scale controls of ectomycorrhizal fungi. Nature, 558, 243-248. |
[118] | van Ruijven J, Ampt E, Francioli D, Mommer L (2020) Do soil-borne fungal pathogens mediate plant diversity- productivity relationships? Evidence and future opportunities. Journal of Ecology, 108, 1810-1821. |
[119] | Vukicevich E, Lowery T, Bowen P, Urbez-Torres JR, Hart M (2016) Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agronomy for Sustainable Development, 36, 48. |
[120] | Wagg C, Barendregt C, Jansa J, Heijden MGAvd(2015) Complementarity in both plant and mycorrhizal fungal communities are not necessarily increased by diversity in the other. Journal of Ecology, 103, 1233-1244. |
[121] | Wagg C, Bender SF, Widmer F, van der Heijden MGA(2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA 111, 5266-5270. |
[122] | Wagg C, Hautier Y, Pellkofer S, Banerjee S, Schmid B, van der Heijden MGA(2021) Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning. eLife, 10, e62813. |
[123] |
Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MGA(2011) Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology, 92, 1303-1313.
PMID |
[124] |
Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA (2019) Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 10, 4841.
DOI PMID |
[125] | Wang B, Wang SF, Wu LJ, Wu Y, Wang SP, Bai YF, Chen DM (2024) Temporal asynchrony of plant and soil biota determines ecosystem multifunctional stability. Global Change Biology, 30, e17483. |
[126] | Wang GZ, Schultz P, Tipton A, Zhang JL, Zhang FS, Bever JD (2019) Soil microbiome mediates positive plant diversity- productivity relationships in late successional grassland species. Ecology Letters, 22, 1221-1232. |
[127] | Wang Y, Wang JM, Qu MJ, Shao S, Li JW (2023) Soil fungal guilds as important integrators linking plant richness and carbon, nitrogen and phosphorus stocks in oasis-desert ecosystems. Soil Biology and Biochemistry, 177, 108930. |
[128] |
Wardle DA (2006) The influence of biotic interactions on soil biodiversity. Ecology Letters, 9, 870-886.
PMID |
[129] |
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
DOI PMID |
[130] |
Wright SJ (2002) Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia, 130, 1-14.
DOI PMID |
[131] |
Wu LJ, Chen HS, Chen DM, Wang SP, Wu Y, Wang B, Liu SE, Yue LY, Yu J, Bai YF (2023) Soil biota diversity and plant diversity both contributed to ecosystem stability in grasslands. Ecology Letters, 26, 858-868.
DOI PMID |
[132] | Xi NX, Chen DX, Bahn M, Wu HY, Chu CJ, Cadotte MW, Bloor JMG (2022) Drought soil legacy alters drivers of plant diversity-productivity relationships in oldfield systems. Science Advances, 8, eabn3368. |
[133] | Xi NX, Zhang YY, Zhou SR (2023) Plant-soil feedbacks in community ecology. Chinese Journal of Plant Ecology, 47, 170-182. (in Chinese with English abstract) |
[席念勋, 张原野, 周淑荣 (2023) 群落生态学中的植物-土壤反馈研究. 植物生态学报, 47, 170-182.]
DOI |
|
[134] | Xiao WY, Chen C, Chen XL, Huang ZQ, Chen HYH (2020) Functional and phylogenetic diversity promote litter decomposition across terrestrial ecosystems. Global Ecology and Biogeography, 29, 2261-2272. |
[135] |
Yang GW, Ryo M, Roy J, Lammel DR, Ballhausen MB, Jing X, Zhu XF, Rillig MC (2022) Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms. Nature Communications, 13, 4260.
DOI PMID |
[136] |
Yang GW, Wagg C, Veresoglou SD, Hempel S, Rillig MC (2018) How soil biota drive ecosystem stability. Trends in Plant Science, 23, 1057-1067.
DOI PMID |
[137] |
Yang T, Adams JM, Shi Y, He JS, Jing X, Chen LT, Tedersoo L, Chu HY (2017) Soil fungal diversity in natural grasslands of the Tibetan Plateau: Associations with plant diversity and productivity. New Phytologist, 215, 756-765.
DOI PMID |
[138] | Zhang C, Lei SL, Wu HY, Liao LR, Wang XT, Zhang L, Liu GB, Wang GL, Fang LC, Song ZL (2024) Simplified microbial network reduced microbial structure stability and soil functionality in alpine grassland along a natural aridity gradient. Soil Biology and Biochemistry, 191, 109366. |
[139] | Zhang C, Wang J, Liu GB, Song ZL, Fang LC (2019) Impact of soil leachate on microbial biomass and diversity affected by plant diversity. Plant and Soil, 439, 505-523. |
[140] | Zhang GL, Bai JH, Tebbe CC, Huang LB, Jia J, Wang W, Wang X, Yu L, Zhao QQ (2021) Spartina alterniflora invasions reduce soil fungal diversity and simplify co-occurrence networks in a salt marsh ecosystem. Science of the Total Environment, 758, 143667. |
[141] | Zhang ZJ, Liu YJ, Brunel C, van Kleunen M (2020) Evidence for Elton’s diversity-invasibility hypothesis from belowground. Ecology, 101, e03187. |
[142] | Zhou T, Liang GP, Reich PB, Delgado-Baquerizo M, Wang CK, Zhou ZH (2024) Promoting effect of plant diversity on soil microbial functionality is amplified over time. One Earth, 7, 2139-2148. |
[143] |
Zhou ZH, Wang CK, Luo YQ (2020) Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications, 11, 3072.
DOI PMID |
[1] | Quanfeng Yang, Yanjie Tang, Haijun Xiao, Ying Wang, Rong Zhang, Fang Ouyang, Shuhua Wei. The cascading effects of plant diversity-grasshoppers-carabids and their impacts on primary productivity in different grassland types of Ningxia [J]. Biodiv Sci, 2025, 33(6): 25021-. |
[2] | Zhang Haobin, Xiao Lu, Liu Yanjie. Effects of artificial light at night on the diversity and growth of invasive alien and native plants [J]. Biodiv Sci, 2025, 33(4): 24553-. |
[3] | Zihong Chen, Yifei Zhang, Kai Chen, Jianying Chen, Ling Xu. Species diversity of entomopathogenic fungi and the influencing factors in the Southern Gaoligong Mountains [J]. Biodiv Sci, 2025, 33(1): 24228-. |
[4] | Jiali Lian, Jing Chen, Xueqin Yang, Ying Zhao, Xu Luo, Cui Han, Yaxin Zhao, Jianping Li. Responses of desert steppe plant diversity and microbial diversity to precipitation change [J]. Biodiv Sci, 2024, 32(6): 24044-. |
[5] | Fengming Wan, Huawei Wan, Zhiru Zhang, Jixi Gao, Chenxi Sun, Yongcai Wang. The application potential of unmanned aerial vehicle surveys in grassland plant diversity [J]. Biodiv Sci, 2024, 32(3): 23381-. |
[6] | Naipeng Zhang, Hongru Liang, Yan Zhang, Chao Sun, Yong Chen, Lulu Wang, Jiangbao Xia, FangLei Gao. Effects of soil type and groundwater depth on spatial differentiation of typical salt marsh plant communities in the Yellow River Delta [J]. Biodiv Sci, 2024, 32(2): 23370-. |
[7] | Rongjiang Zhao, Jihua Wu, Weiming He, Caiyun Zhao, Bo Zhou, Bo Li, Qiang Yang. Soil biodiversity and exotic plant invasions: Progress and perspectives [J]. Biodiv Sci, 2024, 32(11): 24243-. |
[8] | Chen-Kun Jiang, Wen-Bin Yu, Guang-Yuan Rao, Huaicheng Li, Julien B. Bachelier, Hartmut H. Hilger, Theodor C. H. Cole. Plant Phylogeny Posters—An educational project on plant diversity from an evolutionary perspective [J]. Biodiv Sci, 2024, 32(11): 24210-. |
[9] | Zheng Yin, Naili Zhang, Chunyu Zhang, Xiuhai Zhao. Effects of woody plant mycorrhizal types on understory herb diversity in temperate forests at different successional stages in Changbai Mountains [J]. Biodiv Sci, 2024, 32(1): 23337-. |
[10] | Yousheng Chen, Zhuqiu Song, Ran Wei, Yan Luo, Wenli Chen, Fusheng Yang, Lianming Gao, Yuan Xu, Zhuoxin Zhang, Pengcheng Fu, Chunlei Xiang, Huanchong Wang, Jiachen Hao, Shiyong Meng, Lei Wu, Bo Li, Shengxiang Yu, Shuren Zhang, Li He, Xinqiang Guo, Wenguang Wang, Yihua Tong, Qi Gao, Wenqun Fei, Youpai Zeng, Lin Bai, Zichao Jin, Xingjie Zhong, Buyun Zhang, Siyi Du. A dataset on inventory and geographical distribution of vascular plants in Xizang, China [J]. Biodiv Sci, 2023, 31(9): 23188-. |
[11] | Zhuqiu Song, Wen Ye, Shiyong Dong, Zichao Jin, Xingjie Zhong, Zhen Wang, Buyun Zhang, Yechun Xu, Wenli Chen, Shijin Li, Gang Yao, Zhoufeng Xu, Shuai Liao, Yihua Tong, Youpai Zeng, Yunbao Zeng, Yousheng Chen. A dataset on inventory and geographical distributions of higher plants in Guangdong, China [J]. Biodiv Sci, 2023, 31(9): 23177-. |
[12] | Yun Han, Xiaofeng Chi, Jingya Yu, Xujie Ding, Shilong Chen, Faqi Zhang. A checklist of wild vascular plants in Qinghai, China [J]. Biodiv Sci, 2023, 31(9): 23280-. |
[13] | Xiaohua Zhu, Cheng Gao, Cong Wang, Peng Zhao. Research progress on the effect of urea on bacterial and fungal diversity in soil [J]. Biodiv Sci, 2023, 31(6): 22636-. |
[14] | Caiqun Liang, Yukai Chen, Xiaobo Yang, Kai Zhang, Donghai Li, Yuexin Jiang, Jinghan Li, Chongyang Wang, Shunwei Zhang, Zicheng Zhu. A dataset on inventory and geographical distributions of wild vascular plants in Hainan Province, China [J]. Biodiv Sci, 2023, 31(6): 23067-. |
[15] | Shiyu Li, Yiqi Zhang, Pu Zou, Zulin Ning, Jingping Liao. Ex situ conservation of plant diversity status and suggestions for the development of botanical gardens in Guangdong Province [J]. Biodiv Sci, 2023, 31(6): 22647-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn