Biodiv Sci ›› 2025, Vol. 33 ›› Issue (3): 24101. DOI: 10.17520/biods.2024101 cstr: 32101.14.biods.2024101
• Original Papers:Microbial Diversity • Next Articles
Tong Miao(), Wang Huan(
), Zhang Wenshuang, Wang Chao(
), Song Jianxiao*(
)(
)
Received:
2024-03-17
Accepted:
2024-09-17
Online:
2025-03-20
Published:
2024-11-29
Contact:
*E-mail: sjx@nwpu.edu.cn
Supported by:
Tong Miao, Wang Huan, Zhang Wenshuang, Wang Chao, Song Jianxiao. Distribution characteristics of antibiotic resistance genes in soil bacterial communities exposed to heavy metal pollution[J]. Biodiv Sci, 2025, 33(3): 24101.
处理名称 Treatment | Cu (mg/kg) | Cd (mg/kg) |
---|---|---|
CK | 0 | 0 |
Cu200 | 200 | 0 |
Cu400 | 400 | 0 |
Cd1 | 0 | 1 |
Cd5 | 0 | 5 |
Cu200 + Cd1 | 200 | 1 |
Cu200 + Cd5 | 200 | 5 |
Cu400 + Cd1 | 400 | 1 |
Cu400 + Cd5 | 400 | 5 |
Table 1 Concentrations of heavy metals used in this study
处理名称 Treatment | Cu (mg/kg) | Cd (mg/kg) |
---|---|---|
CK | 0 | 0 |
Cu200 | 200 | 0 |
Cu400 | 400 | 0 |
Cd1 | 0 | 1 |
Cd5 | 0 | 5 |
Cu200 + Cd1 | 200 | 1 |
Cu200 + Cd5 | 200 | 5 |
Cu400 + Cd1 | 400 | 1 |
Cu400 + Cd5 | 400 | 5 |
目标基因 Target genes | 引物(5°-3°) Primers (5°-3°) | 片段长度 Fragment length (bp) | 退火温度 Annealing temperature (℃) | 参考文献 References |
---|---|---|---|---|
sul1 | F: CGGCGTGGGCTACCTGAACG R: GCCGATCGCGTGAAGTTCCG | 433 | 60 | Frank et al, |
tetG | F: GCAGAGCAGGTCGCTGG R: CCYGCAAGAGAAGCCAGAAG | 134 | 54 | Aminov et al, |
tetM02 | F: ACAGAAAGCTTATTATATAAC R: TGGCGTGTCTATGATGTTCAC | 171 | 52 | Aminov et al, |
blaVIM | F: CAGATTGCCGATGGTGTTTGG R: AGGTGGGCCATTCAGCCAGA | 523 | 55 | Ktari et al, |
tetX | F: CAATAATTGGTGGTGGACCC R: TTCTTACCTTGGACATCCCG | 468 | 55 | Ng et al, |
intl1 | F: CTGGATTTCGATCACGGCACG R: ACATGCGTGTAAATCATCGTCG | 473 | 60 | Frank et al, |
16S V3 | F: CCTACGGGAGGCAGCAG R: ATTACCGCGGCTGCTGG | 193 | 55 | Aminov et al, |
16S V3-V4 | F: ACTCCTACGGGAGGCAGCA R: GGACTACHVGGGTWTCTAAT | 480 | 53 | Claesson et al, |
Table 2 Primer sequences and amplification conditions
目标基因 Target genes | 引物(5°-3°) Primers (5°-3°) | 片段长度 Fragment length (bp) | 退火温度 Annealing temperature (℃) | 参考文献 References |
---|---|---|---|---|
sul1 | F: CGGCGTGGGCTACCTGAACG R: GCCGATCGCGTGAAGTTCCG | 433 | 60 | Frank et al, |
tetG | F: GCAGAGCAGGTCGCTGG R: CCYGCAAGAGAAGCCAGAAG | 134 | 54 | Aminov et al, |
tetM02 | F: ACAGAAAGCTTATTATATAAC R: TGGCGTGTCTATGATGTTCAC | 171 | 52 | Aminov et al, |
blaVIM | F: CAGATTGCCGATGGTGTTTGG R: AGGTGGGCCATTCAGCCAGA | 523 | 55 | Ktari et al, |
tetX | F: CAATAATTGGTGGTGGACCC R: TTCTTACCTTGGACATCCCG | 468 | 55 | Ng et al, |
intl1 | F: CTGGATTTCGATCACGGCACG R: ACATGCGTGTAAATCATCGTCG | 473 | 60 | Frank et al, |
16S V3 | F: CCTACGGGAGGCAGCAG R: ATTACCGCGGCTGCTGG | 193 | 55 | Aminov et al, |
16S V3-V4 | F: ACTCCTACGGGAGGCAGCA R: GGACTACHVGGGTWTCTAAT | 480 | 53 | Claesson et al, |
Fig. 1 The absolute and relative abundance of antibiotic resistance genes (ARGs) and mobile genetic element (MGE) in different concentration of Cu and Cd polluted soils. The full names of all treatments are listed in Table 1. Sul1, tetG, tetM02, blaVIM, tetX, and intl1 are ARGs and MGE.
Fig. 2 Absolute abundance of soil bacteria (16S rRNA gene) in different concentration of Cu and Cd polluted soils. The full names of all treatments are listed in Table 1. Different lowercase letters indicate a significant difference between treatments (P < 0.05).
Fig. 4 Community structure of top 10 soil bacteria in different concentration of Cu and Cd polluted soils at the phylum (a) and genus level (b). The full names of all treatments are listed in Table 1.
Fig. 5 PCoA analysis of soil bacterial community structure (a) and network analysis of soil antibiotic resistance genes (ARGs), mobile genetic elements (MGE) and bacterial communities at ASV level (b).The full names of all treatments are listed in Table 1.
Fig. 6 Correlation analysis between the top 30 bacteria genera and ARGs (R2 represents the correlation coefficient. * P < 0.05, ** P < 0.01). Sul1, tetX, blaVIM, and intl1 are ARGs and MGE.
Fig. 7 LEfSe analysis of significantly enriched bacteria in soil under different concentrations of Cu and Cd (a, Cladogram; b, Histogram of linear discriminant analysis (LDA)). CK, Control group; Cu, Treatment with Cu alone (Cu200, Cu400); Cd, Treatment with Cd alone (Cd1, Cd5); CuCd, Combined pollution of Cu and Cd (Cu200 + Cd1, Cu200 + Cd5, Cu400 + Cd1, Cu400 + Cd5). The current LDA threshold is 3.
相对丰度 Relative abundance | Cu | Cd | sul1 | tetX | intl1 | tetG | tetM02 | blaVIM |
---|---|---|---|---|---|---|---|---|
ARGs | 0.265 | 0.714** | ‒0.156 | 0.497** | ‒0.356 | ‒0.164 | 0.714** | 0.875** |
Cu | 0.106 | ‒0.653** | ‒0.557** | ‒0.621** | 0 | ‒0.228 | 0.026 | |
Cd | 0.182 | 0.499** | ‒0.522** | ‒0.358 | 0.659** | 0.77** | ||
sul1 | 0.42* | 0.255 | 0.004 | 0.232 | ‒0.013 | |||
tetX | 0.337 | ‒0.179 | 0.733** | 0.632** | ||||
intl1 | 0.185 | ‒0.086 | ‒0.213 | |||||
tetG | ‒0.009 | ‒0.291 | ||||||
tetM02 | 0.819** |
Table 3 Correlation analysis of relative abundance between Cu, Cd, and ARGs
相对丰度 Relative abundance | Cu | Cd | sul1 | tetX | intl1 | tetG | tetM02 | blaVIM |
---|---|---|---|---|---|---|---|---|
ARGs | 0.265 | 0.714** | ‒0.156 | 0.497** | ‒0.356 | ‒0.164 | 0.714** | 0.875** |
Cu | 0.106 | ‒0.653** | ‒0.557** | ‒0.621** | 0 | ‒0.228 | 0.026 | |
Cd | 0.182 | 0.499** | ‒0.522** | ‒0.358 | 0.659** | 0.77** | ||
sul1 | 0.42* | 0.255 | 0.004 | 0.232 | ‒0.013 | |||
tetX | 0.337 | ‒0.179 | 0.733** | 0.632** | ||||
intl1 | 0.185 | ‒0.086 | ‒0.213 | |||||
tetG | ‒0.009 | ‒0.291 | ||||||
tetM02 | 0.819** |
[1] | Akiba T, Koyama K, Ishiki Y, Kimura S, Fukushima T(1960) On the mechanism of the development of multiple-drug- resistant clones of Shigella. Japanese Journal of Microbiology, 4, 219-227. |
[2] |
Almakki A, Jumas-Bilak E, Marchandin H, Licznar-Fajardo P(2019) Antibiotic resistance in urban runoff. Science of the Total Environment, 667, 64-76.
DOI |
[3] |
Aminov RI, Garrigues-Jeanjean N, Mackie RI(2001) Molecular ecology of tetracycline resistance: Development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Applied and Environmental Microbiology, 67, 22-32.
DOI PMID |
[4] |
Awasthi MK, Liu T, Chen HY, Verma S, Duan YM, Awasthi SK, Wang Q, Ren XN, Zhao JC, Zhang ZQ(2019) The behavior of antibiotic resistance genes and their associations with bacterial community during poultry manure composting. Bioresource Technology, 280, 70-78.
DOI PMID |
[5] | Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV(2006) Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14, 176-182. |
[6] | Bao YM, Choct M, Iji PA, Bruerton K(2010) The digestibility of organic trace minerals along the small intestine in broiler chickens. Asian-Australasian Journal of Animal Sciences, 23, 90-97. |
[7] |
Bartha NA, Sóki J, Urbán E, Nagy E(2011) Investigation of the prevalence of tetQ, tetX and tetX1 genes in Bacteroides strains with elevated tigecycline minimum inhibitory concentrations. International Journal of Antimicrobial Agents, 38, 522-525.
DOI PMID |
[8] |
Bassetti M, Peghin M, Vena A, Giacobbe DR(2019) Treatment of infections due to MDR gram-negative bacteria. Frontiers in Medicine, 6, 74.
DOI PMID |
[9] | Cheng JH, Tang XY, Liu C(2019) Characteristics of antibiotic resistance genes in various livestock feedlot soils of the hilly purple soil region. Environmental Science, 40, 3257-3262. (in Chinese with English abstract) |
[ 程建华, 唐翔宇, 刘琛 (2019) 紫色土丘陵区畜禽养殖场土壤中抗生素抗性基因分布特征. 环境科学, 40, 3257-3262.] | |
[10] | Claesson MJ, O’Sullivan O, Wang Q, Nikkilä J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW(2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE, 4, e6669. |
[11] | Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G(2014) Bacterial phylogeny structures soil resistomes across habitats. Nature, 509, 612-616. |
[12] |
Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MOA, Dantas G(2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science, 337, 1107-1111.
DOI PMID |
[13] |
Frank T, Gautier V, Talarmin A, Bercion R, Arlet G(2007) Characterization of sulphonamide resistance genes and class 1 integron gene cassettes in Enterobacteriaceae, Central African Republic (CAR). Journal of Antimicrobial Chemotherapy, 59, 742-745.
DOI PMID |
[14] | Ghosh D, Veeraraghavan B, Elangovan R, Vivekanandan P(2020) Antibiotic resistance and epigenetics: More to it than meets the eye. Antimicrobial Agents and Chemotherapy, 64, e02225-19. |
[15] | Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu YG(2015) Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. The ISME Journal, 9, 1269-1279. |
[16] |
Goldstein C, Lee MD, Sanchez S, Hudson C, Phillips B, Register B, Grady M, Liebert C, Summers AO, White DG, Maurer JJ(2001) Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrobial Agents and Chemotherapy, 45, 723-726.
DOI PMID |
[17] | Gupta S, Graham DW, Sreekrishnan TR, Ahammad SZ(2022) Effects of heavy metals pollution on the co-selection of metal and antibiotic resistance in urban rivers in UK and India. Environmental Pollution, 306, 119326. |
[18] |
Hou SN, Zheng N, Tang L, Ji XF(2018) Effects of cadmium and copper mixtures to carrot and pakchoi under greenhouse cultivation condition. Ecotoxicology and Environmental Safety, 159, 172-181.
DOI PMID |
[19] |
Huang B, Yuan Z, Li DQ, Nie XD, Xie ZY, Chen JY, Liang C, Liao YS, Liu T(2019) Loss characteristics of Cd in soil aggregates under simulated rainfall conditions. Science of the Total Environment, 650, 313-320.
DOI |
[20] | Jain R, Rivera MC, Lake JA(1999) Horizontal gene transfer among genomes: The complexity hypothesis. Proceedings of the National Academy of Sciences, USA, 96, 3801-3806. |
[21] |
Knapp CW, Callan AC, Aitken B, Shearn R, Koenders A, Hinwood A(2017) Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environmental Science and Pollution Research International, 24, 2484-2494.
DOI PMID |
[22] | Ktari S, Arlet G, Mnif B, Gautier V, Mahjoubi F, Ben Jmeaa M, Bouaziz M, Hammami A(2006) Emergence of multidrug-resistant Klebsiella pneumoniae isolates producing VIM-4 metallo-β-lactamase, CTX-M-15 extended- spectrum β-lactamase, and CMY-4 AmpC β-lactamase in a Tunisian university hospital. Antimicrobial Agents and Chemotherapy, 50, 4198-4201. |
[23] | Leski TA, Bangura U, Jimmy DH, Ansumana R, Lizewski SE, Stenger DA, Taitt CR, Vora GJ(2013) Multidrug-resistant tet(X)-containing hospital isolates in Sierra Leone. International Journal of Antimicrobial Agents, 42, 83-86. |
[24] | Levy SB, Marshall B(2004) Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine,10, S122-S129. |
[25] | Li Y, Wang XJ, Li J, Wang Y, Song JK, Xia SQ, Jing HP, Zhao JF(2019) Effects of struvite-humic acid loaded biochar/bentonite composite amendment on Zn(II) and antibiotic resistance genes in manure-soil. Chemical Engineering Journal, 375, 122013. |
[26] | Li ZK, Han M, Qin C, Hu XJ, Gao YZ(2024) Research progress and hot spot analysis on antibiotic resistance gene pollution in soil environment. Journal of Ecology and Rural Environment, 40, 11-22. (in Chinese with English abstract) |
[ 李泽楷, 韩淼, 秦超, 胡小婕, 高彦征 (2024) 土壤环境中抗生素抗性基因污染研究进展和热点分析. 生态与农村环境学报, 40, 11-22.] | |
[27] |
Liebert CA, Hall RM, Summers AO(1999) Transposon Tn21, flagship of the floating genome. Microbiology and Molecular Biology Reviews, 63, 507-522.
DOI PMID |
[28] |
Liu H, Sun HF, Zhang M, Liu Y(2019) Dynamics of microbial community and tetracycline resistance genes in biological nutrient removal process. Journal of Environmental Management, 238, 84-91.
DOI PMID |
[29] |
Ng LK, Martin I, Alfa M, Mulvey M(2001) Multiplex PCR for the detection of tetracycline resistant genes. Molecular and Cellular Probes, 15, 209-215.
DOI PMID |
[30] | Pal C, Asiani K, Arya S, Rensing C, Stekel DJ, Larsson DJ, Hobman JL(2017) Metal resistance and its association with antibiotic resistance. Microbiology of Metal Ions, 70, 261-313. |
[31] |
Partridge SR, Brown HJ, Stokes HW, Hall RM(2001) Transposons Tn1696 and Tn21 and their integrons In4 and In 2 have independent origins. Antimicrobial Agents and Chemotherapy, 45, 1263-1270.
PMID |
[32] | Peng S, Zhang HY, Song D, Chen H, Lin XG, Wang YM, Ji LD(2022) Distribution of antibiotic, heavy metals and antibiotic resistance genes in livestock and poultry feces from different scale of farms in Ningxia, China. Journal of Hazardous Materials, 440, 129719. |
[33] | Pruden A, Pei RT, Storteboom H, Carlson KH(2006) Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado. Environmental Science & Technology, 40, 7445-7450. |
[34] | Qiao LK, Liu XX, Zhang S, Zhang LY, Li XH, Hu XS, Zhao QC, Wang QY, Yu CH(2021) Distribution of the microbial community and antibiotic resistance genes in farmland surrounding gold tailings: A metagenomics approach. Science of the Total Environment, 779, 146502. |
[35] | Shi LM, Zhang JY, Lu TD, Zhang KC(2022) Metagenomics revealed the mobility and hosts of antibiotic resistance genes in typical pesticide wastewater treatment plants. Science of the Total Environment, 817, 153033. |
[36] | Song JX, Rensing C, Holm PE, Virta M, Brandt KK(2017) Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil. Environmental Science & Technology, 51, 3040-3047. |
[37] | Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, McArthur JV(2005) Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environmental Science & Technology, 39, 3671-3678. |
[38] |
Stokes HW, Gillings MR(2011) Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into gram-negative pathogens. FEMS Microbiology Reviews, 35, 790-819.
DOI PMID |
[39] |
Su JQ, Huang FY, Zhu YG(2013) Antibiotic resistance genes in the environment. Biodiversity Science, 21, 481-487. (in Chinese with English abstract)
DOI |
[ 苏建强, 黄福义, 朱永官 (2013) 环境抗生素抗性基因研究进展. 生物多样性, 21, 481-487.]
DOI |
|
[40] | Sun J, Chen C, Cui CY, Zhang Y, Liu X, Cui ZH, Ma XY, Feng YJ, Fang LX, Lian XL, Zhang RM, Tang YZ, Zhang KX, Liu HM, Zhuang ZH, Zhou SD, Lv JN, Du H, Huang B, Yu FY, Mathema B, Kreiswirth BN, Liao XP, Chen L, Liu YH(2019) Plasmid-encoded tet (X) genes that confer high-level tigecycline resistance in Escherichia coli. Nature Microbiology, 4, 1457-1464. |
[41] | Tian QF, He QS, Lu AX, Wang HO(2020) Relationship between antibiotic resistance genes and microbial communities in farmland soil. Environment Chemistry, 39, 1346-1355. (in Chinese with English abstract) |
[ 田其凡, 何玘霜, 陆安祥, 王海鸥 (2020) 农田土壤抗生素抗性基因与微生物群落的关系. 环境化学, 39, 1346-1355.] | |
[42] | Wales AD, Davies RH(2015) Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics, 4, 567-604. |
[43] |
Wang H, Dong YH, Yang YY, Toor GS, Zhang XM(2013) Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China. Journal of Environmental Sciences, 25, 2435-2442.
PMID |
[44] | Wang J, Zhou JT(2021) Petroleum exploitation enriches the sulfonamide resistance gene sul2 in offshore sediments. Journal of Oceanology and Limnology, 39, 946-954. |
[45] |
Wen X, Wang Y, Zou YD, Ma BH, Wu YB(2018) No evidential correlation between veterinary antibiotic degradation ability and resistance genes in microorganisms during the biodegradation of doxycycline. Ecotoxicology and Environmental Safety, 147, 759-766.
DOI PMID |
[46] | Wu J, Wang JY, Li ZT, Guo SM, Li KJ, Xu PS, Ok YS, Jones DL, Zou JW(2023) Antibiotics and antibiotic resistance genes in agricultural soils: A systematic analysis. Critical Reviews in Environmental Science and Technology, 53, 847-864. |
[47] | Xia YH, Tan L, Xu M, Lei BY, Gao CX, Zhu Y, Chen Q, Hu P, Xiong W, Tang F(2019) Antibiotic resistance gene contamination status in air conditioning filter dust of a hospital in Wuhan City. Journal of Hygiene Research, 48, 583-593. (in Chinese with English abstract) |
[ 夏雨荷, 谭莉, 徐敏, 雷博阳, 高彩霞, 朱源, 陈琪, 胡平, 熊薇, 唐非 (2019) 武汉市某医院空调过滤网积尘中抗生素抗性基因污染状况. 卫生研究, 48, 583-593.] | |
[48] |
Yang XP, Li Q, Tang Z, Zhang WW, Yu GH, Shen QR, Zhao FJ(2017) Heavy metal concentrations and arsenic speciation in animal manure composts in China. Waste Management, 64, 333-339.
DOI PMID |
[49] | Yazdankhah S, Skjerve E, Wasteson Y(2018) Antimicrobial resistance due to the content of potentially toxic metals in soil and fertilizing products. Microbial Ecology in Health and Disease, 29, 1548248. |
[50] | Yuan XH, Xue ND, Han ZG(2021) A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. Journal of Environmental Sciences, 101, 217-226. |
[51] | Zhang B, Zhao L, Chen T(2023) Research progress of antibiotic resistance genes in wastewater treatment plants. Journal of Environmental Engineering Technology, 13, 1384-1394. |
[52] |
Zhang FS, Li YX, Yang M, Li W(2012) Content of heavy metals in animal feeds and manures from farms of different scales in Northeast China. International Journal of Environmental Research and Public Health, 9, 2658-2668.
DOI PMID |
[53] | Zhang HC, Chang FY, Shi P, Ye L, Zhou Q, Pan Y, Li AM(2019) Antibiotic resistome alteration by different disinfection strategies in a full-scale drinking water treatment plant deciphered by metagenomic assembly. Environmental Science & Technology, 53, 2141-2150. |
[54] | Zhang XR, Gong ZQ, Allinson G, Xiao M, Li XJ, Jia CY, Ni ZJ(2022) Environmental risks caused by livestock and poultry farms to the soils: Comparison of swine, chicken, and cattle farms. Journal of Environmental Management, 317, 115320. |
[55] |
Zhang Y, Gu AZ, Cen TY, Li XY, He M, Li D, Chen JM(2018) Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. Environmental Pollution, 237, 74-82.
DOI PMID |
[56] | Zhang YA, Wang TT, Hu XJ, Qin C, Gao YZ(2024) Research progress and hotspots analysis of soil antibiotic resistance genes. Acta Pedologica Sinica, 61, 607-618. (in Chinese with English abstract) |
[ 张友爱, 王婷婷, 胡小婕, 秦超, 高彦征 (2024) 土壤抗生素抗性基因研究进展及热点分析. 土壤学报, 61, 607-618.] | |
[57] | Zhang YJ, Hu HW, Gou M, Wang JT, Chen DL, He JZ(2017) Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environmental Pollution, 231, 1621-1632. |
[58] |
Zhang ZY, Zhang Q, Wang TZ, Xu NH, Lu T, Hong WJ, Penuelas J, Gillings M, Wang MX, Gao WW, Qian HF(2022) Assessment of global health risk of antibiotic resistance genes. Nature Communications, 13, 1553.
DOI PMID |
[59] | Zhao RX, Yu K, Zhang JY, Zhang GJ, Huang J, Ma LP, Deng CF, Li XY, Li B(2020) Deciphering the mobility and bacterial hosts of antibiotic resistance genes under antibiotic selection pressure by metagenomic assembly and binning approaches. Water Research, 186, 116318. |
[60] | Zou JH, Lin Q, Shao MY, Xu SH(2023) Leaching behavior of Cu, Cd, and Zn in combined pollution soil as affected by biochar. Acta Scientiae Circumstantiae, 43(9), 333-345. (in Chinese with English abstract) |
[ 邹佳慧, 林青, 邵明艳, 徐绍辉 (2023) 生物炭影响下土壤中铜镉锌复合污染物的淋溶迁移. 环境科学学报, 43(9), 333-345.] |
[1] | Shiyu Wei, Tianjiao Song, Jiayi Luo, Yan Zhang, Zixuan Zhao, Jingwen Ru, Hua Yi, Yanbing Lin. Altitudinal distribution patterns of soil bacterial communities in the Huoditang coniferous forests of the Qinling Mountains [J]. Biodiv Sci, 2024, 32(9): 24180-. |
[2] | Yinger Mao, Xiumei Zhou, Nan Wang, Xiuxiu Li, Yuke You, Shangbin Bai. Impact of Phyllostachys edulis expansion to Chinese fir forest on the soil bacterial community [J]. Biodiv Sci, 2023, 31(6): 22659-. |
[3] | Siyao Liu, Zhu Li, Xin Ke, Lina Sun, Longhua Wu, Jiejie Zhao. Community characteristics of soil collembola around a typical mercury-thallium mining area in Guizhou Province [J]. Biodiv Sci, 2022, 30(12): 22265-. |
[4] | ZHANG Quan-Guo, ZHANG Da-Yong. Productivity, reliability and species diversity in aquatic microcosms [J]. Biodiv Sci, 2002, 10(2): 135-142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn