Biodiv Sci ›› 2024, Vol. 32 ›› Issue (12): 24230. DOI: 10.17520/biods.2024230 cstr: 32101.14.biods.2024230
• Original Papers • Previous Articles Next Articles
Xingyu Wang1,2, Jinghui Meng1,*(), Siyuan Ren3,*(
), Yan Zhu2,*(
)(
)
Received:
2024-06-11
Accepted:
2024-08-11
Online:
2024-12-20
Published:
2025-01-24
Contact:
E-mail: Supported by:
Xingyu Wang, Jinghui Meng, Siyuan Ren, Yan Zhu. Relationship between biodiversity and aboveground biomass in the warm temperate deciduous broad-leaved forest of Donglingshan, Beijing[J]. Biodiv Sci, 2024, 32(12): 24230.
变量 Variables | 范围 Range | 平均值 Mean | 标准偏差 Standard deviation |
---|---|---|---|
凹凸度 Convexity | -26.72至30.55 | 0.06 | 11.78 |
海拔 Elevation (m) | 1,335.97-1,406.54 | 1,380.11 | 18.56 |
林分密度 Stand density | 56-176 | 115.48 | 32.83 |
物种丰富度 Species richness | 6-13 | 9.00 | 2.06 |
Pielou均匀度指数 Pielou evenness index | 0.50-0.93 | 0.75 | 0.10 |
功能丰富度 FRic | 0.11-7.83 | 3.41 | 3.26 |
功能离散度 FDis | 1.38-2.57 | 2.04 | 0.34 |
比叶面积群落加权平均值 CWM.SLA | 200.46-258.34 | 233.11 | 31.84 |
木材密度群落加权平均值 CWM.WD | 0.59-0.69 | 0.63 | 0.03 |
胸径Shannon指数 DBH Shannon index | 0.66-0.69 | 0.68 | 0.01 |
Table 1 The statistical information of predictor variables in the 1 ha plot of secondary forest in Donglingshan, Beijing
变量 Variables | 范围 Range | 平均值 Mean | 标准偏差 Standard deviation |
---|---|---|---|
凹凸度 Convexity | -26.72至30.55 | 0.06 | 11.78 |
海拔 Elevation (m) | 1,335.97-1,406.54 | 1,380.11 | 18.56 |
林分密度 Stand density | 56-176 | 115.48 | 32.83 |
物种丰富度 Species richness | 6-13 | 9.00 | 2.06 |
Pielou均匀度指数 Pielou evenness index | 0.50-0.93 | 0.75 | 0.10 |
功能丰富度 FRic | 0.11-7.83 | 3.41 | 3.26 |
功能离散度 FDis | 1.38-2.57 | 2.04 | 0.34 |
比叶面积群落加权平均值 CWM.SLA | 200.46-258.34 | 233.11 | 31.84 |
木材密度群落加权平均值 CWM.WD | 0.59-0.69 | 0.63 | 0.03 |
胸径Shannon指数 DBH Shannon index | 0.66-0.69 | 0.68 | 0.01 |
Fig. 1 Bivariate linear regression relationship between Pielou evenness index, functional dispersion (FDis), community weighted mean trait value of specific leaf area (CWM.SLA), DBH Shannon index, stand density (Stand.density), elevation (Elevation) and aboveground biomass (AGB) in the secondary forest in Donglingshan, Beijing. The solid line represents the fitted straight line obtained under the linear regression model, and the gray area represents the 95% confidence interval of the model. R2 and P are the adjusted R2 and significance of the whole regression model, respectively.
Fig. 2 Relative effects of predictors on aboveground biomass of the secondary forest plot in Donglingshan, Beijing. Based on stepwise regression analysis, the predictors were selected for inclusion in the model, and the predictors of five dimensions included: species diversity, functional diversity, structural diversity, stand density, and topography. Pielou evenness index (Species.evenness) represents species diversity, functional dispersion (FDis) and community weighted mean trait value of specific leaf area (CWM.SLA) represent functional diversity; DBH Shannon index (DBH.Shannon.index) represents structural diversity; stand density (Stand.density) represents the distribution of forest stands within the plot; elevation represents topography. The R2 was estimated based on adjusted R2.
Fig. 3 Structural equation models (SEM) of biotic and abiotic factors and aboveground biomass. The model accounting for the direct and indirect effects of elevation, pielou evenness index, functional dispersion (FDis), community weighted mean trait value of specific leaf area (CWM.SLA), DBH Shannon index and stand density on aboveground biomass (AGB). Arrows represent the flow of causality, solid and dashed lines indicate the strength of the effect, blue indicates a positive correlation, and red indicates a negative correlation. Number and its associated asterisks are standardized path coefficient and significant level. The model was evaluated using the comparative fit index (CFI) and the standardized residual mean square root (SRMR). * P < 0.05; ** P < 0.01; *** P < 0.001.
解释变量 Explanatory variable | 对地上生物量的 作用路径 Pathway to productivity | 结构方程模型 SEM | |
---|---|---|---|
影响效应 Impact effect | P | ||
海拔 Elevation | 直接效应 Direct effect | -0.24 | < 0.001 |
间接效应 Indirect effect | -0.26 | < 0.01 | |
总效应 Total effect | -0.50 | < 0.001 | |
林分密度 Stand density | 直接效应 Direct effect | 0.41 | < 0.001 |
间接效应 Indirect effect | -0.19 | < 0.01 | |
总效应 Total effect | 0.22 | < 0.001 | |
Pielou均匀度指数 Pielou evenness index | 直接效应 Direct effect | 0.46 | < 0.001 |
间接效应 Indirect effect | -0.23 | < 0.001 | |
总效应 Total effect | 0.23 | < 0.001 | |
功能离散度 FDis | 直接效应 Direct effect | -0.36 | < 0.001 |
总效应 Total effect | -0.36 | < 0.001 | |
比叶面积群落加权 平均值 CWM.SLA | 直接效应 Direct effect | 0.51 | < 0.001 |
总效应 Total effect | 0.51 | < 0.001 | |
胸径Shannon指数 DBH Shannon index | 直接效应 Direct effect | 0.44 | < 0.001 |
总效应 Total effect | 0.44 | < 0.001 |
Table 2 Direct, indirect, and total standardized effects of predictor variables on the aboveground biomass in our structural equation model (SEM). FDis, Functional dispersion; CWM.SLA, Community weighted mean trait value of specific leaf area.
解释变量 Explanatory variable | 对地上生物量的 作用路径 Pathway to productivity | 结构方程模型 SEM | |
---|---|---|---|
影响效应 Impact effect | P | ||
海拔 Elevation | 直接效应 Direct effect | -0.24 | < 0.001 |
间接效应 Indirect effect | -0.26 | < 0.01 | |
总效应 Total effect | -0.50 | < 0.001 | |
林分密度 Stand density | 直接效应 Direct effect | 0.41 | < 0.001 |
间接效应 Indirect effect | -0.19 | < 0.01 | |
总效应 Total effect | 0.22 | < 0.001 | |
Pielou均匀度指数 Pielou evenness index | 直接效应 Direct effect | 0.46 | < 0.001 |
间接效应 Indirect effect | -0.23 | < 0.001 | |
总效应 Total effect | 0.23 | < 0.001 | |
功能离散度 FDis | 直接效应 Direct effect | -0.36 | < 0.001 |
总效应 Total effect | -0.36 | < 0.001 | |
比叶面积群落加权 平均值 CWM.SLA | 直接效应 Direct effect | 0.51 | < 0.001 |
总效应 Total effect | 0.51 | < 0.001 | |
胸径Shannon指数 DBH Shannon index | 直接效应 Direct effect | 0.44 | < 0.001 |
总效应 Total effect | 0.44 | < 0.001 |
[1] | Ali A, Chen HYH, You WH, Yan ER (2019) Multiple abiotic and biotic drivers of aboveground biomass shift with forest stratum. Forest Ecology and Management, 436, 1-10. |
[2] | Ali A, Mattsson E (2019) Wood density is a sustainability indicator for the management of dry zone homegarden agroforests: Evidences from biodiversity-ecosystem function relationships. Ecological Indicators, 105, 474-482. |
[3] | Ali A, Yan ER, Chen HYH, Chang SX, Zhao YT, Yang XD, Xu MS (2016) Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences, 13, 4627-4635. |
[4] | Boyden SB, Reich PB, Puettmann KJ, Baker TR (2009) Effects of density and ontogeny on size and growth ranks of three competing tree species. Journal of Ecology, 97, 277-288. |
[5] | Cadotte MW, Tucker CM (2018) Difficult decisions: Strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biological Conservation, 225, 128-133. |
[6] | Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature, 486, 59-67. |
[7] |
Chang LW, Zelený D, Li CF, Chiu ST, Hsieh CF (2013) Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology, 94, 2145-2151.
PMID |
[8] | Chen LZ (1997) The Study on Structure and Function of Forest in Warm Temperate Zone. Science Press, Beijing. (in Chinese) |
[陈灵芝 (1997) 暖温带森林生态系统结构与功能的研究. 科学出版社, 北京.] | |
[9] | Chen XL, Chen HYH, Searle EB, Chen C, Reich PB (2021) Negative to positive shifts in diversity effects on soil nitrogen over time. Nature Sustainability, 4, 225-232. |
[10] |
Chen YX, Wright SJ, Muller-Landau HC, Hubbell SP, Wang YF, Yu SX (2016) Positive effects of neighborhood complementarity on tree growth in a Neotropical forest. Ecology, 97, 776-785.
PMID |
[11] | Chisholm RA, Muller-Landau HC, Rahman KA, Bebber DP, Bin Y, Bohlman SA, Bourg NA, Brinks J, Bunyavejchewin S, Butt N, Cao HL, Cao M, Cárdenas D, Chang LW, Chiang JM, Chuyong G, Condit R, Dattaraja HS, Davies S, Duque A, Fletcher C, Gunatilleke N, Gunatilleke S, Hao ZQ, Harrison RD, Howe R, Hsieh CF, Hubbell SP, Itoh A, Kenfack D, Kiratiprayoon S, Larson AJ, Lian JY, Lin DM, Liu HF, Lutz JA, Ma KP, Malhi Y, McMahon S, McShea W, Meegaskumbura M, Razman SM, Morecroft MD, Nytch CJ, Oliveira A, Parker GG, Pulla S, Punchi-Manage R, Romero-Saltos H, Sang WG, Schurman J, Su SH, Sukumar R, Sun IF, Suresh HS, Tan S, Thomas D, Thomas S, Thompson J, Valencia R, Wolf A, Yap S, Ye WH, Yuan ZQ, Zimmerman JK (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. Journal of Ecology, 101, 1214-1224. |
[12] | Condit R (1995) Research in large, long-term tropical forest plots. Trends in Ecology & Evolution, 10, 18-22. |
[13] | Condit R (1998) Tropical Forest Census Plots. Springer, Berlin. |
[14] | Cornelissen JHC, Cerabolini B, Castro-Díez P, Villar-Salvador P, Montserrat-Martí G, Puyravaud JP, Maestro M, Werger MJA, Aerts R (2003) Functional traits of woody plants: Correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science, 14, 311-322. |
[15] |
Dănescu A, Albrecht AT, Bauhus J (2016) Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia, 182, 319-333.
DOI PMID |
[16] |
Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecology Letters, 13, 1030-1040.
DOI PMID |
[17] |
Fahey RT, Fotis AT, Woods KD (2015) Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests. Ecological Applications, 25, 834-847.
PMID |
[18] | FAO (Food and Agriculture Organization of the United Nations) (2015) Global Forest Resources Assessment 2015: How are the World’s Forests Changing? https://www.fao.org/forest-resources-assessment/past-assessments/fra-2015/en/. (accessed on 2024-05-25) |
[19] |
Feng YH, Schmid B, Loreau M, Forrester DI, Fei SL, Zhu JX, Tang ZY, Zhu JL, Hong PB, Ji CJ, Shi Y, Su HJ, Xiong XY, Xiao J, Wang SP, Fang JY (2022) Multispecies forest plantations outyield monocultures across a broad range of conditions. Science, 376, 865-868.
DOI PMID |
[20] |
Fichtner A, Härdtle W, Bruelheide H, Kunz M, Li Y, von Oheimb G (2018) Neighbourhood interactions drive overyielding in mixed-species tree communities. Nature Communications, 9, 1144.
DOI PMID |
[21] | Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreño-Rocabado G, Casanoves F, Díaz S, Velepucha PE, Fernandez F, Licona JC, Lorenzo L, Negret BS, Vaz M, Poorter L (2015) Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103, 191-201. |
[22] | Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. Forest Ecology and Management, 312, 282-292. |
[23] | Forrester DI, Bauhus J (2016) A review of processes behind diversity-productivity relationships in forests. Current Forestry Reports, 2, 45-61. |
[24] | Forrester DI, Kohnle U, Albrecht AT, Bauhus J (2013) Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. Forest Ecology and Management, 304, 233-242. |
[25] | Fotis AT, Murphy SJ, Ricart RD, Krishnadas M, Whitacre J, Wenzel JW, Queenborough SA, Comita LS (2018) Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. Journal of Ecology, 106, 561-570. |
[26] | Fox JW (2005) Interpreting the ‘selection effect’ of biodiversity on ecosystem function. Ecology Letters, 8, 846-856. |
[27] | Fox JW, Monette G (1992) Generalized Collinearity Diagnostics. Journal of the American Statistical Association, 87, 178-183. |
[28] | Franklin JF (1988) Structural and Functional Diversity in Temperate Forests. Biodiversity National Academy Press, Washington, DC. |
[29] | Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, Cahill J, Carlyle CN, Campetella G, Chelli S, Cohen O, Csergo AM, Díaz S, Enrico L, Ensing D, Fidelis A, Fridley JD, Foster B, Garris H, Goheen JR, Henry HAL, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long RJ, Manning P, Mitchell R, Moora M, Müller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang ZH, Stahlmann R, Stotz GC, Sugiyama SI, Szentes S, Thompson D, Tungalag R, Undrakhbold S, van Rooyen M, Wellstein C, Wilson JB, Zupo T (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349, 302-305. |
[30] | Gao XM, Wang W, Du XJ, Ma KP (2001) Size structure, ecological significance and population origin of Quercus wutaishanica forest in Beijing mountainous area. Acta Phytoecologica Sinica, 25, 673-678. (in Chinese with English abstract) |
[高贤明, 王巍, 杜晓军, 马克平 (2001) 北京山区辽东栎林的径级结构、种群起源及生态学意义. 植物生态学报, 25, 673-678.] | |
[31] | García-Palacios P, Ashley Shaw E, Wall DH, Hättenschwiler S (2017) Contrasting mass-ratio vs. niche complementarity effects on litter C and N loss during decomposition along a regional climatic gradient. Journal of Ecology, 105, 968-978. |
[32] | Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637. |
[33] | Grace JB, Michael Anderson T, Seabloom EW, Borer ET, Adler PB, Stanley Harpole W, Hautier Y, Hillebrand H, Lind EM, Pärtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Hector A, Knops JMH, MacDougall AS, Melbourne BA, Morgan JW, Orrock JL, Prober SM, Smith MD (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529, 390-393. |
[34] | Grime JP (1998) Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86, 902-910. |
[35] | Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Huang FZ, Wen SJ, Li DX, He YL, Li XK (2016) Responses of spatial pattern of woody plants’ basal area to topographic factors in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China. Biodiversity Science, 24, 30-39. (in Chinese with English abstract) |
[郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄甫昭, 文淑均, 李冬兴, 何运林, 李先锟 (2016) 喀斯特季节性雨林木本植物胸高断面积分布格局及其对地形因子的响应. 生物多样性, 24, 30-39.]
DOI |
|
[36] | Hao MH, Dai Y, Yue QM, Fan CY, Zhang CY (2022) Relationship between functional diversity of broad-leaved Korean pine forest and forest carbon sink function. Journal of Beijing Forestry University, 44(10), 68-76. (in Chinese with English abstract) |
[郝珉辉, 代莹, 岳庆敏, 范春雨, 张春雨 (2022) 阔叶红松林功能多样性与森林碳汇功能关系. 北京林业大学学报, 44(10), 68-76.] | |
[37] | Hao MH, Ganeshaiah KN, Zhang CY, Zhao XH, von Gadow K (2019) Discriminating among forest communities based on taxonomic, phylogenetic and trait distances. Forest Ecology and Management, 440, 40-47. |
[38] | Hao MH, Messier C, Geng Y, Zhang CY, Zhao XH, von Gadow K (2020) Functional traits influence biomass and productivity through multiple mechanisms in a temperate secondary forest. European Journal of Forest Research, 139, 959-968. |
[39] |
Hao MH, Zhang CY, Zhao XH, von Gadow K (2018) Functional and phylogenetic diversity determine woody productivity in a temperate forest. Ecology and Evolution, 8, 2395-2406.
DOI PMID |
[40] |
Hardiman BS, Bohrer G, Gough CM, Vogel CS, Curtis PS (2011) The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology, 92, 1818-1827.
PMID |
[41] | Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117. |
[42] |
Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology, 89, 1510-1520.
PMID |
[43] | Hordijk I, Maynard DS, Hart SP, Mo LD ter Steege H, Liang JJ, de-Miguel S, Nabuurs GJ, Reich PB, Abegg M, ……, Wittmann F, Wortel V, Zagt R, Zawila-Niedzwiecki T, Zhang CY, Zhao XH, Zhou M, Zhu ZX, Zo-Bi IC, Crowther TW (2023) Evenness mediates the global relationship between forest productivity and richness. Journal of Ecology, 111, 1308-1326. |
[44] | Hou JH, Huang JH, Ma KP (2004) Eleven-year population growth dynamics of major species in a Quercus liaotungensis forest in the Dongling Mountains, northern China. Acta Phytoecologica Sinica, 28, 609-615. (in Chinese with English abstract) |
[侯继华, 黄建辉, 马克平 (2004) 东灵山辽东栎林主要树种种群11年动态变化. 植物生态学报, 28, 609-615.]
DOI |
|
[45] | Hu YW, Lin SX, Chen BB, Zhao XH, Zhang CY, Kuang WN (2024) Driving factors of understory species diversity in forest on the northeastern Qinghai Province of northwestern China. Journal of Beijing Forestry University, 46(6), 28-37. (in Chinese with English abstract) |
[胡彦雯, 林森炫, 陈贝贝, 赵秀海, 张春雨, 匡文浓 (2024) 青海省东北部森林林下物种多样性的驱动因素. 北京林业大学学报, 46(6), 28-37.] | |
[46] |
Huang YY, Chen YX, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, von Oheimb G, Yang XF, Liu XJ, Pei KQ, Both S, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen XY, Chesters D, Ding BY, Durka W, Erfmeier A, Fang JY, Fischer M, Guo LD, Guo DL, Gutknecht JLM, He JS, He CL, Hector A, Hönig L, Hu RY, Klein AM, Kühn P, Liang Y, Li S, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi XZ, Tan MZ, Tang ZY, Trogisch S, Wang ZW, Welk E, Wirth C, Wubet T, Xiang WH, Yu MJ, Yu XD, Zhang JY, Zhang SR, Zhang NL, Zhou HZ, Zhu CD, Zhu L, Bruelheide H, Ma KP, Niklaus PA, Schmid B (2018) Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 362, 80-83.
DOI PMID |
[47] | Jing X, Muys B, Bruelheide H, Desie E, Hättenschwiler S, Jactel H, Jaroszewicz B, Kardol P, Ratcliffe S, Scherer-Lorenzen M, Selvi F, Vancampenhout K, van der Plas F, Verheyen K, Vesterdal L, Zuo J,Van Meerbeek K (2021) Above- and below-ground complementarity rather than selection drive tree diversity-productivity relationships in European forests. Functional Ecology, 35, 1756-1767. |
[48] | Jucker T, Avăcăriței D, Bărnoaiea I, Duduman G, Bouriaud O, Coomes DA (2016) Climate modulates the effects of tree diversity on forest productivity. Journal of Ecology, 104, 388-398. |
[49] | King AW, Hayes DJ, Huntzinger DN, West TO, Post WM (2012) North American carbon dioxide sources and sinks: Magnitude, attribution, and uncertainty. Frontiers in Ecology and the Environment, 10, 512-519. |
[50] | Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, USA, 104, 5925-5930. |
[51] |
Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305.
PMID |
[52] | Lan X, Du H, Song TQ, Zeng FP, Peng WX, Liu YX, Fan ZL, Zhang JY (2019) Vegetation carbon storage in the main forest types in Guangxi and the related influencing factors. Acta Ecologica Sinica, 39, 2043-2053. (in Chinese with English abstract) |
[兰秀, 杜虎, 宋同清, 曾馥平, 彭晚霞, 刘永贤, 范稚莲, 张家涌 (2019) 广西主要森林植被碳储量及其影响因素. 生态学报, 39, 2043-2053.] | |
[53] | LaRue EA, Knott JA, Domke GM, Chen HY, Guo QF, Hisano M, Oswalt C, Oswalt S, Kong N, Potter KM, Fei SL (2023) Structural diversity as a reliable and novel predictor for ecosystem productivity. Frontiers in Ecology and the Environment, 21, 33-39. |
[54] | Lasky JR, Uriarte M, Boukili VK, Chazdon RL (2014) Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proceedings of the National Academy of Sciences, USA, 111, 5616-5621. |
[55] | Lei XD, Wang WF, Peng CH (2009) Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Canadian Journal of Forest Research, 39, 1835-1847. |
[56] | Li L, Liu HF, Bai F, Zhu Y, Li GQ, Li WC, Sang WG (2011) Species composition and community structure of four deciduous broad-leaved secondary forest in Dongling Mountain. Biodiversity Science, 19, 243-251. (in Chinese with English abstract) |
[李亮, 刘海丰, 白帆, 祝燕, 李广起, 李文超, 桑卫国 (2011) 东灵山4种落叶阔叶次生林的物种组成与群落结构. 生物多样性, 19, 243-251.]
DOI |
|
[57] | Li YF, Li MH, Ming AG, Wang HX, Yu SF, Ye SM (2021) Spatial pattern dynamics among co-dominant populations in early secondary forests in Southwest China. Journal of Forestry Research, 32, 1373-1384. |
[58] | Liang JJ, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze ED, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs GJ, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, Chen HYH, Lei XD, Schelhaas MJ, Lu HC, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonké B, Tavani R, Zhu J, Brandl S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto C, Frizzera L, Bałazy R, Oleksyn J, Zawiła-Niedźwiecki T, Bouriaud O, Bussotti F, Finér L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O’Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Wortel V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB (2016) Positive biodiversity-productivity relationship predominant in global forests. Science, 354, aaf8957. |
[59] | Lin DM, Lai JS, Muller-Landau HC, Mi XC, Ma KP (2012) Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China. PLoS ONE, 7, e48244. |
[60] | Lines ER, Fischer FJ, Owen HJF, Jucker T (2022) The shape of trees: Reimagining forest ecology in three dimensions with remote sensing. Journal of Ecology, 110, 1730-1745. |
[61] | Liu GF, Wang L, Jiang L, Pan X, Huang ZY, Dong M, Cornelissen JHC (2018) Specific leaf area predicts dryland litter decomposition via two mechanisms. Journal of Ecology, 106, 218-229. |
[62] | Lohbeck M, Poorter L, Paz H, Pla L, van Breugel M, Martínez-Ramos M, Bongers F (2012) Functional diversity changes during tropical forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 14, 89-96. |
[63] | Lu JY, Wu ZF, Zhang CY, Zhao XH (2021) Influence of forest strate structure on productivity of coniferous and broad- leaved mixed forest in Jiaohe, Jilin. Acta Ecologica Sinica, 41, 2024-2032. (in Chinese with English abstract) |
[鲁君悦, 吴兆飞, 张春雨, 赵秀海 (2021) 吉林蛟河针阔混交林林层结构对生产力的影响. 生态学报, 41, 2024-2032.] | |
[64] | Luo WX, Liang JJ, Gatti RC, Zhao XH, Zhang CY (2019) Parameterization of biodiversity-productivity relationship and its scale dependency using georeferenced tree-level data. Journal of Ecology, 107, 1106-1119. |
[65] | McElhinny C, Gibbons P, Brack C (2006) An objective and quantitative methodology for constructing an index of stand structural complexity. Forest Ecology and Management, 235, 54-71. |
[66] |
McNicol IM, Ryan CM, Dexter KG, Ball SMJ, Williams M (2018) Aboveground carbon storage and its links to stand structure, tree diversity and floristic composition in south-eastern Tanzania. Ecosystems, 21, 740-754.
DOI PMID |
[67] | Morin X (2015) Species richness promotes canopy packing: A promising step towards a better understanding of the mechanisms driving the diversity effects on forest functioning. Functional Ecology, 29, 993-994. |
[68] | Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867-876. |
[69] |
Naeem S, Emmett DJ, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science, 336, 1401-1406.
DOI PMID |
[70] | Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, David MA, Piao SL, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science, 333, 988-993. |
[71] | Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: From temperate to boreal forests. Global Ecology and Biogeography, 20, 170-180. |
[72] | Pedro MS, Rammer W, Seidl R (2017) Disentangling the effects of compositional and structural diversity on forest productivity. Journal of Vegetation Science, 28, 649-658. |
[73] | Peet PK (1974) The measurement of species diversity. Annual Review of Ecology, Evolution, and Systematics, 5, 285-307. |
[74] |
Petchey OL, Gaston KJ (2006) Functional diversity: Back to basics and looking forward. Ecology Letters, 9, 741-758.
DOI PMID |
[75] | Prado-Junior JA, Schiavini I, Vale VS, Arantes CS, van der Sande MT, Lohbeck M, Poorter L (2016) Conservative species drive biomass productivity in tropical dry forests. Journal of Ecology, 104, 817-827. |
[76] | R Core Team (2022) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[77] | Rawat M, Arunachalam K, Arunachalam A, Alatalo J, Pandey R (2019) Associations of plant functional diversity with carbon accumulation in a temperate forest ecosystem in the Indian Himalayas. Ecological Indicators, 98, 861-868. |
[78] |
Ricotta C, Moretti M (2011) CWM and Rao’s quadratic diversity: A unified framework for functional ecology. Oecologia, 167, 181-188.
DOI PMID |
[79] | Roscher C, Schumacher J, Gubsch M, Lipowsky A, Weigelt A, Buchmann N, Schmid B, Schulze ED (2012) Using plant functional traits to explain diversity-productivity relationships. PLoS ONE, 7, e36760. |
[80] | Rosseel Y (2012) lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1-36. |
[81] | Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B 3rd, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169-172. |
[82] | Sha W, Dong SK, Liu SL, Liu QR, Shi JB, Li XW, Su XK, Wu Y (2016) Spatial patterns of plant community biomass and species diversity in Aerjin Mountain Nature Reserve and their influencing factors. Chinese Journal of Ecology, 35, 330-337. (in Chinese with English abstract) |
[沙威, 董世魁, 刘世梁, 刘全儒, 石建斌, 李晓文, 苏旭坤, 吴娱 (2016) 阿尔金山自然保护区植物群落生物量和物种多样性的空间格局及其影响因素. 生态学杂志, 35, 330-337.] | |
[83] | Tan LZ, Fan CY, Fan XH (2017) Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe, Jilin, China. Chinese Journal of Plant Ecology, 41, 1149-1156. (in Chinese with English abstract) |
[谭凌照, 范春雨, 范秀华 (2017) 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系. 植物生态学报, 41, 1149-1156.]
DOI |
|
[84] |
Tan SS, Wang RR, Gong XL, Cai JY, Shen GC (2017) Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama. Biodiversity Science, 25, 1054-1064. (in Chinese with English abstract)
DOI |
[谭珊珊, 王忍忍, 龚筱羚, 蔡佳瑶, 沈国春 (2017) 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例. 生物多样性, 25, 1054-1064.]
DOI |
|
[85] |
Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845.
PMID |
[86] |
Tobner CM, Paquette A, Gravel D, Reich PB, Williams LJ, Messier C (2016) Functional identity is the main driver of diversity effects in young tree communities. Ecology Letters, 19, 638-647.
DOI PMID |
[87] | Unger M, Leuschner C, Homeier J (2010) Variability of indices of macronutrient availability in soils at different spatial scales along an elevation transect in tropical moist forests (NE Ecuador). Plant and Soil, 336, 443-458. |
[88] | van der Sande MT, Arets EJMM, Peña-Claros M, Hoosbeek MR, Cáceres-Siani Y, van der Hout P, Poorter L (2018) Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Functional Ecology, 32, 461-474. |
[89] |
Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301.
DOI PMID |
[90] | Wan XH, Joly FX, Jia H, Zhu M, Fu YR, Huang ZQ (2023) Functional identity drives tree species richness-induced increases in litterfall production and forest floor mass in young tree communities. New Phytologist, 240, 1003-1014. |
[91] |
Wang H, Zhang MT, Nan HW (2019) Abiotic and biotic drivers of species diversity in understory layers of cold temperate coniferous forests in North China. Journal of Forestry Research, 30, 2213-2225.
DOI |
[92] | Wang WF, Lei XD, Ma ZH, Kneeshaw DD, Peng CH (2011) Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada. Forest Science, 57, 506-515. |
[93] |
Williamson GB, Wiemann MC (2010) Measuring wood specific gravity…Correctly. American Journal of Botany, 97, 519-524.
DOI PMID |
[94] | Wu XP, Wang ZH, Cui HT, Fang JY (2004) Community structures and species composition of oak forests in mountainous area of Beijing. Biodiversity Science, 12, 155-162. (in Chinese with English abstract) |
[吴晓莆, 王志恒, 崔海亭, 方精云 (2004) 北京山区栎林的群落结构与物种组成. 生物多样性, 12, 155-162.]
DOI |
|
[95] |
Xu SW, Su HX, Ren SY, Hou JH, Zhu Y (2023) Functional traits and habitat heterogeneity explain tree growth in a warm temperate forest. Oecologia, 203, 371-381.
DOI PMID |
[96] | Yang H, Lou AR, Gao YJ, Song HT (2007) Life history characteristics and spatial distribution of the Betula platyphylla population in the Dongling Mountain region, Beijing, China. Journal of Plant Ecology, 31, 272-282. (in Chinese with English abstract) |
[杨慧, 娄安如, 高益军, 宋宏涛 (2007) 北京东灵山地区白桦种群生活史特征与空间分布格局. 植物生态学报, 31, 272-282.]
DOI |
|
[97] | Yuan ZQ, Ali A, Wang SP, Gazol A, Freckleton R, Wang XG, Lin F, Ye J, Zhou L, Hao ZQ, Loreau M (2018) Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests. Science of the Total Environment, 630, 422-431. |
[98] | Zhang CY, He FL, Zhang ZH, Zhao XH, von Gadow K (2020) Latitudinal gradients and ecological drivers of β-diversity vary across spatial scales in a temperate forest region. Global Ecology and Biogeography, 29, 1257-1264. |
[99] | Zhang T, Niinemets Ü, Sheffield J, Lichstein JW (2018) Shifts in tree functional composition amplify the response of forest biomass to climate. Nature, 556, 99-102. |
[100] | Zhang Y, Chen HYH (2015) Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103, 1245-1252. |
[101] | Zhang Y, Chen HYH, Reich PB (2012) Forest productivity increases with evenness, species richness and trait variation: A global meta-analysis. Journal of Ecology, 100, 742-749. |
[102] | Zhang Y, Chen HYH, Taylor AR (2017) Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees. Functional Ecology, 31, 419-426. |
[103] | Zhang YX, Ma KM, Qi J, Feng Y, Zhang JY (2009) Size structure and spatial pattern of Quercus liaotungensis population along elevation gradient in Dongling Mountain, Beijing. Acta Ecologica Sinica, 29, 2789-2796. (in Chinese with English abstract) |
[张育新, 马克明, 祁建, 冯云, 张洁瑜 (2009) 北京东灵山海拔梯度上辽东栎种群结构和空间分布. 生态学报, 29, 2789-2796.] | |
[104] |
Zhu Y, Bai F, Liu HF, Li WC, Li L, Li GQ, Wang SZ, Sang WG (2011) Population distribution patterns and interspecific spatial associations in warm temperate secondary forests, Beijing. Biodiversity Science, 19, 252-259. (in Chinese with English abstract)
DOI |
[祝燕, 白帆, 刘海丰, 李文超, 李亮, 李广起, 王顺忠, 桑卫国 (2011) 北京暖温带次生林种群分布格局与种间空间关联性. 生物多样性, 19, 252-259.]
DOI |
[1] | Hua-Dan SHANG Mei WANG Guo-Hong Li Hongbin WANG. Species diversity of poplar pests in China [J]. Biodiv Sci, 2025, 33(2): 24370-0. |
[2] | Miao Tong, Huan Wang, Wenshuang Zhang, Chao Wang, Jianxiao Song. Expression of antibiotic resistance genes in soil bacterial communities exposed to heavy metal pollution [J]. Biodiv Sci, 2025, 33(2): 24101-. |
[3] | Zihong Chen, Yifei Zhang, Kai Chen, Ling Xu. Species diversity of entomopathogenic fungi and their influential factors in southern part of Gaoligongshan mountains [J]. Biodiv Sci, 2025, 33(1): 24228-. |
[4] | Ke Tan Yao Ning Renfen Wang Qing Wang Danping Liang Zibing Xin Fang Wen. A dataset on the checklist and geographical distribution of Gesneriaceae in China [J]. Biodiv Sci, 2025, 33(1): 23275-. |
[5] | Jianan Han, Yang Su, Fei Li, Junyan Liu, Yilin Zhao, Lin Li, Jiancheng Zhao, Hongzhu Liang, Min Li. Bryophytes diversity of Hebei Province, China [J]. Biodiv Sci, 2024, 32(9): 24096-. |
[6] | Shiyu Wei, Tianjiao Song, Jiayi Luo, Yan Zhang, Zixuan Zhao, Jingwen Ru, Hua Yi, Yanbing Lin. Altitudinal distribution patterns of soil bacterial communities in the Huoditang coniferous forests of the Qinling Mountains [J]. Biodiv Sci, 2024, 32(9): 24180-. |
[7] | Hongyu Niu, Lu Chen, Hengyue Zhao, Gulzar Abdukirim, Hongmao Zhang. Effects of urbanization on animals: From community to individual level [J]. Biodiv Sci, 2024, 32(8): 23489-. |
[8] | Yongqiang Shi, Qingshan Luan, Xiujuan Shan, Chao Wei, Yongsong Zhao, Cece Sun, Xianshi Jin. Annual changes in zooplankton biodiversity in the southern waters of Changdao [J]. Biodiv Sci, 2024, 32(7): 23428-. |
[9] | Xue Bai, Zhengfei Li, Yang Liu, Junqian Zhang, Duopeng Zhang, Xin Luo, Jiali Yang, Lina Du, Xuankong Jiang, Ruiwen Wu, Zhicai Xie. Species diversity and maintenance mechanisms of benthic macroinvertebrate assemblages in the Xijiang River [J]. Biodiv Sci, 2024, 32(7): 23499-. |
[10] | Jia Xu, Xiaojuan Cui, Yifei Zhang, Chang Wu, Yuandong Sun. Fish diversity and distribution in the Nanling region [J]. Biodiv Sci, 2024, 32(7): 23482-. |
[11] | Qiyu Kuang, Liang Hu. Species diversity and geographical distribution of marine benthic shell-bearing mollusks around Donghai Island and Naozhou Island, Guangdong Province [J]. Biodiv Sci, 2024, 32(5): 24065-. |
[12] | Yongqiang Zhao, Xiyu Yan, Jiaqi Xie, Mengting Hou, Danmei Chen, Lipeng Zang, Qingfu Liu, Mingzhen Sui, Guangqi Zhang. Species diversity and community assembly of woody plants at different life history stages during the natural restoration of degraded karst forests [J]. Biodiv Sci, 2024, 32(5): 23462-. |
[13] | Weiqiang Xu, Qiang Su. Exploring the interplay of fractal model and species abundance distribution: A case study of shellfish and insect [J]. Biodiv Sci, 2024, 32(4): 23410-. |
[14] | Hui Ran, Tianyou Yang, Xiaoqi Mi. The updated checklist of reptiles in Guizhou Province, China [J]. Biodiv Sci, 2024, 32(4): 23348-. |
[15] | Qifan Wang, Xiaohui Liu, Ziwei Zhu, Lei Liu, Xinxue Wang, Xuyang Ji, Shaochun Zhou, Zidong Zhang, Hongyu Dong, Minghai Zhang. Mammal and avian diversity in Beijicun National Nature Reserve, Heilongjiang Province, China [J]. Biodiv Sci, 2024, 32(4): 24024-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn