Biodiv Sci ›› 2024, Vol. 32 ›› Issue (6): 24069. DOI: 10.17520/biods.2024069 cstr: 32101.14.biods.2024069
• Special Feature: Reproductive Biology • Previous Articles Next Articles
Xiang Ding1(), Yuanjun Yu2,3(), Xiqiang Song1,*()(), Yibo Luo2,*()()
Received:
2024-02-27
Accepted:
2024-04-03
Online:
2024-06-20
Published:
2024-04-10
Contact:
* E-mail: Xiang Ding, Yuanjun Yu, Xiqiang Song, Yibo Luo. Specialized pollination system with generalized visitors in Alocasia odora[J]. Biodiv Sci, 2024, 32(6): 24069.
Fig. 1 Inflorescence structure and flowering phenology of Alocasia odora. a, Inflorescence structure. b‒e, Inflorescence development stages (b, Bud stage; c, Female stage; d, Male stage; e, Productive stage). f, Duration of inflorescence in each stage.
授粉方式 Treatments | 处理雌花数量Pistillate flower (n = 25) | 发育雌花数 Developed pistillate flower (n = 25) | 结实率 Fruit set rate (%) (n = 25) |
---|---|---|---|
仅套袋 Bagged only | 105.28 ± 21.02 | 0.24 ± 1.20 | 0.20 ± 1.02c |
去雄套袋 Emasculated and bagging | 84.44 ± 23.86 | 0.00 | 0.00c |
人工自花授粉 Autogamy hand-pollination | 87.40 ± 21.00 | 0.00 | 0.00c |
雌花期异花授粉 Cross-pollination in female stage | 94.32 ± 22.0 | 63.56 ± 36.27 | 66.24 ± 31.39b |
雄花期异花授粉 Cross-pollination in male stage | 86.88 ± 24.98 | 0.24 ± 0.88 | 0.28 ± 0.97c |
自然结实 Open pollination | 114.84 ± 25.33 | 105.40 ± 22.43 | 93.98 ± 6.27a |
Table 1 Result of different hand-pollination treatments of Alocasia odora (mean ± SD)
授粉方式 Treatments | 处理雌花数量Pistillate flower (n = 25) | 发育雌花数 Developed pistillate flower (n = 25) | 结实率 Fruit set rate (%) (n = 25) |
---|---|---|---|
仅套袋 Bagged only | 105.28 ± 21.02 | 0.24 ± 1.20 | 0.20 ± 1.02c |
去雄套袋 Emasculated and bagging | 84.44 ± 23.86 | 0.00 | 0.00c |
人工自花授粉 Autogamy hand-pollination | 87.40 ± 21.00 | 0.00 | 0.00c |
雌花期异花授粉 Cross-pollination in female stage | 94.32 ± 22.0 | 63.56 ± 36.27 | 66.24 ± 31.39b |
雄花期异花授粉 Cross-pollination in male stage | 86.88 ± 24.98 | 0.24 ± 0.88 | 0.28 ± 0.97c |
自然结实 Open pollination | 114.84 ± 25.33 | 105.40 ± 22.43 | 93.98 ± 6.27a |
目 Order | 科 Family | 访花次数No. of visits | 单花序平均访 花个数 Average no. of flowers per inflorescence (n = 40) | 体宽(网目数) Body width (mesh) | 是否移动花粉 Whether to move pollen | 活动花期 Activity stage | 活动位置 Activity site | 活动行为 Activity behavior | ||
---|---|---|---|---|---|---|---|---|---|---|
获取资源 Access to resources | 繁育行为Breeding behavior | 短暂停留 Short stay | ||||||||
鞘翅目Coleoptera | 露尾甲科Nitidulidae | 33 | 8.08 ± 6.29 | < 14 | 大量 A lot | 雌 + 雄 Female + Male | 整个花序 Whole inflorescence | √ | √ | - |
隐翅虫科 Staphylinidae | 27 | 3.48 ± 3.46 | < 100 | 少量 A little | 雌 + 雄 Female + Male | 整个花序 Whole inflorescence | √ | √ | - | |
双翅目 Diptera | 果蝇科 Drosophilidae | 40 | 44.75 ± 18.42 | < 20 | 大量 A lot | 雌 + 雄 Female + Male | 整个花序 Whole inflorescence | √ | √ | √ |
实蝇科Tephritidae | 1 | 0.03 ± 0.16 | > 14 | - | 雄 Male | 佛焰苞外Outside the spathe | - | - | √ | |
膜翅目Hymenoptera | 蜜蜂科 Apidae | 15 | 0.45 ± 0.64 | > 14 | 大量 A lot | 雄 Male | 雄花区 Staminate region | √ | - | √ |
隧蜂科 Halictidae | 1 | 0.03 ± 0.16 | > 14 | 大量 A lot | 雄 Male | 雄花区 Staminate region | √ | - | √ | |
其他 Others | 管蓟马科Phlaeothripidae | 3 | 0.10 ± 0.38 | < 14 | - | 雄 Male | 雄花区 Staminate region | √ | - | - |
跳蛛科Salticidae | 4 | 0.10 ± 0.30 | > 14 | - | 雌 + 雄 Female + Male | 雄花区 Staminate region | √ | - | - | |
跗线螨科Tarsonemidae | 15 | 5.35 ± 8.57 | < 14 | - | 雌 Female | 雌花区 Pistillate region | √ | - | √ |
Table 2 Observation of flower visitors of Alocasia odora (mean ± SD)
目 Order | 科 Family | 访花次数No. of visits | 单花序平均访 花个数 Average no. of flowers per inflorescence (n = 40) | 体宽(网目数) Body width (mesh) | 是否移动花粉 Whether to move pollen | 活动花期 Activity stage | 活动位置 Activity site | 活动行为 Activity behavior | ||
---|---|---|---|---|---|---|---|---|---|---|
获取资源 Access to resources | 繁育行为Breeding behavior | 短暂停留 Short stay | ||||||||
鞘翅目Coleoptera | 露尾甲科Nitidulidae | 33 | 8.08 ± 6.29 | < 14 | 大量 A lot | 雌 + 雄 Female + Male | 整个花序 Whole inflorescence | √ | √ | - |
隐翅虫科 Staphylinidae | 27 | 3.48 ± 3.46 | < 100 | 少量 A little | 雌 + 雄 Female + Male | 整个花序 Whole inflorescence | √ | √ | - | |
双翅目 Diptera | 果蝇科 Drosophilidae | 40 | 44.75 ± 18.42 | < 20 | 大量 A lot | 雌 + 雄 Female + Male | 整个花序 Whole inflorescence | √ | √ | √ |
实蝇科Tephritidae | 1 | 0.03 ± 0.16 | > 14 | - | 雄 Male | 佛焰苞外Outside the spathe | - | - | √ | |
膜翅目Hymenoptera | 蜜蜂科 Apidae | 15 | 0.45 ± 0.64 | > 14 | 大量 A lot | 雄 Male | 雄花区 Staminate region | √ | - | √ |
隧蜂科 Halictidae | 1 | 0.03 ± 0.16 | > 14 | 大量 A lot | 雄 Male | 雄花区 Staminate region | √ | - | √ | |
其他 Others | 管蓟马科Phlaeothripidae | 3 | 0.10 ± 0.38 | < 14 | - | 雄 Male | 雄花区 Staminate region | √ | - | - |
跳蛛科Salticidae | 4 | 0.10 ± 0.30 | > 14 | - | 雌 + 雄 Female + Male | 雄花区 Staminate region | √ | - | - | |
跗线螨科Tarsonemidae | 15 | 5.35 ± 8.57 | < 14 | - | 雌 Female | 雌花区 Pistillate region | √ | - | √ |
Fig. 2 Flower visiting behavior of common visitors and the presence style of offspring in Alocasia odora. a‒c, The different stages of Colocasiomyia offspring. a, Egg of Colocasiomyia (female stage); b, Larva of Colocasiomyia (male stage); c, Pupae of Colocasiomyia (productive stage). d, Pollen transfer by the visitors to the stigma (female stage). e, Apidae visitors collect pollen (male stage). f, Nitidulidae beetles gnaw at sterile flowers (female stage). g, Gnawing trails of sterile flowers. h, Nitidulidae larvae hatched from sterile areas (intermediate sterial region).
处理组 Treatments | 处理雌花数量 Pistillate flower (n = 20) | 发育雌花数 Developed pistillate flower (n = 20) | 结实率 Fruit set rate (%) (n = 20) |
---|---|---|---|
室内组(隔绝所有访花者) Indoor (Isolate all visitors) | 82.05 ± 15.14 | 0.00 | 0.00b |
100目套袋(访花者: 隐翅虫科、管蓟马科、跗线螨科等) 100 mesh bag (visitors: Staphylinidae, Phlaeothripidae, Tarsonemidae, etc) | 101.95 ± 20.74 | 0.30 ± 1.34 | 0.25 ± 1.14b |
20目网袋(新增访花者: 果蝇科等) 20 mesh cage (new visitors: Drosophilidae, etc) | 89.05 ± 21.27 | 70.95 ± 30.50 | 76.26 ± 22.94a |
16目网袋(新增访花者: 中小体型露尾甲科) 16 mesh cage (new visitor: Small and medium size of Nitidulidae) | 88.75 ± 25.32 | 65.50 ± 31.11 | 70.24 ± 23.05a |
14目网袋(新增访花者: 大体型露尾甲科) 14 mesh cage (new visitor: Large size of Nitidulidae) | 120.90 ± 35.77 | 95.95 ± 44.12 | 77.35 ± 22.63a |
自然结实(新增访花者: 蜜蜂科和跳蛛科等) Control group (new visitors: Apidae, Salticidae, etc) | 100.70 ± 34.52 | 86.25 ± 36.88 | 83.35 ± 14.87a |
Table 3 Pollination effects of different visitors (mean ± SD)
处理组 Treatments | 处理雌花数量 Pistillate flower (n = 20) | 发育雌花数 Developed pistillate flower (n = 20) | 结实率 Fruit set rate (%) (n = 20) |
---|---|---|---|
室内组(隔绝所有访花者) Indoor (Isolate all visitors) | 82.05 ± 15.14 | 0.00 | 0.00b |
100目套袋(访花者: 隐翅虫科、管蓟马科、跗线螨科等) 100 mesh bag (visitors: Staphylinidae, Phlaeothripidae, Tarsonemidae, etc) | 101.95 ± 20.74 | 0.30 ± 1.34 | 0.25 ± 1.14b |
20目网袋(新增访花者: 果蝇科等) 20 mesh cage (new visitors: Drosophilidae, etc) | 89.05 ± 21.27 | 70.95 ± 30.50 | 76.26 ± 22.94a |
16目网袋(新增访花者: 中小体型露尾甲科) 16 mesh cage (new visitor: Small and medium size of Nitidulidae) | 88.75 ± 25.32 | 65.50 ± 31.11 | 70.24 ± 23.05a |
14目网袋(新增访花者: 大体型露尾甲科) 14 mesh cage (new visitor: Large size of Nitidulidae) | 120.90 ± 35.77 | 95.95 ± 44.12 | 77.35 ± 22.63a |
自然结实(新增访花者: 蜜蜂科和跳蛛科等) Control group (new visitors: Apidae, Salticidae, etc) | 100.70 ± 34.52 | 86.25 ± 36.88 | 83.35 ± 14.87a |
[1] | Althoff DM, Segraves KA (2022) Evolution of antagonistic and mutualistic traits in the yucca-yucca moth obligate pollination mutualism. Journal of Evolutionary Biology, 35, 100-108. |
[2] |
Barrett SCH (2002) Sexual interference of the floral kind. Heredity, 88, 154-159.
PMID |
[3] | Bian FH, Luo Y, Li LX, Pang YJ, Peng YQ (2021) Inflorescence development, thermogenesis and flower-visiting insect activity in Alocasia odora. Flora, 279, 151818. |
[4] |
Chen Y, Li HQ, Liu M, Chen XY (2010) Species-specificity and coevolution of figs and their pollinating wasps. Biodiversity Science, 18, 1-10. (in Chinese with English abstract)
DOI |
[陈艳, 李宏庆, 刘敏, 陈小勇 (2010) 榕-传粉榕小蜂间的专一性与协同进化. 生物多样性, 18, 1-10.]
DOI |
|
[5] |
Compton SG, Hawkins BA (1992) Determinants of species richness in southern African fig wasp assemblages. Oecologia, 91, 68-74.
DOI PMID |
[6] | Eisikowitch D, Ghara M (2017) An overview on Ficus pollination. Acta Horticulturae, 1173, 143-148. |
[7] | Espíndola A, Pliscoff P (2019) The relationship between pollinator visits and climatic suitabilities in specialized pollination interactions. Annals of the Entomological Society of America, 112, 150-157. |
[8] | Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics, 35, 375-403. |
[9] | Hiscock SJ, Kües U (1999) Cellular and molecular mechanisms of sexual incompatibility in plants and fungi. International Review of Cytology, 193, 165-295. |
[10] |
Hoe YC, Gibernau M, Wong SY (2018) Diversity of pollination ecology in the Schismatoglottis calyptrata complex clade (Araceae). Plant Biology, 20, 563-578.
DOI PMID |
[11] | Holsinger KE, Feldman MW, Christiansen FB (1984) The evolution of self-fertilization in plants: A population genetic model. The American Naturalist, 124, 446-453. |
[12] | Janovský Z, Štenc J (2023) Pollinator community and generalisation of pollinator spectra changes with plant niche width and local dominance. Functional Ecology, 37, 2967-2976. |
[13] |
Jiménez PD, Hentrich H, Aguilar-Rodríguez PA, Krömer T, Chartier M, MacSwiney GMC, Gibernau M (2019) A review on the pollination of aroids with bisexual flowers. Annals of the Missouri Botanical Garden, 104, 83-104.
DOI |
[14] | Johnson SD, Neal PR, Harder LD (2005) Pollen fates and the limits on male reproductive success in an orchid population. Biological Journal of the Linnean Society, 86, 175-190. |
[15] | Kishore K, Shukla AK, Babu N, Sarangi DN, Patanayak S (2012) Pollination biology of Annona squamosa L. (Annonaceae): Evidence for pollination syndrome. Scientia Horticulturae, 144, 212-217. |
[16] |
Klomberg Y, Tropek R, Mertens JE, Kobe IN, Hodeček J, Raška J, Fominka NT, Souto-Vilarós D, Janečková P, Janěcek Š (2022) Spatiotemporal variation in the role of floral traits in shaping tropical plant-pollinator interactions. Ecology letters, 25, 839-850.
DOI PMID |
[17] |
Liu DX, Wang QF, Yang CF (2022) Flower diversity and pollination strategy in Araceae. Biodiversity Science, 30, 21426. (in Chinese with English abstract)
DOI |
[刘德鑫, 王青锋, 杨春锋 (2022) 天南星科植物的花多样性与传粉策略. 生物多样性, 30, 21426.]
DOI |
|
[18] | Lloyd DG (1992) Self- and cross-fertilization in plants. II. The selection of self-fertilization. International Journal of Plant Sciences, 153, 370-380. |
[19] | Maekawa H, Otsubo M, Sato MP, Takahashi T, Mizoguchi K, Koyamatsu D, Inaba T, Ito-Inaba Y (2022) Establishing an efficient protoplast transient expression system for investigation of floral thermogenesis in aroids. Plant Cell Reports, 41, 263-275. |
[20] | Miyake T, Yafuso M (2003) Floral scents affect reproductive success in fly-pollinated Alocasia odora (Araceae). American Journal of Botany, 90, 370-376. |
[21] | Miyake T, Yafuso M (2005) Pollination of Alocasia cucullata (Araceae) by two Colocasiomyia flies known to be specific pollinators for Alocasia odora. Plant Species Biology, 20, 201-208. |
[22] | Okada T (1975) The oriental drosophilids breeding in flowers. Kontyu, 43, 356-360. |
[23] | Suetsugu K (2022) Arisaema: Pollination by lethal attraction. Plants, People, Planet, 4, 196-200. |
[24] | Suetsugu K, Nishigaki H, Fukushima S, Ishitani E, Kakishima S, Sueyoshi M (2022) Thread-like appendix on Arisaema urashima (Araceae) attracts fungus gnat pollinators. Ecology, 103, e3782. |
[25] | Suetsugu K, Sato R, Kakishima S, Okuyama Y, Sueyoshi M (2021) The sterile appendix of two sympatric Arisaema species lures each specific pollinator into deadly trap flowers. Ecology, 102, e03242. |
[26] | Sun SG, Huang ZH, Chen ZB, Huang SQ (2017) Nectar properties and the role of sunbirds as pollinators of the golden-flowered tea (Camellia petelotii). American Journal of Botany, 104, 468-476. |
[27] | Takano KT, Gao J, Hu Y, Li N, Yafuso M, Suwito A, Repin R, Pungga RA, Meleng PA, Kaliang CH, Chong L, Toda MJ (2021) Phylogeny, taxonomy and flower-breeding ecology of the Colocasiomyia cristata species group (Diptera: Drosophilidae), with descriptions of ten new species. Zootaxa, 5079, 170. |
[28] | Tang R, Huang BG, Sun WB, Chen G (2020) Pollination biology of Amorphophallus albus (Araceae), an endemic plant in the dry-hot valley of Jinsha River. Plant Science Journal, 38, 458-466. (in Chinese with English abstract) |
[唐荣, 黄保国, 孙卫邦, 陈高 (2020) 金沙江干热河谷特有植物白魔芋的传粉生物学研究. 植物科学学报, 38, 458-466.] | |
[29] | Toda MJ, Takano KT, Katoh T, Xiao L, Gao JJ, Yafuso M (2022) Coexistence mechanisms of Colocasiomyia species (Diptera: Drosophilidae) sharing inflorescences of Alocasia odora (Araceae) as a host plant: Comparison between two- and three-species systems. Entomological Science, 25, e12506. |
[30] |
Tong ZY, Xu HL, Huang SQ (2018) Examining methodologies of pollinator detection in the field. Biodiversity Science, 26, 433-444. (in Chinese with English abstract)
DOI |
[童泽宇, 徐环李, 黄双全 (2018) 探讨监测传粉者的方法. 生物多样性, 26, 433-444.]
DOI |
|
[31] | Van Goor J, Kanzaki N, Woodruff G (2023) How to be a fig nematode. Acta Oecologica, 119, 103916. |
[32] | Wang LF, Zhang TT, Xiang WQ, Liang HT, Tan K, Shen YC (2024) Pollination biology of the rare and endangered submerged plant, Ottelia cordata. Guihaia, 44, 157-166. (in Chinese with English abstract) |
[王銮凤, 张同同, 向文倩, 梁惠婷, 谭珂, 申益春 (2024) 珍稀濒危沉水植物水菜花传粉生物学研究. 广西植物, 44, 157-166.] | |
[33] | Wang XY, Yao RX, Lv XQ, Yi Y, Tang XX (2023) Nectar robbing by bees affects the reproductive fitness of the distylous plant Tirpitzia sinensis (Linaceae). Ecology and Evolution, 13, e10714. |
[34] | Wu SB, Liu Q, Yang P, Yang DR, Peng YQ, Song J (2019) Karyotype analysis of a pollinator, and a non-pollinator, of Ficus auriculata Loureiro. Chinese Journal of Applied Entomology, 56, 819-825. (in Chinese with English abstract) |
[武士波, 柳青, 杨培, 杨大荣, 彭艳琼, 宋娟 (2019) 木瓜榕传粉榕小蜂与一种非传粉榕小蜂核型比较分析. 应用昆虫学报, 56, 819-825.] | |
[35] | Yafuso M (1993) Thermogenesis of Alocasia odora (Araceae) and the role of Colocasiomyia flies (Diptera: Drosophilidae) as cross-pollinators. Environmental Entomology, 22, 601-606. |
[36] | Yafuso M (1994) Life history traits related to resource partitioning between synhospitalic species of Colocasiomyia (Diptera, Drosophilidae) breeding in inflorescences of Alocasia odora (Araceae). Ecological Entomology, 19, 65-73. |
[37] | Zhang DY (2004) Plant Life-history Evolution and Reproductive Ecology. Science Press, Beijing. (in Chinese) |
[张大勇 (2004) 植物生活史进化与繁殖生态学. 科学出版社, 北京.] | |
[38] | Zhang T, Jandér KC, Huang J, Wang B, Zhao J, Miao B, Peng Y, Herre EA (2021) The evolution of parasitism from mutualism in wasps pollinating the fig, Ficus microcarpa, in Yunnan Province, China. Proceedings of the National Academy of Sciences, USA, 118, e2021148118. |
[39] | Zych M, Junker RR, Nepi M, Stpiczyńska M, Stolarska B, Roguz K (2019) Spatiotemporal variation in the pollination systems of a supergeneralist plant: Is Angelica sylvestris (Apiaceae) locally adapted to its most effective pollinators? Annals of Botany, 123, 415-428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn