Biodiv Sci ›› 2018, Vol. 26 ›› Issue (5): 510-518. DOI: 10.17520/biods.2018065
• Original Papers • Previous Articles Next Articles
Yuxian Wang1, Zuojun Liu1,*(), Zhigang Zhao2, Meng Hou2, Xiaorui Zhang1, Wanling Lü1
Received:
2018-02-27
Accepted:
2018-04-26
Online:
2018-05-20
Published:
2018-09-11
Contact:
Liu Zuojun
About author:
# Co-first authors
Yuxian Wang, Zuojun Liu, Zhigang Zhao, Meng Hou, Xiaorui Zhang, Wanling Lü. Responses of floral longevity to pollination environments in 11 species from two alpine meadows[J]. Biodiv Sci, 2018, 26(5): 510-518.
因素 Factor | 花寿命 Floral longevity | |||||
---|---|---|---|---|---|---|
群落1和2 Community 1 & 2 | 群落3和4 Community 3 & 4 | |||||
Df | F | P | Df | F | P | |
截距 Intercept | 1, 10 | 17,634.897 | < 0.001 | 1, 9 | 23,757.518 | < 0.001 |
物种 Species | 10, 434 | 762.000 | < 0.001 | 4, 269 | 1,121.932 | < 0.001 |
海拔 Elevation | 1, 437 | 50.519 | < 0.001 | 1, 270 | 55.844 | < 0.001 |
处理 Treatment | 2, 433 | 200.241 | < 0.001 | 2, 267 | 182.577 | < 0.001 |
物种×海拔 Species × Elevation | 4, 435 | 1.218 | 0.303 | 4, 269 | 1.350 | 0.252 |
物种×处理 Species × Treatment | 18, 433 | 4.776 | < 0.001 | 7, 267 | 5.668 | < 0.001 |
海拔×处理 Elevation × Treatment | 2, 433 | 4.316 | 0.014 | 2, 267 | 4.722 | 0.010 |
物种×海拔×处理 Species × Elevation × Treatment | 7, 433 | 0.716 | 0.659 | 7, 267 | 0.791 | 0.596 |
Table 1 The effect of species identity, elevation (low vs. high elevation), and pollination treatments (pollinator exclusion, supplemental pollinated, open-pollinated) and their interactions on flower longevity of studied species in community 1 & 2 (and community 3 & 4 ). The community 1 and 2 refer to the community that composed of all the research species at low and high altitudes, respectively, while the community 3 and 4 refer to the community of the mutual research species at low and high altitudes, respectively. Significant differences are examined from general linear mixed effect models at P < 0.05 and indicated in bold.
因素 Factor | 花寿命 Floral longevity | |||||
---|---|---|---|---|---|---|
群落1和2 Community 1 & 2 | 群落3和4 Community 3 & 4 | |||||
Df | F | P | Df | F | P | |
截距 Intercept | 1, 10 | 17,634.897 | < 0.001 | 1, 9 | 23,757.518 | < 0.001 |
物种 Species | 10, 434 | 762.000 | < 0.001 | 4, 269 | 1,121.932 | < 0.001 |
海拔 Elevation | 1, 437 | 50.519 | < 0.001 | 1, 270 | 55.844 | < 0.001 |
处理 Treatment | 2, 433 | 200.241 | < 0.001 | 2, 267 | 182.577 | < 0.001 |
物种×海拔 Species × Elevation | 4, 435 | 1.218 | 0.303 | 4, 269 | 1.350 | 0.252 |
物种×处理 Species × Treatment | 18, 433 | 4.776 | < 0.001 | 7, 267 | 5.668 | < 0.001 |
海拔×处理 Elevation × Treatment | 2, 433 | 4.316 | 0.014 | 2, 267 | 4.722 | 0.010 |
物种×海拔×处理 Species × Elevation × Treatment | 7, 433 | 0.716 | 0.659 | 7, 267 | 0.791 | 0.596 |
物种 Species | 花寿命 Floral longevity | |||||
---|---|---|---|---|---|---|
低海拔 Low elevation (2,900 m ) | 高海拔 High elevation (3,500 m) | |||||
套袋处理 Pollinator exclusion | 自然授粉 Open pollination | 补充授粉Supplemental pollination | 套袋处理Pollinator exclusion | 自然授粉 Open pollination | 补充授粉Supplemental pollination | |
蒲公英 Taraxacum mongolicum | 5.2 ± 0.8a | 4.7 ± 0.6a | - | 6.5 ± 1.2a | 5.6 ± 0.8b | - |
甘青老鹳草 Geranium pylzowianum | 4.4 ± 0.5a | 3.2 ± 0.4b | 2.8 ± 0.3b | 5.0 ± 0.5a | 3.8 ± 0.3b | 3.0 ± 0.3c |
钝裂银莲花 Anemone obtusiloba | 9.8 ± 0.9a | 8.6 ± 1.1b | 7.6 ± 0.4c | 10.8 ± 0.8a | 9.4 ± 0.7b | 7.5 ± 0.6c |
莓叶委陵菜 Potentilla fragarioides | 3.5 ± 0.4a | 2.8 ± 0.3b | 2.4 ± 0.3c | 3.8 ± 0.4a | 3.3 ± 0.3b | 2.8 ± 0.5c |
高原毛茛 Ranunculus tanguticus | 9.4 ± 0.4a | 8.2 ± 0.8b | 7.7 ± 1.1b | 10.2 ± 0.7a | 8.9 ± 0.8b | 7.8 ± 0.6c |
狼毒 Stellera chamaejasme | 14.3 ± 1.4a | 11.8 ± 1.4b | - | - | - | - |
鹅绒委陵菜 Potentilla anserina | 4.5 ± 0.6a | 3.2 ± 0.5b | 3.1 ± 0.6b | - | - | - |
野草莓 Fragaria vesca | 4.4 ± 0.7a | 4.3 ± 0.8a | 3.5 ± 0.5b | - | - | - |
华西委陵菜 Potentilla potaninii | 3.3 ± 0.5a | 2.5 ± 0.6b | 2.2 ± 0.3b | - | - | - |
高山豆 Tibetia himalaica | 4.1 ± 0.9a | 3.0 ± 0.5b | 2.8 ± 0.5b | - | - | - |
小花草玉梅 Anemone rivularis var. flore-minore | - | - | - | 5.3 ± 0.8a | 4.6 ± 0.6b | 4.4 ± 1.0b |
Table 2 Flower longevity (d, mean ± SD) of 16 research populations when flowers were either excluded from pollinators, open-pollinated or supplemental hand-pollinated at low (2,900 m) and high (3,600 m) elevations. Different letters in the same row at each floral longevity of different treatments indicate significant difference (P < 0.05).
物种 Species | 花寿命 Floral longevity | |||||
---|---|---|---|---|---|---|
低海拔 Low elevation (2,900 m ) | 高海拔 High elevation (3,500 m) | |||||
套袋处理 Pollinator exclusion | 自然授粉 Open pollination | 补充授粉Supplemental pollination | 套袋处理Pollinator exclusion | 自然授粉 Open pollination | 补充授粉Supplemental pollination | |
蒲公英 Taraxacum mongolicum | 5.2 ± 0.8a | 4.7 ± 0.6a | - | 6.5 ± 1.2a | 5.6 ± 0.8b | - |
甘青老鹳草 Geranium pylzowianum | 4.4 ± 0.5a | 3.2 ± 0.4b | 2.8 ± 0.3b | 5.0 ± 0.5a | 3.8 ± 0.3b | 3.0 ± 0.3c |
钝裂银莲花 Anemone obtusiloba | 9.8 ± 0.9a | 8.6 ± 1.1b | 7.6 ± 0.4c | 10.8 ± 0.8a | 9.4 ± 0.7b | 7.5 ± 0.6c |
莓叶委陵菜 Potentilla fragarioides | 3.5 ± 0.4a | 2.8 ± 0.3b | 2.4 ± 0.3c | 3.8 ± 0.4a | 3.3 ± 0.3b | 2.8 ± 0.5c |
高原毛茛 Ranunculus tanguticus | 9.4 ± 0.4a | 8.2 ± 0.8b | 7.7 ± 1.1b | 10.2 ± 0.7a | 8.9 ± 0.8b | 7.8 ± 0.6c |
狼毒 Stellera chamaejasme | 14.3 ± 1.4a | 11.8 ± 1.4b | - | - | - | - |
鹅绒委陵菜 Potentilla anserina | 4.5 ± 0.6a | 3.2 ± 0.5b | 3.1 ± 0.6b | - | - | - |
野草莓 Fragaria vesca | 4.4 ± 0.7a | 4.3 ± 0.8a | 3.5 ± 0.5b | - | - | - |
华西委陵菜 Potentilla potaninii | 3.3 ± 0.5a | 2.5 ± 0.6b | 2.2 ± 0.3b | - | - | - |
高山豆 Tibetia himalaica | 4.1 ± 0.9a | 3.0 ± 0.5b | 2.8 ± 0.5b | - | - | - |
小花草玉梅 Anemone rivularis var. flore-minore | - | - | - | 5.3 ± 0.8a | 4.6 ± 0.6b | 4.4 ± 1.0b |
Fig. 2 The mean flower longevity (mean ± SD) of community 3 & 4 when flowers were either pollinator exclusion, supplemental pollination or open pollination. * P < 0.05.
Fig 3 Differences in responses of floral longevity to pollinator exclusion (A) and supplemental pollination (B) and the plasticity of flower longevity (C)in populations of five mutual plant species from low and high elevation.
1 | Arroyo MTK, Armesto JJ, Villagran C (1981) Plant phenological patterns in the high Andrean Cordillera of central Chile. Journal of Ecology, 69, 205-223. |
2 | Arroyo MTK, Dudley LS, Jespersen G, Pacheco DA, Cavieres LA (2013) Temperature-driven flower longevity in a high- alpine species of Oxalis influences reproductive assurance. New Phytologist, 200, 1260-1268. |
3 | Ashman TL, Schoen DJ (1994) How long should flowers live? Nature, 371, 788-791. |
4 | Ashman TL, Schoen DJ (1997) The cost of floral longevity in Clarkia tembloriensis: An experimental investigation. Evolutionary Ecology, 11, 289-300. |
5 | Aximoff IA, Freitas L (2010) Is pollen removal or seed set favoured by flower longevity in a hummingbird-pollinated Salvia species? Annals of Botany, 106, 413-419. |
6 | Bingham RA, Orthner AR (1998) Efficient pollination of alpine plants. Nature, 391, 238-239. |
7 | Blionis GJ, Vokou D (2001) Pollination ecology of Campanula species on Mt. Olympos, Greece. Ecography, 24, 287-297. |
8 | Castro S, Silveira P, Navarro L (2008) Effect of pollination on floral longevity and costs of delaying fertilization in the out-crossing Polygala vayredae Costa (Polygalaceae). Annals of Botany, 102, 1043-1048. |
9 | Clark MJ, Husband BC (2007) Plasticity and timing of flower closure in response to pollination in Chamerion angustifolium (Onagraceae). International Journal of Plant Sciences, 168, 619-625. |
10 | Duan YW, Zhang TF, Liu JQ (2007) Interannual fluctuations in floral longevity, pollinator visitation and pollination limitation of an alpine plant (Gentiana straminea Maxim, Gentianaceae) at two altitudes in the Qinghai-Tibetan Plateau. Plant Systematics & Evolution, 267, 255-265. |
11 | Evanhoe L, Galloway LF (2002) Floral longevity in Campanula americana (Campanulaceae): A comparison of morphological and functional gender phases. American Journal of Botany, 89, 587-591. |
12 | Gao J, XiongYZ, Huang SQ (2015) Effects of floral sexual investment and dichogamy on floral longevity. Journal of Plant Ecology, 8, 116-121. |
13 | Gerlinde S, Johanna W (2010) Flower longevity and duration of pistil receptivity in high mountain plants. Flora, 205, 376-387. |
14 | Giblin DE (2005) Variation in floral longevity between populations of Campanula rotundifolia (Campanulaceae) in response to fitness accrual rate manipulation. American Journal of Botany, 92, 1714-1722. |
15 | Harder LD, Johnson SD (2005) Adaptive plasticity of floral display size in animal-pollinated plants. Proceedings of the Royal Society of London B: Biological Sciences, 272, 2651-2657. |
16 | He YP, Fei SM, Liu JQ, Chen XM, Wang P, Jiang JM (2005) A preliminary review of studies of alpine plant breeding system. Journal of Sichuan Forestry Science and Technology, 26(4), 43-49. (in Chinese with English abstract) |
[何亚平, 费世民, 刘建全, 陈秀明, 王鹏, 蒋俊明 (2005) 高山植物繁育系统研究进展初探. 四川林业科技, 26(4), 43-49.] | |
17 | Hu C, Liu ZJ, Wu GQ, Zhao ZG (2013) Floral characteristic and breeding system of Anemone obtusiloba. Acta Agrestia Sinica, 21, 783-788. (in Chinese with English abstract) |
[胡春, 刘左军, 伍国强, 赵志刚 (2013) 钝裂银莲花花部综合特征及其繁育系统. 草地学报, 21, 783-788.] | |
18 | Itagaki T, Sakai S (2006) Relationship between floral longevity and sex allocation among flowers within inflorescences in Aquilegia buergeriana var. oxysepala (Ranunculaceae). American Journal of Botany, 93, 1320-1327. |
19 | Marques I, Draper D (2012) Pollination activity affects selection on floral longevity in the autumnal-flowering plant, Narcissus serotinus L. Botany, 90, 283-291. |
20 | Primack RB (1985) Longevity of individual flowers. Annual Review of Ecology and Systematics, 16, 15-37. |
21 | Rathcke BJ (2003) Floral longevity and reproductive assurance: Seasonal patterns and an experimental test with Kalmia latifolia (Ericaceae). American Journal of Botany, 90, 1328-1332. |
22 | Schoen DJ, Ashman TL (1995) The evolution of floral longevity: Resource allocation to maintenance versus construction of repeated parts in modular organisms. Evolution, 49, 131-139. |
23 | Spigler RB (2017) Plasticity of floral longevity and floral display in the self-compatible biennial Sabatia angularis (Gentianaceae): Untangling the role of multiple components of pollination. Annals of Botany, 119, 167-176. |
24 | Stratton DA (1989) Longevity of individual flowers in a Costa Rican cloud forest: Ecological correlates and phylogenetic constraints. Biotropica, 21, 308-318. |
25 | Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537-542. |
26 | Teixido AL, Valladares F (2015) Temperature-limited floral longevity in the large-flowered Mediterranean shrub Cistus ladanifer (Cistaceae). International Journal of Plant Sciences, 176, 131-140. |
27 | Trunschke J, Stöcklin J (2016) Plasticity of flower longevity in alpine plants is increased in populations from high elevation compared to low elevation populations. Alpine Botany, 127, 41-51. |
28 | Vega Y, Marques I (2015) Both biotic and abiotic factors influence floral longevity in three species of Epidendrum (Orchidaceae). Plant Species Biology, 30, 184-192. |
29 | Vesprini JL, Pacini E (2005) Temperature-dependent floral longevity in two Helleborus species. Plant Systematics and Evolution, 252, 63-70. |
30 | Weber JJ, Goodwillie C (2013) Variation in floral longevity in the genus Leptosiphon: Mating system consequences. Plant Biology, 15, 220-225. |
31 | Zhang J (2013) Study on Reproductive Biology of Taraxacum Species in Northeast China. PhD dissertation, Shenyang Agricultural University, Shenyang. (in Chinese with English abstract) |
[张建 (2013) 蒲公英属植物繁殖生物学研究. 博士学位论文, 沈阳农业大学, 沈阳.] | |
32 | Zhang ZQ, Li QJ (2009) Review of evolutionary ecology of floral longevity. Chinese Journal of Plant Ecology, 33, 598-606. (in Chinese with English abstract) |
[张志强, 李庆军 (2009) 花寿命的进化生态学意义. 植物生态学报, 33, 598-606.] | |
33 | Zhao ZG, Du GZ (2003) Characteristics of the mating system and strategies for resource allocation in Ranunculaceae. Journal of Lanzhou University (Natural Sciences), 39(5), 70-74. (in Chinese with English abstract) |
[赵志刚, 杜国祯 (2003) 毛茛科植物交配系统的特征与花期资源分配对策. 兰州大学学报(自然科学版), 39(5), 70-74.] |
[1] | Dexin Liu, Qingfeng Wang, Chunfeng Yang. Flower diversity and pollination strategy in Araceae [J]. Biodiv Sci, 2022, 30(3): 21426-. |
[2] | Mingxian Deng, Heyan Huang, Shiyun Shen, Jihua Wu, Qiong La, Tsechoe Dorji, Xiaoyun Pan. Phenotypic plasticity of Alternanthera philoxeroides in response to simulated daily warming in the Tibet Plateau in introduced vs. native populations [J]. Biodiv Sci, 2021, 29(9): 1198-1205. |
[3] | Demei Hu, Renxiu Yao, Yan Chen, Xiansong You, Shunyu Wang, Xiaoxin Tang, Xiaoyue Wang. Tirpitzia sinensis improves pollination accuracy by promoting the compatible pollen growth [J]. Biodiv Sci, 2021, 29(7): 887-896. |
[4] | Lang Yi, Yakun Dong, Baige Miao, Yanqiong Peng. Diversity of butterfly communities in Gaoligong region of Yunnan [J]. Biodiv Sci, 2021, 29(7): 950-959. |
[5] | Zhenghua Xie, Youqiong Wang, Jun Cao, Jianmin Wang, Jiandong An. Ecological resilience of pollination in the face of pollinator decline: Content, mechanism and perspective [J]. Biodiv Sci, 2021, 29(7): 980-994. |
[6] | Heyan Huang, Zhengcai Zhu, Jihua Wu, Qiong La, Yonghong Zhou, Xiaoyun Pan. Phenotypic plasticity of Alternanthera philoxeroides in response to simulated daily warming: Introduced vs. native populations [J]. Biodiv Sci, 2021, 29(4): 419-427. |
[7] | Simiao Sun, Jixin Chen, Weiwei Feng, Chang Zhang, Kai Huang, Ming Guan, Jiankun Sun, Mingchao Liu, Yulong Feng. Plant strategies for nitrogen acquisition and their effects on exotic plant invasions [J]. Biodiv Sci, 2021, 29(1): 72-80. |
[8] | Mengyue Chen, Yuheng Wu, Chengqing Liao, Fangzhou Ma, Xing Wang. The community characteristics and month dynamics of butterfly at different habitats in the Badagongshan National Nature Reserve [J]. Biodiv Sci, 2020, 28(8): 950-957. |
[9] | Jiangyan Shi, Hai Yang, Junqin Hua, Yuze Zhao, Jianqiang Li, Jiliang Xu. The relationship between the diurnal activity rhythm of Reeves’s pheasant (Syrmaticus reevesii) and human disturbance revealed by camera trapping [J]. Biodiv Sci, 2020, 28(7): 796-805. |
[10] | Yuanjun Yu, Huolin Luo, Nannan Liu, Dongjin Xiong, Yibo Luo, Boyun Yang. Influence of the climate change on suitable areas of Calanthe sieboldii and its pollinators in China [J]. Biodiv Sci, 2020, 28(7): 769-778. |
[11] | Liangrui Yu, Zhengcai Zhu, Xiaoyun Pan. Phenotypic plasticity of Alternanthera philoxeroides in response to root neighbors of kin: Introduced vs. native genotypes [J]. Biodiv Sci, 2020, 28(6): 651-657. |
[12] | Yutong Wang, Kechang Niu. Effect of soil environment on functional diversity of soil nematodes in Tibetan alpine meadows [J]. Biodiv Sci, 2020, 28(6): 707-717. |
[13] | Jun Chen, Lan Yao, Xunru Ai, Jiang Zhu, Manling Wu, Xiao Huang, Siyi Chen, Jin Wang, Qiang Zhu. Adaptive strategies of functional traits of Metasequoia glyptostroboides parent trees to changing habitats [J]. Biodiv Sci, 2020, 28(3): 296-302. |
[14] | Liyuan Yang, Ruiwu Wang. Asymmetric interactions in fig-fig wasp mutualism [J]. Biodiv Sci, 2020, 28(11): 1324-1332. |
[15] | Xiang Wenqian,Ren Mingxun. Adaptive significance of yellow flowered Bombax ceiba (Malvaceae) [J]. Biodiv Sci, 2019, 27(4): 373-379. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn