Biodiv Sci ›› 2024, Vol. 32 ›› Issue (7): 24073. DOI: 10.17520/biods.2024073 cstr: 32101.14.biods.2024073
• Original article • Previous Articles Next Articles
Xingyuan Yin1, Hui An1,*(), Binbin Xing1, Shiyu Su1, Zhilin Wen2, Jianchao Guo2, Xiaoping Liu2, Bo Wang3
Received:
2024-03-01
Accepted:
2024-06-05
Online:
2024-07-20
Published:
2024-07-12
Contact:
*E-mail: anhui08@163.com
Supported by:
Xingyuan Yin, Hui An, Binbin Xing, Shiyu Su, Zhilin Wen, Jianchao Guo, Xiaoping Liu, Bo Wang. Effects of nutrient addition and precipitation changes on the stability of aboveground and belowground biomass in desert grassland[J]. Biodiv Sci, 2024, 32(7): 24073.
处理 Treatment | 物种异步性 Species asynchrony | 物种丰富度 Species richness | Shannon-Wiener多样性指数Shannon-Wiener diversity index |
---|---|---|---|
养分添加 Nutrient addition (NA) | 60.347*** | 8.430*** | 3.714* |
降水变化 Precipitation changes (PC) | 82.642*** | 19.955*** | 2.744* |
NA × PC | 11.592*** | 0.669 | 0.445 |
Table 1 Effects of nutrient addition, precipitation changes, and their interaction on species asynchrony and plant diversity
处理 Treatment | 物种异步性 Species asynchrony | 物种丰富度 Species richness | Shannon-Wiener多样性指数Shannon-Wiener diversity index |
---|---|---|---|
养分添加 Nutrient addition (NA) | 60.347*** | 8.430*** | 3.714* |
降水变化 Precipitation changes (PC) | 82.642*** | 19.955*** | 2.744* |
NA × PC | 11.592*** | 0.669 | 0.445 |
Fig. 1 Effects of nutrient addition and precipitation changes on species richness (a), Shannon-Wiener diversity index (b) and species asynchrony (c) of desert grassland (mean + SD). +50%, W, and -50% represent an increase of 50% precipitation, natural precipitation (without changing precipitation), and a decrease of 50% precipitation, respectively. Cont, N, and NPK represent control (without nutrient addition), N addition (with 10 g·m-2·yr-1 N added), and NPK addition (with 10 g·m-2·yr-1 N + 10 g·m-2·yr-1 P + 10 g·m-2·yr-1 K added simultaneously), respectively. Different lowercase letters indicate significant differences in precipitation under the same nutrient; different uppercase letters indicate significant differences in nutrient addition under the same precipitation (P < 0.05).
Fig. 2 Effects of nutrient addition and precipitation changes on aboveground biomass (a), belowground biomass (b) and total biomass (c) of desert grassland (mean + SD). +50%, W, -50%, Cont, N, and NPK are the same as in Fig. 1. Different lowercase letters indicate significant differences in precipitation under the same nutrient; different uppercase letters indicate significant differences in nutrient addition under the same precipitation (P < 0.05).
Fig. 3 Effects of nutrient addition and precipitation changes on the stability of aboveground biomass (a), belowground biomass (b) and total biomass (c) in desert grassland (mean + SD). +50%, W, -50%, Cont, N, and NPK are the same as in Fig. 1. Different lowercase letters indicate significant differences in precipitation under the same nutrient; different uppercase letters indicate significant differences in nutrient addition under the same precipitation (P < 0.05).
Fig. 4 Effects of nutrient addition and precipitation changes on biomass stability of dominant species (a) and non-dominant species (b) in desert grassland (mean + SD). +50%, W, -50%, Cont, N, and NPK are the same as in Fig. 1. Different lowercase letters indicate significant differences in precipitation under the same nutrient; different uppercase letters indicate significant differences in nutrient addition under the same precipitation (P < 0.05).
Fig. 5 Effects of nutrient addition and precipitation changes on biomass stability in desert grassland. The solid and dashed lines represent significant (P < 0.05) and insignificant (P > 0.05) relationships between variables, respectively. The black arrow represents a positive effect, and the gray arrow represents a negative effect. Positive and negative numbers represent standardized regression coefficient (β); * P < 0.05, ** P < 0.01, *** P < 0.001; R2 represents the explanatory power of a variable’s variance to other variables.
[1] |
Borer ET, Harpole WS, Adler PB, Lind EM, Orrock JL, Seabloom EW, Smith MD (2014) Finding generality in ecology: A model for globally distributed experiments. Methods in Ecology and Evolution, 5, 65-73.
DOI |
[2] | Carroll O, Batzer E, Bharath S, Borer ET, Campana S, Esch E, Hautier Y, Ohlert T, Seabloom EW, Adler PB, Bakker JD, Biederman L, Bugalho MN, Caldeira M, Chen QQ, Davies KF, Fay PA, Knops JMH, Komatsu K, Martina JP, McCann KS, Moore JL, Morgan JW, Muraina TO, Osborne B, Risch AC, Stevens C, Wilfahrt PA, Yahdjian L, MacDougall AS (2022) Nutrient identity modifies the destabilising effects of eutrophication in grasslands. Ecology Letters, 25, 754-765. |
[3] | Chen WQ, Zhang YJ, Mai XH, Shen Y (2016) Multiple mechanisms contributed to the reduced stability of Inner Mongolia grassland ecosystem following nitrogen enrichment. Plant and Soil, 409, 283-296. |
[4] | Chi YG, Xu ZW, Zhou L, Yang QP, Zheng SX, Li SP (2019) Differential roles of species richness versus species asynchrony in regulating community stability along a precipitation gradient. Ecology and Evolution, 9, 14244-14252. |
[5] |
De Keersmaecker W, Lhermitte S, Honnay O, Farifteh J, Somers B, Coppin P (2014) How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems. Global Change Biology, 20, 2149-2161.
DOI PMID |
[6] |
Donohue I, Hillebrand H, Montoya JM, Petchey OL, Pimm SL, Fowler MS, Healy K, Jackson AL, Lurgi M, McClean D, O’Connor NE, O’Gorman EJ, Yang Q (2016) Navigating the complexity of ecological stability. Ecology Letters, 19, 1172-1185.
DOI PMID |
[7] | Du ZY, An H, Wang B, Wen ZL, Zhang YR, Wu XZ, Li QL (2020) Effects of nutrient addition and precipitation manipulation on plant species diversity and biomass of in a desert grassland. Acta Agrestia Sinica, 28, 1100-1110. (in Chinese with English abstract) |
[杜忠毓, 安慧, 王波, 文志林, 张雅柔, 吴秀芝, 李巧玲 (2020) 养分添加和降水变化对荒漠草原植物群落物种多样性和生物量的影响. 草地学报, 28, 1100-1110.]
DOI |
|
[8] | Du ZY, Zhang XW, Liu SX, An H (2024) Nitrogen and water addition alters species diversity and interspecific relationship in a desert grassland. Science of the Total Environment, 908, 168386. |
[9] |
Fay PA, Prober SM, Harpole WS, Knops JMH, Bakker JD, Borer ET, Lind EM, MacDougall AS, Seabloom EW, Wragg PD, Adler PB, Blumenthal DM, Buckley YM, Chu CJ, Cleland EE, Collins SL, Davies KF, Du GZ, Feng XH, Firn J, Gruner DS, Hagenah N, Hautier Y, Heckman RW, Jin VL, Kirkman KP, Klein J, Ladwig LM, Li Q, Mcculley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Risch AC, Schütz M, Stevens CJ, Wedin DA, Yang LH (2015) Grassland productivity limited by multiple nutrients. Nature Plants, 1, 15080.
DOI PMID |
[10] | Gao YZ, Giese M, Lin S, Sattelmacher B, Zhao Y, Brueck H (2008) Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant and Soil, 307, 41-50. |
[11] | Gherardi LA, Sala OE (2020) Global patterns and climatic controls of belowground net carbon fixation. Proceedings of the National Academy of Sciences, USA, 117, 20038-20043. |
[12] | Guo HB, Quan Q, Niu SL, Li TT, He YC, Fu YW, Li JP, Wang JS, Zhang RY, Li ZL, Tian DS (2023) Shifting biomass allocation and light limitation co-regulate the temporal stability of an alpine meadow under eutrophication. Science of the Total Environment, 860, 160411. |
[13] | Guo XX, Zuo XA, Yue P, Li XY, Hu Y, Chen M, Yu Q (2022) Direct and indirect effects of precipitation change and nutrients addition on desert steppe productivity in Inner Mongolia, Northern China. Plant and Soil, 471, 527-540. |
[14] | Hautier Y, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hillebrand H, Lind EM, MacDougall AS, Stevens CJ, Bakker JD, Buckley YM, Chu CJ, Collins SL, Daleo P, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Jin VL, Klein JA, Knops JMH, La Pierre KJ, Li W, McCulley RL, Melbourne BA, Moore JL, O’Halloran LR, Prober SM, Risch AC, Sankaran M, Schuetz M, Hector A (2014) Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 508, 521-525. |
[15] | Hossain ML, Beierkuhnlein C (2018) Enhanced aboveground biomass by increased precipitation in a central European grassland. Ecological Processes, 7, 37. |
[16] | Huang MJ, Liu X, Zhou SR (2020) Asynchrony among species and functional groups and temporal stability under perturbations: Patterns and consequences. Journal of Ecology, 108, 2038-2046. |
[17] | Jackson J, Middleton SL, Lawson CS, Jardine E, Hawes N, Maseyk K, Salguero-Gómez R, Hector A (2024) Experimental drought reduces the productivity and stability of a calcareous grassland. Journal of Ecology, 112, 917-931. |
[18] | Jia XT, Tao DX, Ke YG, Li WJ, Yang T, Yang YD, He NP, Smith MD, Yu Q (2022) Dominant species control effects of nitrogen addition on ecosystem stability. Science of the Total Environment, 838, 156060. |
[19] | Lefcheck JS (2016) piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573-579. |
[20] | Li XY, Zuo XA, Qiao JJ, Hu Y, Wang SK, Yue P, Cheng H, Song ZB, Chen M, Hautier Y (2024) Context-dependent impact of changes in precipitation on the stability of grassland biomass. Functional Ecology, 38, 1185-1198. |
[21] | Li XY, Zuo XA, Zhao XY, Wang SK, Yue P, Xu C, Yu Q, Medina-Roldán E (2023) Extreme drought does not alter the stability of aboveground net primary productivity but decreases the stability of belowground net primary productivity in a desert steppe of northern China. Environmental Science and Pollution Research, 30, 24319-24328. |
[22] |
Liu Y, Peng YF, Men MX, Peng ZP, Yang YH (2021) Response of root dynamics to nitrogen addition and the influencing factors in a Tibetan alpine steppe, China. Chinese Journal of Applied Ecology, 32, 3119-3126. (in Chinese with English abstract)
DOI |
[刘洋, 彭云峰, 门明新, 彭正萍, 杨元合 (2021) 青藏高原高寒草原根系动态对氮添加的响应及其调控因素. 应用生态学报, 32, 3119-3126.]
DOI |
|
[23] | Liu YJ, Xu MJ, Li GE, Wang MX, Li ZQ, De Boeck HJ (2021) Changes of aboveground and belowground biomass allocation in four dominant grassland species across a precipitation gradient. Frontiers in Plant Science, 12, 650802. |
[24] | Loreau M, de Mazancourt C (2008) Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments. The American Naturalist, 172, E48-E66. |
[25] | Loreau M, de Mazancourt C (2013) Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecology Letters, 16, 106-115. |
[26] | Ma KP, Liu YM (1994) Measurement of biotic community diversity. Ⅰ. αdiversity (Part 2) Chinese Biodiversity, 2, 231-239. (in Chinese) |
[马克平, 刘玉明 (1994) 生物群落多样性的测度方法. Ⅰ α多样性的测度方法(下). 生物多样性, 2, 231-239.] | |
[27] | Ma QH, Liu XD, Li YB, Li L, Yu HY, Qi M, Zhou GS, Xu ZZ (2020) Nitrogen deposition magnifies the sensitivity of desert steppe plant communities to large changes in precipitation. Journal of Ecology, 108, 598-610. |
[28] |
Ma ZY, Liu HY, Mi ZR, Zhang ZH, Wang YH, Xu W, Jiang L, He JS (2017) Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 8, 15378.
DOI PMID |
[29] |
Mao W, Li YL, Sun DC, Wang SK (2016) Aboveground biomass differentiations of different functional group species after nitrogen and snow addition altered community productivity of sandy grassland. Journal of Desert Research, 36, 27-33. (in Chinese with English abstract)
DOI |
[毛伟, 李玉霖, 孙殿超, 王少昆 (2016) 养分和水分添加后沙质草地不同功能群植物地上生物量变化对群落生产力的影响. 中国沙漠, 36, 27-33.]
DOI |
|
[30] | Muraina TO, Xu C, Yu Q, Yang YD, Jing MH, Jia XT, Jaman MS, Dam Q, Knapp AK, Collins SL, Luo YQ, Luo WT, Zuo XA, Xin XP, Han XG, Smith MD, Hector A, Hector A (2021) Species asynchrony stabilises productivity under extreme drought across Northern China grasslands. Journal of Ecology, 109, 1665-1675. |
[31] | Rao LE, Allen EB (2010) Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts. Oecologia, 162, 1035-1046. |
[32] |
Sasaki T, Lauenroth WK (2011) Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia, 166, 761-768.
DOI PMID |
[33] | Song MH, Zong N, Jiang J, Shi PL, Zhang XZ, Gao JQ, Zhou HK, Li YK, Loreau M (2019) Nutrient-induced shifts of dominant species reduce ecosystem stability via increases in species synchrony and population variability. Science of the Total Environment, 692, 441-449. |
[34] | Verma P, Sagar R (2021) Species diversity and temporal stabilization of root productivity of tropical grassland to nitrogen application. Ecological Indicators, 120, 106987. |
[35] |
Wang JF, Knops JMH, Brassil CE, Mu CS (2017) Increased productivity in wet years drives a decline in ecosystem stability with nitrogen additions in arid grasslands. Ecology, 98, 1779-1786.
DOI PMID |
[36] | Wang SP, Isbell F, Deng WL, Hong PB, Dee LE, Thompson P, Loreau M (2021) How complementarity and selection affect the relationship between ecosystem functioning and stability. Ecology, 102, e3347. |
[37] |
Wang T, Guo CL, Sang SL, Liu YT, Liu G, Qi DS, Zhu ZH (2021) Temporal stability and maintenance mechanisms of alpine meadow communities under clipping and fertilization. Ecology and Evolution, 11, 15545-15555.
DOI PMID |
[38] | Wang XY, Xu YX, Li CH, Yu HL, Huang JY (2023) Changes of plant biomass, species diversity, and their influencing factors in a desert steppe of northwestern China under long-term changing precipitation. Chinese Journal of Plant Ecology, 47, 479-490. (in Chinese with English abstract) |
[王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹 (2023) 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素. 植物生态学报, 47, 479-490.]
DOI |
|
[39] |
Wang YH, Wang C, Ren F, Jing X, Ma WH, He JS, Jiang L (2023) Asymmetric response of aboveground and belowground temporal stability to nitrogen and phosphorus addition in a Tibetan alpine grassland. Global Change Biology, 29, 7072-7084.
DOI PMID |
[40] | Wu Q, Ren HY, Wang ZW, Li ZG, Liu YH, Wang Z, Li YH, Zhang RY, Zhao ML, Chang SX, Han GD (2020) Additive negative effects of decadal warming and nitrogen addition on grassland community stability. Journal of Ecology, 108, 1442-1452. |
[41] | Xu FW, Li JJ, Wu LJ, Su JS, Wang Y, Chen DM, Bai YF (2022) Linking leaf traits to the temporal stability of above- and belowground productivity under global change and land use scenarios in a semi-arid grassland of Inner Mongolia. Science of the Total Environment, 818, 151858. |
[42] | Xu QN, Yang X, Song J, Ru JY, Xia JY, Wang SP, Wan SQ, Jiang L (2022) Nitrogen enrichment alters multiple dimensions of grassland functional stability via changing compositional stability. Ecology Letters, 25, 2713-2725. |
[43] | Xu ZW, Jiang L, Ren HY, Han XG (2024) Opposing responses of temporal stability of aboveground and belowground net primary productivity to water and nitrogen enrichment in a temperate grassland. Global Change Biology, 30, e17071. |
[44] | Xu ZW, Ren HY, Li MH, van Ruijven J, Han XG, Wan SQ, Li H, Yu Q, Jiang Y, Jiang L (2015) Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. Journal of Ecology, 103, 1308-1316. |
[45] | Yan Y, Connolly J, Liang MW, Jiang L, Wang SP (2021) Mechanistic links between biodiversity effects on ecosystem functioning and stability in a multi-site grassland experiment. Journal of Ecology, 109, 3370-3378. |
[46] | Yan Y, Lu XY (2015) Is grazing exclusion effective in restoring vegetation in degraded alpine grasslands in Tibet, China? PeerJ, 3, e1020. |
[47] | Yang GJ, Hautier Y, Zhang ZJ, Lü XT, Han XG (2022) Decoupled responses of above- and below-ground stability of productivity to nitrogen addition at the local and larger spatial scale. Global Change Biology, 28, 2711-2720. |
[48] | Yang ZP, Minggagud H, Wang Q, Pan HY (2023) Interacting effects of nitrogen addition and mowing on plant diversity and biomass of a typical grassland in Inner Mongolia. Agronomy, 13, 2125. |
[49] | Zhang F, Zheng JH, Zhao ML, Chen DL, Yang Y, Qiao JR, Zhao TQ (2020) Effects of mowing intensity on temporal stability of aboveground biomass in the Stipa grandis steppe. Biodiversity Science, 28, 779-786. (in Chinese with English abstract) |
[张峰, 郑佳华, 赵萌莉, 陈大岭, 杨阳, 乔荠瑢, 赵天启 (2020) 刈割强度对大针茅草原地上生物量时间稳定性的影响. 生物多样性, 28, 779-786.]
DOI |
|
[50] | Zhang YH, He NP, Loreau M, Pan QM, Han XG (2018) Scale dependence of the diversity-stability relationship in a temperate grassland. Journal of Ecology, 106, 1277-1285. |
[51] | Zhao XF, Xu HL, Zhang P, Tu WX, Zhang QQ (2014) Effects of nutrient and water additions on plant community structure and species diversity in desert grasslands. Chinese Journal of Plant Ecology, 38, 167-177. (in Chinese with English abstract) |
[赵新风, 徐海量, 张鹏, 涂文霞, 张青青 (2014) 养分与水分添加对荒漠草地植物群落结构和物种多样性的影响. 植物生态学报, 38, 167-177.]
DOI |
[1] | Jiali Lian, Jing Chen, Xueqin Yang, Ying Zhao, Xu Luo, Cui Han, Yaxin Zhao, Jianping Li. Responses of desert steppe plant diversity and microbial diversity to precipitation change [J]. Biodiv Sci, 2024, 32(6): 24044-. |
[2] | Xinyang Zhou, Yutao Wang, Jianping Li. Response of plant community composition to precipitation changes in typical grasslands in the Loess Plateau [J]. Biodiv Sci, 2023, 31(3): 22118-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn