Biodiv Sci ›› 2024, Vol. 32 ›› Issue (6): 24084. DOI: 10.17520/biods.2024084 cstr: 32101.14.biods.2024084
• Special Feature: Reproductive Biology • Previous Articles Next Articles
Weijie Shu1, Hua He1, Luo Zeng1, Zhirong Gu2, Dunyan Tan1, Xiaochen Yang1,*()()
Received:
2024-03-07
Accepted:
2024-04-20
Online:
2024-06-20
Published:
2024-06-20
Contact:
* E-mail: xcyang@jsu.edu.cnWeijie Shu, Hua He, Luo Zeng, Zhirong Gu, Dunyan Tan, Xiaochen Yang. Spatial distribution and sexual dimorphism of dioecious Arisaema erubescens[J]. Biodiv Sci, 2024, 32(6): 24084.
Fig. 1 Schematic of individual and floral morphology of Arisaema erubescens. (A) Individual; (B) External morphology of spathe; (C) Female spathe vertical-section; (D) Male spathe vertical-section. 1, Inflorescence height; 2, Pseudostem length; 3, Pseudostem basal diameter; 4, Peduncle length; 5, Peduncle diameter; 6, Spathe length; 7, Limb width of spathe; 8, Tube length of spathe; 9, Tube diameter; 10, Throat diameter; 11, Inflorescence length; 12, Inflorescence basal diameter; 13, Inflorescence apical diameter; 14, Appendix length; 15, Appendix diameter; 16, Exit hole at the base of spathe in male individual; 17, Channel diameter.
样方 Sample | 雄株 Male | 雌株 Female | 性比(雄 : 雌) Sex ratio (Male : Female) | G-检验 G-test | P |
---|---|---|---|---|---|
1 | 38 | 15 | 2.53 | 10.321 | 0.001 |
2 | 34 | 11 | 3.09 | 12.330 | < 0.001 |
3 | 41 | 12 | 3.42 | 16.773 | < 0.001 |
4 | 36 | 12 | 3.00 | 12.558 | < 0.001 |
Table 1 Sex ratio of Arisaema erubescens in four samples in the Badagongshan National Nature Reserve in 2022. P < 0.01 indicates an extremely significant deviation from a 1 : 1 sex ratio.
样方 Sample | 雄株 Male | 雌株 Female | 性比(雄 : 雌) Sex ratio (Male : Female) | G-检验 G-test | P |
---|---|---|---|---|---|
1 | 38 | 15 | 2.53 | 10.321 | 0.001 |
2 | 34 | 11 | 3.09 | 12.330 | < 0.001 |
3 | 41 | 12 | 3.42 | 16.773 | < 0.001 |
4 | 36 | 12 | 3.00 | 12.558 | < 0.001 |
Fig. 3 Spatial associations between male and female individuals of Arisaema erubescens in four samples in the Badagongshan National Nature Reserve. The dark lines and light lines are g(r) values and 99% confidence envelopes, respectively.
特征 Traits | 雌株 Female individual | 雄株 Male individual | Wald χ2 | P |
---|---|---|---|---|
叶数 Leaf number | 1.29 ± 0.08 | 1.00 ± 0.00 | 14.543 | < 0.001 |
花序高度 Inflorescence height (cm) | 57.40 ± 1.42 | 44.26 ± 1.35 | 44.899 | < 0.001 |
假茎长 Pseudostem length (cm) | 39.78 ± 2.05 | 26.65 ± 1.18 | 30.352 | < 0.001 |
假茎基径 Pseudostem basal diameter (mm) | 12.39 ± 0.44 | 7.85 ± 0.43 | 54.421 | < 0.001 |
花序柄长 Peduncle length (cm) | 9.76 ± 0.73 | 11.51 ± 0.57 | 3.530 | 0.06 |
花序柄直径 Peduncle diameter (mm) | 4.91 ± 0.21 | 3.14 ± 0.15 | 48.564 | < 0.001 |
佛焰苞长 Spathe length (mm) | 76.26 ± 1.60 | 65.69 ± 2.60 | 12.219 | < 0.001 |
佛焰苞檐宽 Limb width of spathe (mm) | 45.96 ± 1.28 | 39.24 ± 1.19 | 1.044 | 0.307 |
佛焰苞管长Tube length of spathe (mm) | 48.04 ± 1.69 | 42.14 ± 1.72 | 5.969 | 0.015 |
管部直径 Tube diameter (mm) | 12.92 ± 0.26 | 8.89 ± 0.28 | 112.205 | < 0.001 |
喉部直径 Throat diameter (mm) | 15.46 ± 0.67 | 12.31 ± 0.50 | 14.079 | < 0.001 |
花序长 Inflorescence length (mm) | 21.71 ± 0.60 | 25.79 ± 0.85 | 15.551 | < 0.001 |
花序基径 Inflorescence basal diameter (mm) | 10.07 ± 0.29 | 5.35 ± 0.21 | 175.015 | < 0.001 |
花序顶径 Inflorescence apical diameter (mm) | 6.02 ± 0.15 | 3.70 ± 0.13 | 135.609 | < 0.001 |
小花数 Number of floret | 515.79 ± 22.48 | 263.04 ± 12.24 | 95.747 | < 0.001 |
附属器长 Appendix length (mm) | 38.76 ± 1.92 | 27.20 ± 1.62 | 21.014 | < 0.001 |
附属器直径 Appendix diameter (mm) | 4.95 ± 0.26 | 4.71 ± 0.26 | 0.430 | 0.512 |
小花直径 Floret diameter (mm) | 1.17 ± 0.02 | 1.34 ± 0.03 | 32.098 | < 0.001 |
出口孔截面积 Exit hole cross-sectional area (mm) | - | 4.26 ± 0.36 | - | - |
通道直径 Channel diameter (mm) | - | 2.00 ± 0.09 | - | - |
Table 2 Comparisons of traits between male and female individuals of Arisaema erubescens (generalized linear model, GLM) (mean ± SE). The larger value of significant differences (P < 0.05) is indicated in bold.
特征 Traits | 雌株 Female individual | 雄株 Male individual | Wald χ2 | P |
---|---|---|---|---|
叶数 Leaf number | 1.29 ± 0.08 | 1.00 ± 0.00 | 14.543 | < 0.001 |
花序高度 Inflorescence height (cm) | 57.40 ± 1.42 | 44.26 ± 1.35 | 44.899 | < 0.001 |
假茎长 Pseudostem length (cm) | 39.78 ± 2.05 | 26.65 ± 1.18 | 30.352 | < 0.001 |
假茎基径 Pseudostem basal diameter (mm) | 12.39 ± 0.44 | 7.85 ± 0.43 | 54.421 | < 0.001 |
花序柄长 Peduncle length (cm) | 9.76 ± 0.73 | 11.51 ± 0.57 | 3.530 | 0.06 |
花序柄直径 Peduncle diameter (mm) | 4.91 ± 0.21 | 3.14 ± 0.15 | 48.564 | < 0.001 |
佛焰苞长 Spathe length (mm) | 76.26 ± 1.60 | 65.69 ± 2.60 | 12.219 | < 0.001 |
佛焰苞檐宽 Limb width of spathe (mm) | 45.96 ± 1.28 | 39.24 ± 1.19 | 1.044 | 0.307 |
佛焰苞管长Tube length of spathe (mm) | 48.04 ± 1.69 | 42.14 ± 1.72 | 5.969 | 0.015 |
管部直径 Tube diameter (mm) | 12.92 ± 0.26 | 8.89 ± 0.28 | 112.205 | < 0.001 |
喉部直径 Throat diameter (mm) | 15.46 ± 0.67 | 12.31 ± 0.50 | 14.079 | < 0.001 |
花序长 Inflorescence length (mm) | 21.71 ± 0.60 | 25.79 ± 0.85 | 15.551 | < 0.001 |
花序基径 Inflorescence basal diameter (mm) | 10.07 ± 0.29 | 5.35 ± 0.21 | 175.015 | < 0.001 |
花序顶径 Inflorescence apical diameter (mm) | 6.02 ± 0.15 | 3.70 ± 0.13 | 135.609 | < 0.001 |
小花数 Number of floret | 515.79 ± 22.48 | 263.04 ± 12.24 | 95.747 | < 0.001 |
附属器长 Appendix length (mm) | 38.76 ± 1.92 | 27.20 ± 1.62 | 21.014 | < 0.001 |
附属器直径 Appendix diameter (mm) | 4.95 ± 0.26 | 4.71 ± 0.26 | 0.430 | 0.512 |
小花直径 Floret diameter (mm) | 1.17 ± 0.02 | 1.34 ± 0.03 | 32.098 | < 0.001 |
出口孔截面积 Exit hole cross-sectional area (mm) | - | 4.26 ± 0.36 | - | - |
通道直径 Channel diameter (mm) | - | 2.00 ± 0.09 | - | - |
Fig. 6 Visit frequency by different visitors between male and female inflorescences (A) and temporal dynamics of the visitors number (B) of Arisaema erubescens (mean ± SE). ** indicates significant difference of visit frequency between male and female individuals at P < 0.01, while ns indicates no significant difference. Different capital and lowercase letters in (B) indicate significantly different visitor number in male and female inflorescences between different time of the day at P < 0.05, respectively.
[1] |
Abe T (2001) Flowering phenology, display size, and fruit set in an understory dioecious shrub, Aucuba japonica (Cornaceae). American Journal of Botany, 88, 455-461.
PMID |
[2] |
Andreadis SS, Cloonan KR, Myrick AJ, Chen HB, Baker TC (2015) Isolation of a female-emitted sex pheromone component of the fungus gnat, Lycoriella ingenua, attractive to males. Journal of Chemical Ecology, 41, 1127-1136.
DOI PMID |
[3] | Ashman TL (2000) Pollinator selectivity and its implications for the evolution of dioecy and sexual dimorphism. Ecology, 81, 2577-2591. |
[4] | Avila Jr RS, Freitas L (2011) Frequency of visits and efficiency of pollination by diurnal and nocturnal lepidopterans for the dioecious tree Randia itatiaiae (Rubiaceae). Australian Journal of Botany, 59, 176-184. |
[5] | Baddeley AJ, Rubak E, Turner R (2015) Spatial Point Ptterns:Methodology and Applications with R. Chapman and Hall, New York. |
[6] | Barrett SCH (1992) Gender variation and the evolution of dioecy in Wurmbea dioica (Liliaceae). Journal of Evolutionary Biology, 5, 423-444. |
[7] | Barrett SCH (2008) Major evolutionary transitions in flowering plant reproduction: An overview. International Journal of Plant Sciences, 169, 1-5. |
[8] |
Barrett SCH, Hough J (2013) Sexual dimorphism in flowering plants. Journal of Experimental Botany, 64, 67-82.
DOI PMID |
[9] | Barrett SCH, Yakimowski SB, Field DL, Pickup M (2010) Ecological genetics of sex ratios in plant populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2549-2557. |
[10] |
Barriault I, Barabé D, Cloutier L, Gibernau M (2010) Pollination ecology and reproductive success in Jack-in-the-pulpit (Arisaema triphyllum) in Quebéc (Canada). Plant Biology, 12, 161-171.
DOI PMID |
[11] | Bedhomme S, Chippindale AK (2007) Irreconcilable differences: When sexual dimorphism fails to resolve sexual conflict. In: Sex, Size and Gender Roles (eds Fairbairn DJ, Blanckenhorn WU, Szekely T),pp. 185-194. Oxford University Press, Oxford. |
[12] | Bullock SH, Bawa KS (1981) Sexual dimorphism and the annual flowering pattern in Jacaratia dolichaula (D-Smith) Woodson (Caricaceae) in a Costa Rican rain forest. Ecology, 62, 1494-1504. |
[13] | Charlesworth D (1999) Theories on the evolution of dioecy. In: Gender and Sexual Dimorphism in Flowering Plants (eds Geber MA, Dawson TE, Delph LF). pp. 33-60. Springer, Berlin. |
[14] | Dawson TE, Geber MA (1999) Dimorphism in physiology and morphology. In: Gender and Sexual Dimorphism in Flowering Plants (eds Geber MA, Dawson TE, Delph LF),pp.176-215. Springer, Berlin. |
[15] |
Delph LF, Ashman TL (2006) Trait selection in flowering plants: How does sexual selection contribute? Integrative and Comparative Biology, 46, 465-472.
DOI PMID |
[16] | Delph LF, Galloway LF, Stanton ML (1996) Sexual dimorphism in flower size. The American Naturalist, 148, 299-320. |
[17] | Doust JL, Cavers P (1982) Sex and gender dynamics in Jack-in-the-pulpit, Arisaema triphyllum (Araceae). Ecology, 63, 797-808. |
[18] |
Dudley LS (2006) Ecological correlates of secondary sexual dimorphism in Salix glauca (Salicaceae). American Journal of Botany, 93, 1775-1783.
DOI PMID |
[19] | Hu DM, Yao RX, Chen Y, You XS, Wang SY, Tang XX, Wang XY (2021) Tirpizia sinensis improves pollination accuracy by promoting the compatible pollen growth. Biodiversity Science, 29, 887-896. (in Chinese with English abstract) |
[胡德美, 姚仁秀, 陈燕, 游贤松, 王顺雨, 汤晓辛, 王晓月 (2021) 青篱柴通过促进亲和花粉生长而提高传粉精确性. 生物多样性, 29, 887-896.] | |
[20] | Hu GW (2008) Reproductive Studies on Arisaema yunnanense Buchet and A. erubescens (Wall.) Schott. PhD dissertation, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming. (in Chinese with English abstract) |
[胡光万 (2008) 山珠南星和一把伞南星的繁殖生物学研究. 博士学位论文, 中国科学院昆明植物研究所, 昆明.] | |
[21] |
Jiménez PD, Hentrich H, Aguilar-Rodríguez PA, Krömer T, Chartier M, Gibernau M (2019) A review on the pollination of aroids with bisexual flowers. Annals of the Missouri Botanical Garden, 104, 83-104.
DOI |
[22] | Kakishima S, Tuno N, Hosaka K, Okamoto T, Ito T, Okuyama Y (2019) A specialized deceptive pollination system based on elaborate mushroom mimicry. bioRxiv, doi: 10.1101/819136. |
[23] | Kinoshita E (1986) Size-sex relationship and sexual dimorphism in Japanese Arisaema (Araeeae). Ecological Research, 1, 157-171. |
[24] | Kostelc JG, Girard JE, Hendry LB (1980) Isolation and identification of a sex attractant of a mushroom-infesting sciarid fly. Journal of Chemical Ecology, 6, 1-11. |
[25] | Li H (1980) Himalayas-Hengduan Mountains——The centre of distribution and differentiation of the genus Arisaema——To discuss the problems about the origin and migration of this genus. Acta Botanica Yunnanica, 2, 402-416. (in Chinese with English abstract) |
[李恒 (1980) 喜马拉雅-横断山脉是天南星属的分布中心和分化中心——兼论天南星属的起源和扩散. 云南植物研究, 2, 402-416.] | |
[26] |
Liu DX, Wang QF, Yang CF (2022) Flower diversity and pollination strategy in Araceae. Biodiversity Science, 30, 21426. (in Chinese with English abstract)
DOI |
[刘德鑫, 王青锋, 杨春锋 (2022) 天南星科植物的花多样性与传粉策略. 生物多样性, 30, 21426.]
DOI |
|
[27] | Lloyd DG, Webb CJ (1977) Secondary sex characters in plants. Botanical Reviews, 43, 177-216. |
[28] |
Lu ZJ, Liu FL, Wu H, Jiang MX (2015) Species composition, size class, and spatial patterns of snags in the Badagongshan (BDGS) mixed evergreen and deciduous broad-leaved forest in Central China. Biodiversity Science, 23, 167-173. (in Chinese with English abstract)
DOI |
[卢志军, 刘福玲, 吴浩, 江明喜 (2015) 八大公山常绿落叶阔叶混交林枯立木物种组成、大小级与分布格局. 生物多样性, 23, 167-173.]
DOI |
|
[29] |
Matsuhisa S, Ushimaru A (2015) Sexual dimorphism in floral longevity and flowering synchrony in relation to pollination and mating success in three dioecious Ilex species. American Journal of Botany, 102, 1187-1197.
DOI PMID |
[30] | Matsumoto TK, Hirobe M, Akaji Y, Miyazaki Y (2020) Population structures and spatial patterns of two unpalatable Arisaema species (Araceae) with and without clonal reproduction in a riparian forest intensively grazed by Sika deer. Journal of Forestry Research, 31, 155-162. |
[31] |
Matsumoto TK, Hirobe M, Sueyoshi M, Miyazaki Y (2021) Selective pollination by fungus gnats potentially functions as an alternative reproductive isolation among five Arisaema species. Annals of Botany, 127, 633-644.
DOI PMID |
[32] |
Matsumoto TK, Miyazaki Y, Sueyoshi M, Senda Y, Yamada K, Hirobe M (2019) Pre-pollination barriers between two sympatric Arisaema species in northern Shikoku Island, Japan. American Journal of Botany, 106, 1612-1621.
DOI PMID |
[33] | Mcalpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM (1981) Manual of Nearctic Diptera, Vol. 1. Research Branch Agriculture Canada, Ottawa. |
[34] |
Mercer CA, Eppley SM (2010) Inter-sexual competition in a dioecious grass. Oecologia, 164, 657-664.
DOI PMID |
[35] | Midgley JJ (2010) Causes of secondary sexual differences in plants—Evidence from extreme leaf dimorphism in Leucadendron (Proteaceae). South African Journal of Botany, 76, 588-592. |
[36] |
Moquet L, Lateur L, Jacquemart AL, De Cauwer I, Dufay M (2020) Temporal dynamics of sexual dimorphism in a dioecious species. Annals of Botany, 126, 471-480.
DOI PMID |
[37] |
Obeso JR (2002) The costs of reproduction in plants. New Phytologist, 155, 321-348.
DOI PMID |
[38] | Ohi-Toma T, Wu S, Murata H, Murata J (2016) An updated genus-wide phylogenetic analysis of Arisaema (Araceae) with reference to sections. Botanical Journal of the Linnean Society, 182, 100-114. |
[39] | Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, Caceres MD, Durand S, Evangelista HBA, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette MH, Cunha ER, Smith T, Stier A, Braak CJFT, Weedon J (2022) Vegan: Community Ecology Package. R Package Version 2.6-4. https://cran.r-project.org/web/packages/vegan/index.html/. (accessed on 2022-04-20) |
[40] |
Pickup M, Barrett SCH (2012) Reversal of height dimorphism promotes pollen and seed dispersal in a wind-pollinated dioecious plant. Biology Letters, 8, 245-248.
DOI PMID |
[41] |
Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany, 101, 1588-1596.
DOI PMID |
[42] | Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. American Journal of Botany, 82, 596-606. |
[43] | Richardson CR, Clay K (2001) Sex-ratio variation among Arisaema species with different patterns of gender diphasy. Plant Species Biology, 16, 139-149. |
[44] | Rodriguez-Riano T, Dafni A (2000) A new procedure to asses pollen viability. Sexual Plant Reproduction, 12, 241-244. |
[45] | Sinclair JP, Emlen J, Freeman DC (2012) Biased sex ratios in plants: Theory and trends. Botanical Reviews, 78, 63-86. |
[46] |
Song B, Chen G, Stöcklin J, Peng DL, Niu Y, Li ZM, Sun H (2014) A new pollinating seed-consuming mutualism between Rheum nobile and a fly fungus gnat, Bradysia sp., involving pollinator attraction by a specific floral compound. New Phytologist, 203, 1109-1118.
DOI PMID |
[47] |
Steven JC, Delph LF, Brodie ED III (2007) Sexual dimorphism in the quantitative-genetic architecture of floral, leaf, and allocation traits in Silene latifolia. Evolution, 61, 42-57.
PMID |
[48] | Suetsugu K, Nishigaki H, Fukushima S, Ishitani E, Kakishima S, Sueyoshi M (2022) Thread-like appendix on Arisaema urashima (Araceae) attracts fungus gnat pollinators. Ecology, 103, e3782. |
[49] | Suetsugu K, Sato R, Kakishima S, Okuyama Y, Sueyoshi M (2021) The sterile appendix of two sympatric Arisaema species lures each specific pollinator into deadly trap flowers. Ecology, 102, e03242. |
[50] | Ushimaru A, Seo N, Sakagami K, Funamoto D (2023) Sexual dimorphism in a dioecious species with complex, specialist- pollinated flowers. American Journal of Botany, 110, e16148. |
[51] |
Vamosi JC, Otto SP, Barrett SCH (2003) Phylogenetic analysis of the ecological correlates of dioecy in angiosperms. Journal of Evolutionary Biology, 16, 1006-1018.
PMID |
[52] | Vitale JJ, Freeman DC (1986) Partial niche separation in Spinacia oleracea L.: An examination of reproductive allocation. Evolution, 40, 426-430. |
[53] | Vogel S, Martens J (2000) A survey of the function of the lethal kettle traps of Arisaema (Araceae), with records of pollinating fungus gnats from Nepal. Botanical Journal of the Linnean Society, 133, 61-100. |
[54] | Wu ZY, Li H (1979) Flora Reipublicae Popularis Sinicae, Tomus 13(2). Science Press, Beijing. (in Chinese) |
[吴征镒, 李恒 (1979) 中国植物志(第十三卷第二分册). 科学出版社, 北京.] | |
[55] | Yi TS, Li H, Li DZ (2002) The course of change and development of the classification systems of the Araceae. Journal of Wuhan Botanical Research, 20, 48-61. (in Chinese with English abstract) |
[伊廷双, 李恒, 李德铢 (2002) 天南星科分类系统的沿革. 武汉植物学研究, 20, 48-61.] | |
[56] |
Yu Q, Barrett SCH, Wang XJ, Zhong L, Wang H, Li DZ, Zhou W (2022) Sexual dimorphism, temporal niche differentiation, and evidence for the Jack Sprat effect in an annual dioecious plant. Journal of Systematics and Evolution, 60, 1078-1091.
DOI |
[57] | Zeng L, Shu WJ, He H, Li T, Yang XC, Li L (2023) Post-pollination barriers contribute to coexistence of partially pollinator-sharing Arisaema species (Araceae). Ecology and Evolution, 13, e10696. |
[58] | Zeng ZH, Yu Q, Feng QH, Wang XJ, Zhong L, Sun HY, Wang H, Li DZ, Barrett SCH, Zhou W (2023) Functional consequences of temporal reversal of height dimorphism for pollen and seed dispersal in a dioecious plant. Journal of Systematics and Evolution, 62, 438-448. |
[59] | Zhang DY (2004) Plant Life-History Evolution and Reproductive Ecology. Science Press, Beijing. (in Chinese) |
[张大勇 (2004) 植物生活史进化与繁殖生态学. 科学出版社, 北京.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn