Biodiv Sci ›› 2023, Vol. 31 ›› Issue (3): 22311. DOI: 10.17520/biods.2022311
• Original Papers: Genetic Diversity • Previous Articles Next Articles
Wenwen Shao, Guozhen Fan, Zhizhou He, Zhiping Song()
Received:
2022-06-08
Accepted:
2022-08-12
Online:
2023-03-20
Published:
2022-11-10
Contact:
Zhiping Song
Wenwen Shao, Guozhen Fan, Zhizhou He, Zhiping Song. Phenotypic plasticity and local adaptation of Oryza rufipogon revealed by common garden trials[J]. Biodiv Sci, 2023, 31(3): 22311.
变异来源 Source | df | 花期 FD | 株高 HP | 分蘖数 TN | 有效分蘖数 ET | 每穗颖花数 FN | 每穗实粒数 SN | 每穗实粒重 SW | 单株实粒数 GN | 单株实粒重 GW | 结实率 SS |
---|---|---|---|---|---|---|---|---|---|---|---|
种群 Population | 2 | 6.038* | 1.832 | 0.159 | 0.666 | 10.648* | 4.025 | 0.217 | 4.675 | 0.039 | 5.182 |
地点 Site | 2 | 14.906* | 6.387* | 17.029** | 8.525* | 1.661 | 17.338*** | 0.097 | 18.283*** | 0.772 | 33.757*** |
区块 Block | 1 | 2.067 | 0.256 | 0.444 | 0.094 | 1.696 | 1.306 | 0 | 0.307 | 0.001 | 1.459 |
种群 × 地点的互作 Population × Site | 4 | 16.041** | 2.577 | 1.779 | 1.982 | 5.081 | 7.256 | 4.277 | 0.387 | 3.194 | 2.653 |
Table 1 F-values generated from general linear model (GLM) analysis in testing the effects of population, growing site, their interaction and block on the traits of Oryza rufipogon (* < 0.05, ** < 0.01, *** < 0.001). FD, Days to flower; HP, Plant height; TN, Number of total tillers; ET, Number of effective tillers; FN, Spikelet number per panicle; SN, Seed number per panicle; SW, Seed weight per panicle; GN, Grain number per individual; GW, Grain weight per individual; SS, Seed set.
变异来源 Source | df | 花期 FD | 株高 HP | 分蘖数 TN | 有效分蘖数 ET | 每穗颖花数 FN | 每穗实粒数 SN | 每穗实粒重 SW | 单株实粒数 GN | 单株实粒重 GW | 结实率 SS |
---|---|---|---|---|---|---|---|---|---|---|---|
种群 Population | 2 | 6.038* | 1.832 | 0.159 | 0.666 | 10.648* | 4.025 | 0.217 | 4.675 | 0.039 | 5.182 |
地点 Site | 2 | 14.906* | 6.387* | 17.029** | 8.525* | 1.661 | 17.338*** | 0.097 | 18.283*** | 0.772 | 33.757*** |
区块 Block | 1 | 2.067 | 0.256 | 0.444 | 0.094 | 1.696 | 1.306 | 0 | 0.307 | 0.001 | 1.459 |
种群 × 地点的互作 Population × Site | 4 | 16.041** | 2.577 | 1.779 | 1.982 | 5.081 | 7.256 | 4.277 | 0.387 | 3.194 | 2.653 |
Fig. 1 Variations of phenotypic traits of three Oryza rufipogon populations in different common gardens. Error bars indicate 95% confidence intervals. Npop, Northern population; Mpop, Middle population; Spop, Southern population. SH-com, Shanghai common garden; JX-com, Jiangxi common garden; HN-com, Hainan common garden.
Fig. 2 Index of plasticity (= |Max-Min| / Max) of three Oryza rufipofon populations. Max, Maximum value; Min, Minimum value. Npop, Northern population; Mpop, Middle population; Spop, Southern population. FD, Days to flower; HP, Plant height; TN, Number of total tillers; ET, Number of effective tillers; FN, Spikelet number per panicle; SN, Number per panicle; SW, Seed weight per panicle; GN, Grain number per individual; GW, Grain weight per individual; SS, Seed set.
[1] |
Albecker MA, Trussell GC, Lotterhos KE (2022) A novel analytical framework to quantify co-gradient and countergradient variation. Ecology Letters, 25, 1521-1533.
DOI URL |
[2] |
Bansal S, Harrington CA, Gould PJ, St Clair JB (2015) Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii). Global Change Biology, 21, 947-958.
DOI PMID |
[3] |
Bjorkman AD, Vellend M, Frei ER, Henry GHR (2017) Climate adaptation is not enough: Warming does not facilitate success of southern tundra plant populations in the high Arctic. Global Change Biology, 23, 1540-1551.
DOI PMID |
[4] |
Bontrager M, Angert AL (2019) Gene flow improves fitness at a range edge under climate change. Evolution Letters, 3, 55-68.
DOI PMID |
[5] | Chevin LM, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory. PLoS Biology, 8, e1000357. |
[6] |
Franks SJ, Weber JJ, Aitken SN (2014) Evolutionary and plastic responses to climate change in terrestrial plant populations. Evolutionary Applications, 7, 123-139.
DOI PMID |
[7] |
Hamann E, Kesselring H, Stöcklin J (2017) Plant responses to simulated warming and drought: A comparative study of functional plasticity between congeneric mid and high elevation species. Journal of Plant Ecology, 11, 364-374.
DOI URL |
[8] |
Hereford J (2017) Genetic divergence for physiological response to temperature between populations of a C3-C 4 intermediate annual. International Journal of Plant Sciences, 178, 431-438.
DOI URL |
[9] |
Huang P, Molina J, Flowers JM, Rubinstein S, Jackson SA, Purugganan MD, Schaal BA (2012) Phylogeography of Asian wild rice, Oryza rufipogon: A genome-wide view. Molecular Ecology, 21, 4593-4604.
DOI PMID |
[10] | IPCC (2019) 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories. In: Key Concepts Unchanged from the 2006 IPCC Guidelines (eds Calvo BE, Tanabe K, Kranjc A, Baasansuren J, Fukuda M, Ngarize S, Osako A, Pyrozhenko Y, Shermanau P, Federici S), pp. 45. IPCC, Interlaken. |
[11] |
Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecology Letters, 7, 1225-1241.
DOI URL |
[12] |
Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Molecular Biology, 35, 25-34.
PMID |
[13] |
Lee-Yaw JA, Kharouba HM, Bontrager M, Mahony C, Csergő AM, Noreen AME, Li Q, Schuster R, Angert AL (2016) A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits. Ecology Letters, 19, 710-722.
DOI PMID |
[14] |
Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.
DOI URL |
[15] |
Parmesan C, Hanley ME (2015) Plants and climate change: Complexities and surprises. Annals of Botany, 116, 849-864.
DOI PMID |
[16] | Sexton JP, Strauss SY, Rice KJ (2011) Gene flow increases fitness at the warm edge of a species’ range. Proceedings of the National Academy of Sciences, USA, 108, 11704-11709. |
[17] |
Shaw RG, Etterson JR (2012) Rapid climate change and the rate of adaptation: Insight from experimental quantitative genetics. New Phytologist, 195, 752-765.
DOI PMID |
[18] |
Simón-Porcar VI, Silva JL, Vallejo-Marín M (2021) Rapid local adaptation in both sexual and asexual invasive populations of monkeyflowers (Mimulus spp.). Annals of Botany, 127, 655-668.
DOI PMID |
[19] |
Song ZP, Li B, Chen JK, Lu BR (2005) Genetic diversity and conservation of common wild rice (Oryza rufipogon) in China. Plant Species Biology, 20, 83-92.
DOI URL |
[20] |
Valdés A, Marteinsdóttir B, Ehrlén J (2019) A natural heating experiment: Phenotypic and genotypic responses of plant phenology to geothermal soil warming. Global Change Biology, 25, 954-962.
DOI PMID |
[21] |
Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytologist, 176, 749-763.
DOI PMID |
[22] | Wang YZ, Pedersen JLM, Macdonald SE, Nielsen SE, Zhang J (2019) Experimental test of assisted migration for conservation of locally range-restricted plants in Alberta, Canada. Global Ecology and Conservation, 17, e00572. |
[23] | Wilczek AM, Cooper MD, Korves TM, Schmitt J (2014) Lagging adaptation to warming climate in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA, 111, 7906-7913. |
[24] |
Xu M, Li X, Mo X, Tu S, Cui Y, Yang D (2020) Studies on the cold tolerance of ratoon ‘Chaling’ common wild rice. Biological Research, 53, 8.
DOI |
[25] | Zhao Y (2014) The Mechanism Shaping Distribution Pattern of Population Variations in Oryza rufipogon Griff. PhD dissertation, Fudan University, Shanghai. (in Chinese with English abstract) |
[赵耀 (2014) 普通野生稻种群变异的分布格局及其形成机制. 博士学位论文, 复旦大学, 上海.] | |
[26] | Zhao Y, Vrieling K, Liao H, Xiao MQ, Zhu YQ, Rong J, Zhang WJ, Wang YG, Yang J, Chen JK, Song ZP (2013) Are habitat fragmentation, local adaptation and isolation-by-distance driving population divergence in wild rice Oryza rufipogon? Molecular Ecology, 22, 5531-5547. |
[27] |
Zhou W, Wang ZX, Davy AJ, Liu GH (2013) Geographic variation and local adaptation in Oryza rufipogon across its climatic range in China. Journal of Ecology, 101, 1498-1508.
DOI URL |
[28] | Zhu KZ (1972) A preliminary study of climate change in China over the past 5,000 years. Acta Archaeologica Sinica, (1), 15-38. (in Chinese) |
[竺可桢 (1972) 中国近五千年来气候变迁的初步研究. 考古学报, (1), 15-38.] |
[1] | Qi Wu, Xiaoqing Zhang, Yuting Yang, Yibo Zhou, Yi Ma, Daming Xu, Xingfeng Si, Jian Wang. Spatio-temporal changes in biodiversity of epiphyllous liverworts in Qingyuan Area of Qianjiangyuan-Baishanzu National Park, Zhejiang Province [J]. Biodiv Sci, 2024, 32(4): 24010-. |
[2] | Kexin Cao, Jingwen Wang, Guo Zheng, Pengfeng Wu, Yingbin Li, Shuyan Cui. Effects of precipitation regime change and nitrogen deposition on soil nematode diversity in the grassland of northern China [J]. Biodiv Sci, 2024, 32(3): 23491-. |
[3] | Li Feng. On synergistic governance of biodiversity and climate change in the perspective of international law [J]. Biodiv Sci, 2023, 31(7): 23110-. |
[4] | Xue Yao, Xing Chen, Zun Dai, Kun Song, Shichen Xing, Hongyu Cao, Lu Zou, Jian Wang. Importance of collection strategy on detection probability and species diversity of epiphyllous liverworts [J]. Biodiv Sci, 2023, 31(4): 22685-. |
[5] | Jiawen Sang, Chuangye Song, Ningxia Jia, Yuan Jia, Changcheng Liu, Xianguo Qiao, Lin Zhang, Weiying Yuan, Dongxiu Wu, Linghao Li, Ke Guo. Vegetation survey and mapping on the Qinghai-Tibet Plateau [J]. Biodiv Sci, 2023, 31(3): 22430-. |
[6] | Jinzhou Wang, Jing Xu. Nature-based solutions for addressing biodiversity loss and climate change: Progress, challenges and suggestions [J]. Biodiv Sci, 2023, 31(2): 22496-. |
[7] | Jiman Li, Nan Jin, Maogang Xu, Jusong Huo, Xiaoyun Chen, Feng Hu, Manqiang Liu. Effects of earthworm on tomato resistance under different drought levels [J]. Biodiv Sci, 2022, 30(7): 21488-. |
[8] | Ruiliang Zhu, Xiaoying Ma, Chang Cao, Ziyin Cao. Advances in research on bryophyte diversity in China [J]. Biodiv Sci, 2022, 30(7): 22378-. |
[9] | Kuiling Zu, Zhiheng Wang. Research progress on the elevational distribution of mountain species in response to climate change [J]. Biodiv Sci, 2022, 30(5): 21451-. |
[10] | Xin Jing, Shengjing Jiang, Huiying Liu, Yu Li, Jin-Sheng He. Complex relationships and feedback mechanisms between climate change and biodiversity [J]. Biodiv Sci, 2022, 30(10): 22462-. |
[11] | Huijie Qiao, Junhua Hu. Reconstructing community assembly using a numerical simulation model [J]. Biodiv Sci, 2022, 30(10): 22456-. |
[12] | Wenyu Song, Xueyou Li, Hongjiao Wang, Zhongzheng Chen, Shuiwang He, Xuelong Jiang. Multi-dimensional evaluation of small mammal diversity in tree line habitats across the Three Parallel Rivers of Yunnan Protected Areas: Implications for conservation [J]. Biodiv Sci, 2021, 29(9): 1215-1228. |
[13] | Mingxian Deng, Heyan Huang, Shiyun Shen, Jihua Wu, Qiong La, Tsechoe Dorji, Xiaoyun Pan. Phenotypic plasticity of Alternanthera philoxeroides in response to simulated daily warming in the Tibet Plateau in introduced vs. native populations [J]. Biodiv Sci, 2021, 29(9): 1198-1205. |
[14] | Yuhan Shi, Zongxin Ren, Weijia Wang, Xin Xu, Jie Liu, Yanhui Zhao, Hong Wang. Predicting the spatial distribution of three Astragalusspecies and their pollinating bumblebees in the Sino-Himalayas [J]. Biodiv Sci, 2021, 29(6): 759-769. |
[15] | Run Zhou, Xiuqin Ci, Jianhua Xiao, Guanlong Cao, Jie Li. Effects and conservation assessment of climate change on the dominant group—The genusCinnamomum of subtropical evergreen broad-leaved forests [J]. Biodiv Sci, 2021, 29(6): 697-711. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn