Biodiv Sci ›› 2023, Vol. 31 ›› Issue (2): 22392. DOI: 10.17520/biods.2022392
Special Issue: 土壤生物与土壤健康
• Original Papers: Microbial Diversity • Previous Articles Next Articles
Yuzhan Yang1, Jianping Yu2, Haiyuan Qian2, Xiaonan Chen2, Shengwen Chen2, Zhilin Yuan1,*()
Received:
2022-07-11
Accepted:
2022-09-27
Online:
2023-02-20
Published:
2022-11-11
Contact:
*Zhilin Yuan, E-mail: yuanzl@caf.ac.cn
Yuzhan Yang, Jianping Yu, Haiyuan Qian, Xiaonan Chen, Shengwen Chen, Zhilin Yuan. Spatial patterns of rice paddy microbial communities and the associated drivers in Qianjiangyuan National Park system pilot[J]. Biodiv Sci, 2023, 31(2): 22392.
Fig. 2 Heatmap of soil environmental factors. The upper ribbon represents four districts with red for Suzhuang, brown for Changhong, green for Hetian, and Blue for Qixi. The lower ribbon represents lands of four reform types with red for reformed land within the park, brown for unreformed land within the park, green for outside unreformed land, and blue for abandoned land within the park. TN, Total nitrogen; AvP, Available phosphorous; OM, Organic matter; TP, Total phosphorus; HN, Hydrolyzable nitrogen; AvK, Available potassium; EC, Electrical conductivity.
Fig. 3 PCA plot of environmental factors. RefIn: Reformed land inside; UnrefIn: Unreformed land inside; AbdIn: Abandonded land inside; UnrefOut: Unreformed land outside.
Fig. 4 Taxonomic composition of soil bacterial and fungal communities in Qianjiangyuan. (A) Bacterial communities at the phylum or class level. (B) Bacterial communities at the genus level. (C) Fungal communities at the phylum or class level. (D) Fungal communities at the genus level. Abbreviations of 4 management types see Fig. 3.
Fig. 5 Alpha diversity of soil bacterial and fungal communities in Qianjiangyuan. (A-C) Soil bacterial communities. (D-F) Soil fungal communities. Group pairs that had significant difference were marked (** P < 0.01; * P < 0.05). Abbreviations of 4 management types see Fig. 3.
Fig. 6 NMDS plot of soil bacterial and fungal communities. (A) Bacterial communities. (B) Fungal communities. Abbreviations of 4 management types see Fig. 3.
因子 Factor | 独立解释度 Independent variance | 共同解释度 Shared variance | 因子总解释度 Total variance | 因子相对重要性 Dominance (%) |
---|---|---|---|---|
pH | 0.020 | 0.009 | 0.029 | 14.74 |
铬 Cr | 0.004 | 0.022 | 0.026 | 13.32 |
总氮 TN | 0.002 | 0.016 | 0.018 | 9.34 |
有效磷 AvP | 0.011 | 0.006 | 0.017 | 8.67 |
有机质 OM | -0.004 | 0.020 | 0.016 | 8.06 |
锌 Zn | -0.002 | 0.014 | 0.012 | 6.33 |
镉 Cd | -0.002 | 0.013 | 0.011 | 5.56 |
总磷 TP | 0.000 | 0.010 | 0.011 | 5.41 |
镍 Ni | 0.000 | 0.009 | 0.009 | 4.69 |
铜 Cu | 0.001 | 0.008 | 0.009 | 4.59 |
砷 As | 0.005 | 0.004 | 0.009 | 4.44 |
铅 Pb | 0.003 | 0.004 | 0.007 | 3.62 |
苯并芘 BaP | 0.005 | 0.002 | 0.007 | 3.47 |
水解性氮 HN | -0.002 | 0.006 | 0.004 | 2.24 |
有效钾 AvK | 0.001 | 0.004 | 0.004 | 2.19 |
汞 Hg | 0.001 | 0.003 | 0.004 | 1.89 |
电导率 EC | -0.003 | 0.005 | 0.003 | 1.33 |
Table 1 Explanatory power of environmental factors to spatial variation of bacterial community composition
因子 Factor | 独立解释度 Independent variance | 共同解释度 Shared variance | 因子总解释度 Total variance | 因子相对重要性 Dominance (%) |
---|---|---|---|---|
pH | 0.020 | 0.009 | 0.029 | 14.74 |
铬 Cr | 0.004 | 0.022 | 0.026 | 13.32 |
总氮 TN | 0.002 | 0.016 | 0.018 | 9.34 |
有效磷 AvP | 0.011 | 0.006 | 0.017 | 8.67 |
有机质 OM | -0.004 | 0.020 | 0.016 | 8.06 |
锌 Zn | -0.002 | 0.014 | 0.012 | 6.33 |
镉 Cd | -0.002 | 0.013 | 0.011 | 5.56 |
总磷 TP | 0.000 | 0.010 | 0.011 | 5.41 |
镍 Ni | 0.000 | 0.009 | 0.009 | 4.69 |
铜 Cu | 0.001 | 0.008 | 0.009 | 4.59 |
砷 As | 0.005 | 0.004 | 0.009 | 4.44 |
铅 Pb | 0.003 | 0.004 | 0.007 | 3.62 |
苯并芘 BaP | 0.005 | 0.002 | 0.007 | 3.47 |
水解性氮 HN | -0.002 | 0.006 | 0.004 | 2.24 |
有效钾 AvK | 0.001 | 0.004 | 0.004 | 2.19 |
汞 Hg | 0.001 | 0.003 | 0.004 | 1.89 |
电导率 EC | -0.003 | 0.005 | 0.003 | 1.33 |
Fig. 7 Fit of the Sloan’s neutral community model of (A) bacterial and (B) fungal communities. OTUs that occur more or less frequently than predicted by the model are shown in blue or red, while OTUs that occur as predicted are shown in black. The dashed blue lines represent 95% confidence intervals around the model prediction. R2 represents the goodness of fit of neutral community model and m represents the community-level migration.
[1] |
Ai C, Zhang SQ, Zhang X, Guo DD, Zhou W, Huang SM (2018) Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma, 319, 156-166.
DOI URL |
[2] |
Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
DOI |
[3] |
Barnard RL, Osborne CA, Firestone MK (2015) Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate. The ISME Journal, 9, 946-957.
DOI |
[4] |
Caro TM, O’Doherty G (1999) On the use of surrogate species in conservation biology. Conservation Biology, 13, 805-814.
DOI URL |
[5] |
Edgar RC (2016) UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv, doi: 10.1101/081257.
DOI |
[6] | Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Global ecology and biogeography, 19, 589-606. |
[7] |
Favreau JM, Drew CA, Hess GR, Rubino MJ, Koch FH, Eschelbach KA (2006) Recommendations for assessing the effectiveness of surrogate species approaches. Biodiversity and Conservation, 15, 3949-3969.
DOI URL |
[8] |
Feng K, Zhang ZJ, Cai WW, Liu WZ, Xu MY, Yin HQ, Wang AJ, He ZL, Deng Y (2017) Biodiversity and species competition regulate the resilience of microbial biofilm community. Molecular Ecology, 26, 6170-6182.
DOI PMID |
[9] |
Folgarait PJ, Thomas F, Desjardins T, Grimaldi M, Tayasu I, Curmi P, Lavelle PM (2003) Soil properties and the macrofauna community in abandoned irrigated rice fields of northeastern Argentina. Biology and Fertility of Soils, 38, 349-357.
DOI URL |
[10] |
Ge JM, Wang S, Fan J, Gongadze K, Wu LH (2020) Soil nutrients of different land-use types and topographic positions in the water-wind erosion crisscross region of China’s Loess Plateau. CATENA, 184, 104243.
DOI URL |
[11] |
Geisen S, Wall DH, van der Putten WH (2019) Challenges and opportunities for soil biodiversity in the anthropocene. Current Biology, 29, R1036-R1044.
DOI |
[12] |
Guerra CA, Bardgett RD, Caon L, Crowther TW, Delgado- Baquerizo M, Montanarella L, Navarro LM, Orgiazzi A, Singh BK, Tedersoo L, Vargas-Rojas R, Briones MJI, Buscot F, Cameron EK, Cesarz S, Chatzinotas A, Cowan DA, Djukic I, van den Hoogen J, Lehmann A, Maestre FT, Marín C, Reitz T, Rillig MC, Smith LC, de Vries FT, Weigelt A, Wall DH, Eisenhauer N (2021) Tracking, targeting, and conserving soil biodiversity. Science, 371, 239-241.
DOI PMID |
[13] |
Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström- Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS 2 region-evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiology Ecology, 82, 666-677.
DOI URL |
[14] |
Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry, 40, 2843-2853.
DOI URL |
[15] |
Kong CH, Wang P, Gu Y, Xu XH, Wang ML (2008) Fate and impact on microorganisms of rice allelochemicals in paddy soil. Journal of Agricultural and Food Chemistry, 56, 5043-5049.
DOI PMID |
[16] |
Lai JS, Zou Y, Zhang JL, Peres-Neto PR (2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 13, 782-788.
DOI URL |
[17] |
Li BY, Zhu YP, Liu WW, Li S, Fu MD, Ren YH, Cai X, Li JS (2021) Pilot areas for national park system in China: Progress, problems and recommendations. Biodiversity Science, 29, 283-289. (in Chinese with English abstract)
DOI |
[李博炎, 朱彦鹏, 刘伟玮, 李爽, 付梦娣, 任月恒, 蔡譞, 李俊生 (2021) 中国国家公园体制试点进展、问题及对策建议. 生物多样性, 29, 283-289.] | |
[18] |
Michelsen CF, Pedas P, Glaring MA, Schjoerring JK, Stougaard P (2014) Bacterial diversity in Greenlandic soils as affected by potato cropping and inorganic versus organic fertilization. Polar Biology, 37, 61-71.
DOI URL |
[19] |
Nguyen NH, Song ZW, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241-248.
DOI URL |
[20] |
Osburn ED, Aylward FO, Barrett JE (2021) Historical land use has long-term effects on microbial community assembly processes in forest soils. ISME Communications, 1, 48.
DOI |
[21] |
Peng YJ, Huang ZH, Lin LL, Wang RF, Cui GF (2021) Exploring evaluation methods for integrity and authenticity of terrestrial natural ecosystems in national parks: The case of Qianjiangyuan National Park system pilot. Biodiversity Science, 29, 1295-1307. (in Chinese with English abstract)
DOI |
[彭杨靖, 黄治昊, 林乐乐, 王锐锋, 崔国发 (2021) 国家公园陆地自然生态系统完整性与原真性评价方法探索: 以钱江源国家公园体制试点为例. 生物多样性, 29, 1295-1307.]
DOI |
|
[22] | Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596. |
[23] | R Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[24] |
Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, Iwasaki A, Roy J, Yang GW (2019) The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366, 886-890.
DOI PMID |
[25] |
Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry, 57, 204-211.
DOI URL |
[26] |
Shen XL, Li S, Ma KP (2021) Experiences of and suggestions for the development of the Qianjiangyuan-Baishanzu National Park pilot. Biodiversity Science, 29, 315-318. (in Chinese)
DOI URL |
[申小莉, 李晟, 马克平 (2021) 钱江源-百山祖国家公园试点经验与发展方向. 生物多样性, 29, 315-318.]
DOI |
|
[27] |
Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environmental Microbiology, 8, 732-740.
PMID |
[28] |
Tang FL, Yan Y, Liu WG (2019) Construction progress of national park system in China. Biodiversity Science, 27, 123-127. (in Chinese with English abstract)
DOI |
[唐芳林, 闫颜, 刘文国 (2019) 我国国家公园体制建设进展. 生物多样性, 27, 123-127.]
DOI |
|
[29] |
Wang Y, Huang BR (2019) Institutional reform for building China’s national park system: Review and prospects. Biodiversity Science, 27, 117-122. (in Chinese with English abstract)
DOI |
[王毅, 黄宝荣 (2019) 中国国家公园体制改革: 回顾与前瞻. 生物多样性, 27, 117-122.]
DOI |
|
[30] |
Wang YF, Su HQ, Zhao XR, Su Y, Luo M (2019) Conservation easement-inspired adaptive management methods for natural protected areas: A case study on Qianjiangyuan National Park pilot. Biodiversity Science, 27, 88-96. (in Chinese with English abstract)
DOI |
[王宇飞, 苏红巧, 赵鑫蕊, 苏杨, 罗敏 (2019) 基于保护地役权的自然保护地适应性管理方法探讨: 以钱江源国家公园体制试点区为例. 生物多样性, 27, 88-96.]
DOI |
|
[31] |
Welbaum GE, Sturz AV, Dong ZM, Nowak J (2004) Managing soil microorganisms to improve productivity of agro- ecosystems. Critical Reviews in Plant Sciences, 23, 175-193.
DOI URL |
[32] |
Yang YZ, Gao YC, Huang XN, Ni P, Wu YN, Deng Y, Zhan AB (2019) Adaptive shifts of bacterioplankton communities in response to nitrogen enrichment in a highly polluted river. Environmental Pollution, 245, 290-299.
DOI PMID |
[33] |
Zang ZH, Xu WH, Ouyang ZY (2021) Exploration on the value realization of ecological products in China’s national park system pilots. Biodiversity Science, 29, 275-277. (in Chinese)
DOI |
[臧振华, 徐卫华, 欧阳志云 (2021) 国家公园体制试点区生态产品价值实现探索. 生物多样性, 29, 275-277.]
DOI |
|
[34] |
Zhao FJ, Ma YB, Zhu YG, Tang Z, McGrath SP (2015) Soil contamination in China: Current status and mitigation strategies. Environmental Science & Technology, 49, 750-759.
DOI URL |
[35] | Zhou JZ, Deng Y, Luo F, He ZL, Tu QC, Zhi XY (2010) Functional molecular ecological networks. mBio, 1, e00169-10. |
[36] |
Zhou ZH, Wang CK, Luo YQ (2020) Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications, 11, 3072.
DOI PMID |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn