Biodiv Sci ›› 2024, Vol. 32 ›› Issue (7): 24081. DOI: 10.17520/biods.2024081
• Original article • Previous Articles Next Articles
Yanli Wang1,2, Ying Zhang3, Chunlin Qi1,2, Changda Zhang4, Youhai Shi5, Yanjun Du5, Qiong Ding1,2,*()
Received:
2024-03-07
Accepted:
2024-06-03
Online:
2024-07-20
Published:
2024-06-14
Contact:
*E-mail: dingqiong@hainanu.edu.cn
Supported by:
Yanli Wang, Ying Zhang, Chunlin Qi, Changda Zhang, Youhai Shi, Yanjun Du, Qiong Ding. Identifying biodiversity hotspots and conservation gaps in Hainan Tropical Rainforest National Park based on macrofungi and plants perspectives[J]. Biodiv Sci, 2024, 32(7): 24081.
Fig. 1 Sampling points for macrofungi (red triangles) and threatened plants (green triangles) survey in Hainan Island (a), and the 1 km × 1 km grid for the field investigation of target species in the Diaoluoshan Sub-bureau areas (b)
Fig. 2 Contribution of environmental variables to macrofungi (a) and plants in Hainan Island (b) (show only the top ten environmental variables). Full names of the environment variables see Appendix 2.
Fig. 3 Diversity hotspots of macrofungi (a), plants (b), macrofungi-plants (c) (only Hainan Island with distribution of hotspots was intercepted), and the frequency distribution of hotspots by altitude (d). The red dashed line indicates the mean value line.
在海南岛内的面积 Area within Hainan Island (km2) | 在国家公园核心保护区的面积/比例 Area/proportion in NP core protected zone (km2/%) | 在国家公园一般控制区的面积/比例 Area/proportion in NP general control zone (km2/%) | |
---|---|---|---|
真菌热点区域 Macrofungi hotspot area | 271.9 | 199.6/73.4 | 15.2/5.6 |
植物热点区域 Plant hotspot area | 889.0 | 695.7/78.3 | 97.6/10.9 |
真菌-植物热点区域 Macrofungi-plant hotspot area | 601.0 | 518.2/86.2 | 54.6/9.1 |
Table 1 Hot areas and their percentage occupation of target species in different zones of Hainan Island and Hainan Tropical Rainforest National Park (NP)
在海南岛内的面积 Area within Hainan Island (km2) | 在国家公园核心保护区的面积/比例 Area/proportion in NP core protected zone (km2/%) | 在国家公园一般控制区的面积/比例 Area/proportion in NP general control zone (km2/%) | |
---|---|---|---|
真菌热点区域 Macrofungi hotspot area | 271.9 | 199.6/73.4 | 15.2/5.6 |
植物热点区域 Plant hotspot area | 889.0 | 695.7/78.3 | 97.6/10.9 |
真菌-植物热点区域 Macrofungi-plant hotspot area | 601.0 | 518.2/86.2 | 54.6/9.1 |
植物独占区面积 Exclusive area of plant (km2) | 大型真菌独占区面积 Exclusive area of macrofungi (km2) | 重叠面积 Overlapping area (km2) | |
---|---|---|---|
冷点区域 Coldspot area | 16,695.0 | 8,769.5 | 1,754.7 |
次冷点区域 Sub-coldspot area | 5,358.2 | 7,318.1 | 2,426.5 |
中等区域 Moderate area | 4,428.2 | 10,840.3 | 106.2 |
次热点区域 Sub-hotspot area | 2,134.4 | 2,305.0 | 107.8 |
热点区域 Hotspot area | 675.0 | 57.9 | 214.0 |
Table 2 Comparison of hotspot areas for macrofungi and plants in Hainan Island
植物独占区面积 Exclusive area of plant (km2) | 大型真菌独占区面积 Exclusive area of macrofungi (km2) | 重叠面积 Overlapping area (km2) | |
---|---|---|---|
冷点区域 Coldspot area | 16,695.0 | 8,769.5 | 1,754.7 |
次冷点区域 Sub-coldspot area | 5,358.2 | 7,318.1 | 2,426.5 |
中等区域 Moderate area | 4,428.2 | 10,840.3 | 106.2 |
次热点区域 Sub-hotspot area | 2,134.4 | 2,305.0 | 107.8 |
热点区域 Hotspot area | 675.0 | 57.9 | 214.0 |
Fig. 4 The distribution of hotspot and conservation gaps of all target species (61 species) on Hainan Island (only Hainan Island with distribution of hotspots was intercepted)
[1] | Ayram CA, Mendoza ME, Etter A, Salicrup DR (2017) Anthropogenic impact on habitat connectivity: A multidimensional human footprint index evaluated in a highly biodiverse landscape of Mexico. Ecological Indicators, 72, 895-909. |
[2] |
Cao Y, Wu G, Yu DD (2021) Include macrofungi in biodiversity targets. Science, 372, 1160.
DOI PMID |
[3] | Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature, 387, 253-260. |
[4] | Dahlberg A, Genney DR, Heilmann-Clausen J (2010) Developing a comprehensive strategy for fungal conservation in Europe: Current status and future needs. Fungal Ecology, 3, 50-64. |
[5] | Dalton R (2000) Biodiversity cash aimed at hotspots. Nature, 406, 818. |
[6] | De Araújo CB, Marcondes-Machado LO, Costa GC (2014) The importance of biotic interactions in species distribution models: A test of the Eltonian noise hypothesis using parrots. Journal of Biogeography, 41, 513-523. |
[7] |
Deng C, Hao JW, Gao D, Ren MX, Zhang LN (2023) Identification and protection of suitable habitat hotspots for threatened bryophytes in Hainan. Biodiversity Science, 31, 22580. (in Chinese)
DOI |
[邓昶, 郝杰威, 高德, 任明迅, 张莉娜 (2023) 海南受威胁苔藓植物适生热点区域识别与保护. 生物多样性, 31, 22580.]
DOI |
|
[8] | Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A, Balvanera P, Brauman KA, Butchart SHM, Chan KMA, Garibaldi LA, Ichii K, Liu JG, Subramanian SM, Midgley GF, Miloslavich P, Molnár Z, Obura D, Pfaff A, Polasky S, Purvis A, Razzaque J, Reyers B, Chowdhury RR, Shin YJ, Visseren-Hamakers I, Willis KJ, Zayas CN (2019) Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 366, eaax3100. |
[9] | Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57. |
[10] | Fajardo J, Lessmann J, Bonaccorso E, Devenish C, Muñoz J (2014) Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru). PLoS ONE, 9, e114367. |
[11] |
Fearnside PM, Ferraz J (1995) A conservation gap analysis of Brazil’s Amazonian vegetation. Conservation Biology, 9, 1134-1147.
DOI PMID |
[12] | Frøslev TG, Kjøller R, Bruun HH, Ejrnæs R, Hansen AJ, Læssøe T, Heilmann-Clausen J (2019) Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients? Biological Conservation, 233, 201-212. |
[13] | GBIF (2023) Global Biodiversity Information Facility. https://www.gbif.org/. (accessed on 2024-03-22) |
[14] | Halme P, Kotiaho JS (2012) The importance of timing and number of surveys in fungal biodiversity research. Biodiversity and Conservation, 21, 205-219. |
[15] | Huang Z, Bai Y, Alatalo JM, Yang Z (2020) Mapping biodiversity conservation priorities for protected areas: A case study in Xishuangbanna Tropical Area, China. Biological Conservation, 249, 108741. |
[16] | IUCN (International Union for Conservation of Nature) (2023) The IUCN Red List of Threatened Species. https://www.iucnredlist.org. (accessed on 2024-03-22) |
[17] |
Li GH, Guo XY, Li LM, Ren MX, Wan L, Ding Q, Li JL (2022) Macrofungal diversity in different vegetation types of Hainan Tropical Rainforest National Park. Biodiversity Science, 30, 22110. (in Chinese with English abstract)
DOI |
[李国华, 郭向阳, 李霖明, 任明迅, 万玲, 丁琼, 李娟玲 (2022) 海南热带雨林国家公园不同植被类型的大型真菌多样性. 生物多样性, 30, 22110.]
DOI |
|
[18] | Li Y, Liu DM, Wang K, Wu HJ, Cai L, Cai L, Li JS, Yao YJ (2020a) Red list assessment of macrofungi in China: Challenges and measures. Biodiversity Science, 28, 66-73. (in Chinese with English abstract) |
[李熠, 刘冬梅, 王科, 吴海军, 蔡蕾, 蔡磊, 李俊生, 姚一建 (2020a) 中国大型真菌红色名录评估中存在的问题及今后的对策. 生物多样性, 28, 66-73.] | |
[19] | Li Y, Tang ZY, Yan YJ, Wang K, Cai L, He JS, Gu S, Yao YJ (2020b) Incorporating species distribution model into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis. Biodiversity Science, 28, 99-106. (in Chinese with English abstract) |
[李熠, 唐志尧, 闫昱晶, 王科, 蔡磊, 贺金生, 古松, 姚一建 (2020b) 物种分布模型在大型真菌红色名录评估及保护中的应用: 以冬虫夏草为例. 生物多样性, 28, 99-106.] | |
[20] | Lian Y, Bai Y, Huang Z, Ali M, Wang J, Chen H (2024) Spatio-temporal changes and habitats of rare and endangered species in Yunnan Province based on MaxEnt model. Land, 13, 240. |
[21] | Ma K, Chen YH, Tang XL, Wang YY (2023) Research on spatial optimization of protected areas in the middle reaches of the Yangtze River based on threatened species. Geographic Research, 42, 3115-3129. (in Chinese with English abstract) |
[马坤, 陈颖晖, 唐晓岚, 王燕燕 (2023) 基于受威胁物种保护的长江中游流域自然保护地空间优化研究. 地理研究, 42, 3115-3129.]
DOI |
|
[22] | Ma KP (2016) Hot issues in biodiversity science. Biodiversity Science, 24, 1-2. (in Chinese) |
[马克平 (2016) 生物多样性科学的热点问题. 生物多样性, 24, 1-2 ]
DOI |
|
[23] | Ma X, Wang H, Yu W, Du Y, Liang JC, Hu HJ, Qiu SR, Liu L (2021) Analysis of bird diversity hotspot distribution and conservation gaps in Guangdong Province based on the MaxEnt model. Biodiversity Science, 29, 1097-1107. (in Chinese with English abstract) |
[马星, 王浩, 余蔚, 杜勇, 梁健超, 胡慧建, 邱胜荣, 刘璐 (2021) 基于MaxEnt模型分析广东省鸟类多样性热点分布及保护空缺. 生物多样性, 29, 1097-1107.] | |
[24] | Mafuwe K, Broadley S, Moyo S (2021) Use of maximum entropy (Maxent) niche modelling to predict the occurrence of threatened freshwater species in a biodiversity hotspot of Zimbabwe. African Journal of Ecology, 3, 557-565. |
[25] | McNeely JA, Miller KR (1983) IUCN, National Parks, and Protected Areas: Priorities for Action. Environmental Conservation, 10, 13-21. |
[26] | Murray-Smith C, Brummitt NA, Oliveira-Filho AT, Bachman S, Moat J, Lughadha EMN, Lucas EJ (2009) Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conservation Biology. 23, 151-163. |
[27] | Myers N, Mittermeier RA, Mittermeier CG, Fonseca GABD, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-859. |
[28] |
Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science, 336, 1401-1406.
DOI PMID |
[29] | Niego AG, Rapior S, Thongklang N, Raspé O, Hyde K, Mortimer P (2023) Reviewing the contributions of macrofungi to forest ecosystem processes and services. Fungal Biology Reviews, 44, 100294. |
[30] | Nordén J, Penttilä R, Siitonen J, Tomppo E, Ovaskainen O (2013) Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. Journal of Ecology, 101, 701-712. |
[31] | NPCA (National Parks Conservation Association) (2019) Report: Endangered Species Act is A Win-Win for National Parks and Imperiled Species. https://www.npca.org/articles/2131. (accessed on 2024-06-01) |
[32] | Penttilä R, Lindgren M, Miettinen O, Rita H, Hanski I (2006) Consequences of forest fragmentation for polyporous fungi at two spatial scales. Oikos, 114, 225-240. |
[33] | Pouteau R, Bayle É, Blanchard E, Birnbaum P, Cassan JJ, Hequet V, Ibanez T, Vandrot H (2015) Accounting for the indirect area effect in stacked species distribution models to map species richness in a montane biodiversity hotspot. Diversity and Distributions, 21, 1329-1338. |
[34] | Silva VD, Pressey RL, Machado RB, VanDerWal J, Wiederhecker HC, Werneck FP, Colli GR (2014) Formulating conservation targets for a gap analysis of endemic lizards in a biodiversity hotspot. Biological Conservation, 180, 1-10. |
[35] |
Swets JA (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
DOI PMID |
[36] |
Tedersoo L, Jairus T, Horton B, Abarenkov K, Suvi T, Saar I, Kõljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytologist, 180, 479-490.
DOI PMID |
[37] | Timko J, Satterfield T (2008) Criteria and indicators for evaluating social equity and ecological integrity in national parks and protected areas. Natural Areas Journal, 28, 307-319. |
[38] | Wu XL (2019) Macrofungi of Hainan Island, China. Science Press, Beijing. (in Chinese) |
[吴兴亮 (2019) 中国海南岛大型真菌. 科学出版社, 北京.] | |
[39] | Wu XY, Dong SK, Liu SL, Liu QR, Han YH, Zhang XL, Su XK, Zhao HD, Feng J (2018) Identification of hotspots of endangered plants in the Sanjiangyuan region based on MaxEnt model. Biodiversity Science, 26, 138-148. (in Chinese with English abstract) |
[武晓宇, 董世魁, 刘世梁, 刘全儒, 韩雨晖, 张晓蕾, 苏旭坤, 赵海迪, 冯憬 (2018) 基于MaxEnt模型的三江源区草地濒危保护植物热点区识别. 生物多样性, 26, 138-148.]
DOI |
|
[40] | Wulff AS, Hollingsworth PM, Ahrends A, Jaffré T, Veillon JM, Huillier LL, Fogliani B (2013) Conservation priorities in a biodiversity hotspot: Analysis of narrow endemic plant species in New Caledonia. PLoS ONE, 8, e73371. |
[41] | Yang XB, Chen YK, Li DH, Mo YN (2016) Research on the Map and Distribution Characteristics of Rare and Protected Plants in Hainan. Science Press, Beijing. (in Chinese) |
[杨小波, 陈玉凯, 李东海, 莫燕妮 (2016) 海南珍稀保护植物图鉴与分布特征研究. 科学出版社, 北京.] | |
[42] | Yang XB, Chen ZZ, Li DH, Chen YK, Chen H (2019) Flora of Hainan. Science Press, Beijing. (in Chinese) |
[杨小波, 陈宗铸, 李东海, 陈玉凯, 陈辉 (2019) 海南植被志. 科学出版社, 北京.] | |
[43] |
Yao YJ, Wei JC, Zhuang WY, Cai L, Liu DM, Li JS, Wei TZ, Li Y, Wang K, Wu HJ (2020) Development of red list assessment of macrofungi in China. Biodiversity Science, 28, 4-10. (in Chinese with English abstract)
DOI |
[姚一建, 魏江春, 庄文颖, 蔡蕾, 刘冬梅, 李俊生, 魏铁铮, 李熠, 王科, 吴海军 (2020) 中国大型真菌红色名录评估研究进展. 生物多样性, 28, 4-10.]
DOI |
|
[44] | Yu HL, Wang TJ, Skidmore A, Heurich M, Bässler C (2022) 50 Years of cumulative open-source data confirm stable and robust biodiversity distribution patterns for macrofungi. Journal of Fungi, 8, 981. |
[45] | Zeng NK, Jiang S (2020) Atlas of Macrofungi from Yinggeling of Hainan, China. Nan Hai Publish Company, Haikou. (in Chinese) |
[曾念开, 蒋帅 (2020) 鹦哥岭大型真菌. 南海出版社, 海口.] | |
[46] | Zeng XY, Song YH (2023) Study on the biodiversity distribution pattern of the green space in the central city of Kunming based on the key species and habitat quality assessment. Chinese Landscape Architecture, 39(9), 126-132. (in Chinese with English abstract) |
[曾欣怡, 宋钰红 (2023) 基于关键物种与生境质量评估的昆明市中心城区绿色空间生物多样性分布格局研究. 中国园林, 39(9), 126-132.] |
[1] | Jia Xu, Xiaojuan Cui, Yifei Zhang, Chang Wu, Yuandong Sun. Fish diversity and distribution in the Nanling region [J]. Biodiv Sci, 2024, 32(7): 23482-. |
[2] | Yuyuan Bao, Yinkang Li, Wuying Lin, Zhiqin Zhou, Xiaobo Xiao, Xiaoyong Xie. The current situation of horseshoe crabs in the offshore waters of northern South China Sea with analysis of the potential habitat distribution of juvenile Tachypleus tridentatus in Beibu Gulf [J]. Biodiv Sci, 2023, 31(5): 22407-. |
[3] | Lisong Wang, Qingqing Zhan, Jingping Liao, Hongwen Huang. Vascular plant diversity of National Key Protected Wild Plants, threatened species, and endemic species ex situ conserved in botanic gardens of China [J]. Biodiv Sci, 2023, 31(2): 22495-. |
[4] | Chunpeng Guo, Maojun Zhong, Xiaoyi Wang, Shengnan Yang, Ke Tang, Lele Jia, Chunlan Zhang, Junhua Hu. An updated species checklist of amphibians and reptiles in Fujian Province, China [J]. Biodiv Sci, 2022, 30(8): 22090-. |
[5] | Guohua Li, Xiangyang Guo, Linming Li, Mingxun Ren, Ling Wan, Qiong Ding, Juanling Li. Macrofungal diversity in different vegetation types of Hainan Tropical Rainforest National Park [J]. Biodiv Sci, 2022, 30(7): 22110-. |
[6] | Miao Yang, Jie Zhang, Jiawei Bai, Jiangang Guo, Yahui Qu, Huiping Li. Species diversity of macrofungi in the Wuling Mountain National Nature Reserve [J]. Biodiv Sci, 2021, 29(9): 1229-1235. |
[7] | Xia Wan, Libing Zhang. Global new species of vascular plants published in 2020 [J]. Biodiv Sci, 2021, 29(8): 1003-1010. |
[8] | Yichao Li, Yongsheng Chen, Denis Sandanov, Ao Luo, Tong Lü, Xiangyan Su, Yunpeng Liu, Qinggang Wang, Viktor Chepinoga, Sergey Dudov, Wei Wang, Zhiheng Wang. Patterns and environmental drivers of Ranunculaceae species richness and phylogenetic diversity across eastern Eurasia [J]. Biodiv Sci, 2021, 29(5): 561-574. |
[9] | Yong Yang. An updated red list assessment of gymnosperms from China (Version 2021) [J]. Biodiv Sci, 2021, 29(12): 1599-1606. |
[10] | Mengxia Wang, Xinyi Chen, Jie Zhang, Yuhang Song, Juan Yang. Biodiversity of Chordata in the Philippine Sea: A case study based on OBIS [J]. Biodiv Sci, 2021, 29(11): 1481-1489. |
[11] | Junhua Zhu, Zhou Wu, Bingbin Feng, Shuaishuai Deng, Wenquan Zhen, Yongyan Liao, Xiaoyong Xie, Kit Yue Kwan. Global conservation of Tachypleus tridentatus: Present status and recommendations [J]. Biodiv Sci, 2020, 28(5): 621-629. |
[12] | Yahui Zhao, Yingchun Xing, Binbin Lü, Chuanjiang Zhou, Wenbo Yang, Kai Zhao. Species diversity and conservation of freshwater fishes in the Yellow River basin [J]. Biodiv Sci, 2020, 28(12): 1496-1510. |
[13] | Tiezheng Wei,Ke Wang,Xiaodan Yu,Yi Li,Haijun Wu,Hongmei Wu,Yonghui Wang,Xiaodan Wei,Binbin Li,Lan Jiang,Yijian Yao. Assessment of the threatened status of macro-basidiomycetes in China [J]. Biodiv Sci, 2020, 28(1): 41-53. |
[14] | Yi Li,Dongmei Liu,Ke Wang,Haijun Wu,Lei Cai,Lei Cai,Junsheng Li,Yijian Yao. Red list assessment of macrofungi in China: Challenges and measures [J]. Biodiv Sci, 2020, 28(1): 66-73. |
[15] | Ke Wang,Dongmei Liu,Lei Cai,Haijun Wu,Yi Li,Tiezheng Wei,Yonghui Wang,Hongmei Wu,Xiaodan Wei,Binbin Li,Junsheng Li,Yijian Yao. Methods and procedures of the red list assessment of macrofungi in China [J]. Biodiv Sci, 2020, 28(1): 11-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn