生物多样性 ›› 2024, Vol. 32 ›› Issue (7): 24081. DOI: 10.17520/biods.2024081 cstr: 32101.14.biods.2024081
王艳丽1,2, 张英3, 戚春林1,2, 张昌达4, 史佑海5, 杜彦君5, 丁琼1,2,*()
收稿日期:
2024-03-07
接受日期:
2024-06-03
出版日期:
2024-07-20
发布日期:
2024-06-14
通讯作者:
*E-mail: dingqiong@hainanu.edu.cn
基金资助:
Yanli Wang1,2, Ying Zhang3, Chunlin Qi1,2, Changda Zhang4, Youhai Shi5, Yanjun Du5, Qiong Ding1,2,*()
Received:
2024-03-07
Accepted:
2024-06-03
Online:
2024-07-20
Published:
2024-06-14
Contact:
*E-mail: dingqiong@hainanu.edu.cn
Supported by:
摘要:
预测受威胁物种的适生区、识别生物多样性热点区域, 对制定科学合理的保护策略极为重要。目前适生区及生物多样性热点区的识别研究在动植物中的应用较多, 而在大型真菌中的应用较少。本研究基于2013−2022年在海南岛进行的大型真菌和植物多样性本底调查获得的物种名录和分布信息, 及GBIF公共数据库资源, 筛选出受威胁或需优先保护的16种大型真菌和45种植物。采用最大熵(MaxEnt)模型, 首先预测单个目标物种在国家公园内的适生区, 通过图层叠加识别大型真菌、植物的多样性热点区域, 将大型真菌和植物同时纳入热点区域分析, 比较二者异同, 并与当前海南热带雨林国家公园的边界进行比较, 评估国家公园对真菌和植物的保护成效和空缺。研究结果显示: 海南岛全域大型真菌、植物多样性热点区域总面积分别为271.9 km2、889.0 km2, 其中大型真菌与植物重叠的热点区域为214.0 km2 (78.7%), 而非重叠的热点区域面积分别为57.9 km2和675.0 km2; 大型真菌在海南岛东北沿海区域形成较大面积(2,412.8 km2)的次热点区域, 而该区域为植物的冷点区域; 同时考虑大型真菌和植物时, 海南岛全域热点区域为601.0 km2, 其中位于国家公园和国家公园核心保护区的面积分别为572.8 km2 (95.3%)和518.2 km2 (86.2%), 主要集中在海拔700-1,200 m的山地雨林区; 国家公园内有54.6 km2热点区域位于一般管控区内, 28.2 km2的热点区域位于热带雨林国家公园界外的海南岛东南部, 应加强对这些区域的生物多样性保护。在生物多样性热点区域识别分析中, 将大型真菌纳入考查范围将能更有效地保护生物多样性和生态系统的完整性。
王艳丽, 张英, 戚春林, 张昌达, 史佑海, 杜彦君, 丁琼 (2024) 海南热带雨林国家公园生物多样性热点与保护空缺区域识别: 基于大型真菌与植物视角. 生物多样性, 32, 24081. DOI: 10.17520/biods.2024081.
Yanli Wang, Ying Zhang, Chunlin Qi, Changda Zhang, Youhai Shi, Yanjun Du, Qiong Ding (2024) Identifying biodiversity hotspots and conservation gaps in Hainan Tropical Rainforest National Park based on macrofungi and plants perspectives. Biodiversity Science, 32, 24081. DOI: 10.17520/biods.2024081.
图1 海南岛大型真菌与受威胁植物调查样点分布(a)和吊罗山分局目标物种野外调查1 km × 1 km网格分布图(b)
Fig. 1 Sampling points for macrofungi (red triangles) and threatened plants (green triangles) survey in Hainan Island (a), and the 1 km × 1 km grid for the field investigation of target species in the Diaoluoshan Sub-bureau areas (b)
图2 环境变量对海南岛大型真菌(a)与植物(b)的贡献率(只展示贡献率排名前10的环境变量)。环境变量全称见附录2。
Fig. 2 Contribution of environmental variables to macrofungi (a) and plants in Hainan Island (b) (show only the top ten environmental variables). Full names of the environment variables see Appendix 2.
图3 海南岛大型真菌(a)、植物(b)、大型真菌-植物的多样性热点区域(c) (仅展示有热点区分布的海南岛区域)以及热点的海拔频度分布(d)。红色虚线表示均值线。
Fig. 3 Diversity hotspots of macrofungi (a), plants (b), macrofungi-plants (c) (only Hainan Island with distribution of hotspots was intercepted), and the frequency distribution of hotspots by altitude (d). The red dashed line indicates the mean value line.
在海南岛内的面积 Area within Hainan Island (km2) | 在国家公园核心保护区的面积/比例 Area/proportion in NP core protected zone (km2/%) | 在国家公园一般控制区的面积/比例 Area/proportion in NP general control zone (km2/%) | |
---|---|---|---|
真菌热点区域 Macrofungi hotspot area | 271.9 | 199.6/73.4 | 15.2/5.6 |
植物热点区域 Plant hotspot area | 889.0 | 695.7/78.3 | 97.6/10.9 |
真菌-植物热点区域 Macrofungi-plant hotspot area | 601.0 | 518.2/86.2 | 54.6/9.1 |
表1 目标物种的热点区域在海南岛、海南热带雨林国家公园不同分区的面积与比例
Table 1 Hot areas and their percentage occupation of target species in different zones of Hainan Island and Hainan Tropical Rainforest National Park (NP)
在海南岛内的面积 Area within Hainan Island (km2) | 在国家公园核心保护区的面积/比例 Area/proportion in NP core protected zone (km2/%) | 在国家公园一般控制区的面积/比例 Area/proportion in NP general control zone (km2/%) | |
---|---|---|---|
真菌热点区域 Macrofungi hotspot area | 271.9 | 199.6/73.4 | 15.2/5.6 |
植物热点区域 Plant hotspot area | 889.0 | 695.7/78.3 | 97.6/10.9 |
真菌-植物热点区域 Macrofungi-plant hotspot area | 601.0 | 518.2/86.2 | 54.6/9.1 |
植物独占区面积 Exclusive area of plant (km2) | 大型真菌独占区面积 Exclusive area of macrofungi (km2) | 重叠面积 Overlapping area (km2) | |
---|---|---|---|
冷点区域 Coldspot area | 16,695.0 | 8,769.5 | 1,754.7 |
次冷点区域 Sub-coldspot area | 5,358.2 | 7,318.1 | 2,426.5 |
中等区域 Moderate area | 4,428.2 | 10,840.3 | 106.2 |
次热点区域 Sub-hotspot area | 2,134.4 | 2,305.0 | 107.8 |
热点区域 Hotspot area | 675.0 | 57.9 | 214.0 |
表2 海南岛大型真菌和植物热点区域面积对比
Table 2 Comparison of hotspot areas for macrofungi and plants in Hainan Island
植物独占区面积 Exclusive area of plant (km2) | 大型真菌独占区面积 Exclusive area of macrofungi (km2) | 重叠面积 Overlapping area (km2) | |
---|---|---|---|
冷点区域 Coldspot area | 16,695.0 | 8,769.5 | 1,754.7 |
次冷点区域 Sub-coldspot area | 5,358.2 | 7,318.1 | 2,426.5 |
中等区域 Moderate area | 4,428.2 | 10,840.3 | 106.2 |
次热点区域 Sub-hotspot area | 2,134.4 | 2,305.0 | 107.8 |
热点区域 Hotspot area | 675.0 | 57.9 | 214.0 |
图4 所有目标物种(61种)在海南岛的热点与保护空缺分布(仅展示有热点分布的海南岛区域)
Fig. 4 The distribution of hotspot and conservation gaps of all target species (61 species) on Hainan Island (only Hainan Island with distribution of hotspots was intercepted)
[1] | Ayram CA, Mendoza ME, Etter A, Salicrup DR (2017) Anthropogenic impact on habitat connectivity: A multidimensional human footprint index evaluated in a highly biodiverse landscape of Mexico. Ecological Indicators, 72, 895-909. |
[2] |
Cao Y, Wu G, Yu DD (2021) Include macrofungi in biodiversity targets. Science, 372, 1160.
DOI PMID |
[3] | Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature, 387, 253-260. |
[4] | Dahlberg A, Genney DR, Heilmann-Clausen J (2010) Developing a comprehensive strategy for fungal conservation in Europe: Current status and future needs. Fungal Ecology, 3, 50-64. |
[5] | Dalton R (2000) Biodiversity cash aimed at hotspots. Nature, 406, 818. |
[6] | De Araújo CB, Marcondes-Machado LO, Costa GC (2014) The importance of biotic interactions in species distribution models: A test of the Eltonian noise hypothesis using parrots. Journal of Biogeography, 41, 513-523. |
[7] |
Deng C, Hao JW, Gao D, Ren MX, Zhang LN (2023) Identification and protection of suitable habitat hotspots for threatened bryophytes in Hainan. Biodiversity Science, 31, 22580. (in Chinese)
DOI |
[邓昶, 郝杰威, 高德, 任明迅, 张莉娜 (2023) 海南受威胁苔藓植物适生热点区域识别与保护. 生物多样性, 31, 22580.]
DOI |
|
[8] | Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A, Balvanera P, Brauman KA, Butchart SHM, Chan KMA, Garibaldi LA, Ichii K, Liu JG, Subramanian SM, Midgley GF, Miloslavich P, Molnár Z, Obura D, Pfaff A, Polasky S, Purvis A, Razzaque J, Reyers B, Chowdhury RR, Shin YJ, Visseren-Hamakers I, Willis KJ, Zayas CN (2019) Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 366, eaax3100. |
[9] | Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57. |
[10] | Fajardo J, Lessmann J, Bonaccorso E, Devenish C, Muñoz J (2014) Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru). PLoS ONE, 9, e114367. |
[11] |
Fearnside PM, Ferraz J (1995) A conservation gap analysis of Brazil’s Amazonian vegetation. Conservation Biology, 9, 1134-1147.
DOI PMID |
[12] | Frøslev TG, Kjøller R, Bruun HH, Ejrnæs R, Hansen AJ, Læssøe T, Heilmann-Clausen J (2019) Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients? Biological Conservation, 233, 201-212. |
[13] | GBIF (2023) Global Biodiversity Information Facility. https://www.gbif.org/. (accessed on 2024-03-22) |
[14] | Halme P, Kotiaho JS (2012) The importance of timing and number of surveys in fungal biodiversity research. Biodiversity and Conservation, 21, 205-219. |
[15] | Huang Z, Bai Y, Alatalo JM, Yang Z (2020) Mapping biodiversity conservation priorities for protected areas: A case study in Xishuangbanna Tropical Area, China. Biological Conservation, 249, 108741. |
[16] | IUCN (International Union for Conservation of Nature) (2023) The IUCN Red List of Threatened Species. https://www.iucnredlist.org. (accessed on 2024-03-22) |
[17] |
Li GH, Guo XY, Li LM, Ren MX, Wan L, Ding Q, Li JL (2022) Macrofungal diversity in different vegetation types of Hainan Tropical Rainforest National Park. Biodiversity Science, 30, 22110. (in Chinese with English abstract)
DOI |
[李国华, 郭向阳, 李霖明, 任明迅, 万玲, 丁琼, 李娟玲 (2022) 海南热带雨林国家公园不同植被类型的大型真菌多样性. 生物多样性, 30, 22110.]
DOI |
|
[18] | Li Y, Liu DM, Wang K, Wu HJ, Cai L, Cai L, Li JS, Yao YJ (2020a) Red list assessment of macrofungi in China: Challenges and measures. Biodiversity Science, 28, 66-73. (in Chinese with English abstract) |
[李熠, 刘冬梅, 王科, 吴海军, 蔡蕾, 蔡磊, 李俊生, 姚一建 (2020a) 中国大型真菌红色名录评估中存在的问题及今后的对策. 生物多样性, 28, 66-73.] | |
[19] | Li Y, Tang ZY, Yan YJ, Wang K, Cai L, He JS, Gu S, Yao YJ (2020b) Incorporating species distribution model into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis. Biodiversity Science, 28, 99-106. (in Chinese with English abstract) |
[李熠, 唐志尧, 闫昱晶, 王科, 蔡磊, 贺金生, 古松, 姚一建 (2020b) 物种分布模型在大型真菌红色名录评估及保护中的应用: 以冬虫夏草为例. 生物多样性, 28, 99-106.] | |
[20] | Lian Y, Bai Y, Huang Z, Ali M, Wang J, Chen H (2024) Spatio-temporal changes and habitats of rare and endangered species in Yunnan Province based on MaxEnt model. Land, 13, 240. |
[21] | Ma K, Chen YH, Tang XL, Wang YY (2023) Research on spatial optimization of protected areas in the middle reaches of the Yangtze River based on threatened species. Geographic Research, 42, 3115-3129. (in Chinese with English abstract) |
[马坤, 陈颖晖, 唐晓岚, 王燕燕 (2023) 基于受威胁物种保护的长江中游流域自然保护地空间优化研究. 地理研究, 42, 3115-3129.]
DOI |
|
[22] | Ma KP (2016) Hot issues in biodiversity science. Biodiversity Science, 24, 1-2. (in Chinese) |
[马克平 (2016) 生物多样性科学的热点问题. 生物多样性, 24, 1-2 ]
DOI |
|
[23] | Ma X, Wang H, Yu W, Du Y, Liang JC, Hu HJ, Qiu SR, Liu L (2021) Analysis of bird diversity hotspot distribution and conservation gaps in Guangdong Province based on the MaxEnt model. Biodiversity Science, 29, 1097-1107. (in Chinese with English abstract) |
[马星, 王浩, 余蔚, 杜勇, 梁健超, 胡慧建, 邱胜荣, 刘璐 (2021) 基于MaxEnt模型分析广东省鸟类多样性热点分布及保护空缺. 生物多样性, 29, 1097-1107.] | |
[24] | Mafuwe K, Broadley S, Moyo S (2021) Use of maximum entropy (Maxent) niche modelling to predict the occurrence of threatened freshwater species in a biodiversity hotspot of Zimbabwe. African Journal of Ecology, 3, 557-565. |
[25] | McNeely JA, Miller KR (1983) IUCN, National Parks, and Protected Areas: Priorities for Action. Environmental Conservation, 10, 13-21. |
[26] | Murray-Smith C, Brummitt NA, Oliveira-Filho AT, Bachman S, Moat J, Lughadha EMN, Lucas EJ (2009) Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conservation Biology. 23, 151-163. |
[27] | Myers N, Mittermeier RA, Mittermeier CG, Fonseca GABD, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-859. |
[28] |
Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science, 336, 1401-1406.
DOI PMID |
[29] | Niego AG, Rapior S, Thongklang N, Raspé O, Hyde K, Mortimer P (2023) Reviewing the contributions of macrofungi to forest ecosystem processes and services. Fungal Biology Reviews, 44, 100294. |
[30] | Nordén J, Penttilä R, Siitonen J, Tomppo E, Ovaskainen O (2013) Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. Journal of Ecology, 101, 701-712. |
[31] | NPCA (National Parks Conservation Association) (2019) Report: Endangered Species Act is A Win-Win for National Parks and Imperiled Species. https://www.npca.org/articles/2131. (accessed on 2024-06-01) |
[32] | Penttilä R, Lindgren M, Miettinen O, Rita H, Hanski I (2006) Consequences of forest fragmentation for polyporous fungi at two spatial scales. Oikos, 114, 225-240. |
[33] | Pouteau R, Bayle É, Blanchard E, Birnbaum P, Cassan JJ, Hequet V, Ibanez T, Vandrot H (2015) Accounting for the indirect area effect in stacked species distribution models to map species richness in a montane biodiversity hotspot. Diversity and Distributions, 21, 1329-1338. |
[34] | Silva VD, Pressey RL, Machado RB, VanDerWal J, Wiederhecker HC, Werneck FP, Colli GR (2014) Formulating conservation targets for a gap analysis of endemic lizards in a biodiversity hotspot. Biological Conservation, 180, 1-10. |
[35] |
Swets JA (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
DOI PMID |
[36] |
Tedersoo L, Jairus T, Horton B, Abarenkov K, Suvi T, Saar I, Kõljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytologist, 180, 479-490.
DOI PMID |
[37] | Timko J, Satterfield T (2008) Criteria and indicators for evaluating social equity and ecological integrity in national parks and protected areas. Natural Areas Journal, 28, 307-319. |
[38] | Wu XL (2019) Macrofungi of Hainan Island, China. Science Press, Beijing. (in Chinese) |
[吴兴亮 (2019) 中国海南岛大型真菌. 科学出版社, 北京.] | |
[39] | Wu XY, Dong SK, Liu SL, Liu QR, Han YH, Zhang XL, Su XK, Zhao HD, Feng J (2018) Identification of hotspots of endangered plants in the Sanjiangyuan region based on MaxEnt model. Biodiversity Science, 26, 138-148. (in Chinese with English abstract) |
[武晓宇, 董世魁, 刘世梁, 刘全儒, 韩雨晖, 张晓蕾, 苏旭坤, 赵海迪, 冯憬 (2018) 基于MaxEnt模型的三江源区草地濒危保护植物热点区识别. 生物多样性, 26, 138-148.]
DOI |
|
[40] | Wulff AS, Hollingsworth PM, Ahrends A, Jaffré T, Veillon JM, Huillier LL, Fogliani B (2013) Conservation priorities in a biodiversity hotspot: Analysis of narrow endemic plant species in New Caledonia. PLoS ONE, 8, e73371. |
[41] | Yang XB, Chen YK, Li DH, Mo YN (2016) Research on the Map and Distribution Characteristics of Rare and Protected Plants in Hainan. Science Press, Beijing. (in Chinese) |
[杨小波, 陈玉凯, 李东海, 莫燕妮 (2016) 海南珍稀保护植物图鉴与分布特征研究. 科学出版社, 北京.] | |
[42] | Yang XB, Chen ZZ, Li DH, Chen YK, Chen H (2019) Flora of Hainan. Science Press, Beijing. (in Chinese) |
[杨小波, 陈宗铸, 李东海, 陈玉凯, 陈辉 (2019) 海南植被志. 科学出版社, 北京.] | |
[43] |
Yao YJ, Wei JC, Zhuang WY, Cai L, Liu DM, Li JS, Wei TZ, Li Y, Wang K, Wu HJ (2020) Development of red list assessment of macrofungi in China. Biodiversity Science, 28, 4-10. (in Chinese with English abstract)
DOI |
[姚一建, 魏江春, 庄文颖, 蔡蕾, 刘冬梅, 李俊生, 魏铁铮, 李熠, 王科, 吴海军 (2020) 中国大型真菌红色名录评估研究进展. 生物多样性, 28, 4-10.]
DOI |
|
[44] | Yu HL, Wang TJ, Skidmore A, Heurich M, Bässler C (2022) 50 Years of cumulative open-source data confirm stable and robust biodiversity distribution patterns for macrofungi. Journal of Fungi, 8, 981. |
[45] | Zeng NK, Jiang S (2020) Atlas of Macrofungi from Yinggeling of Hainan, China. Nan Hai Publish Company, Haikou. (in Chinese) |
[曾念开, 蒋帅 (2020) 鹦哥岭大型真菌. 南海出版社, 海口.] | |
[46] | Zeng XY, Song YH (2023) Study on the biodiversity distribution pattern of the green space in the central city of Kunming based on the key species and habitat quality assessment. Chinese Landscape Architecture, 39(9), 126-132. (in Chinese with English abstract) |
[曾欣怡, 宋钰红 (2023) 基于关键物种与生境质量评估的昆明市中心城区绿色空间生物多样性分布格局研究. 中国园林, 39(9), 126-132.] |
[1] | 许佳, 崔小娟, 张翼飞, 吴昌, 孙远东. 南岭地区鱼类多样性及其地理分布[J]. 生物多样性, 2024, 32(7): 23482-. |
[2] | 董廷玮, 黄美玲, 韦旭, 马硕, 岳衢, 刘文丽, 郑佳鑫, 王刚, 马蕊, 丁由中, 薄顺奇, 王正寰. 上海地区金线侧褶蛙种群的潜在空间分布格局及其景观连通性[J]. 生物多样性, 2023, 31(8): 22692-. |
[3] | 陈声文, 任海保, 童光蓉, 王宁宁, 蓝文超, 薛建华, 米湘成. 钱江源国家公园木本植物物种多样性空间分布格局[J]. 生物多样性, 2023, 31(7): 22587-. |
[4] | 刘伟, 王濡格, 范天巧, 娜依曼·阿不都力江, 宋新航, 肖书平, 郭宁, 帅凌鹰. 福建省明溪县黑冠鹃隼生境适宜性[J]. 生物多样性, 2023, 31(7): 22660-. |
[5] | 鲍虞园, 李银康, 林吴颖, 周志琴, 肖晓波, 颉晓勇. 中国南海北部近海鲎资源调查及北部湾潮间带中华鲎幼鲎潜在栖息地评估[J]. 生物多样性, 2023, 31(5): 22407-. |
[6] | 邓昶, 郝杰威, 高德, 任明迅, 张莉娜. 海南受威胁苔藓植物适生热点区域识别与保护[J]. 生物多样性, 2023, 31(4): 22580-. |
[7] | 李国华, 郭向阳, 李霖明, 任明迅, 万玲, 丁琼, 李娟玲. 海南热带雨林国家公园不同植被类型的大型真菌多样性[J]. 生物多样性, 2022, 30(7): 22110-. |
[8] | 杨苗, 张杰, 白嘉伟, 郭建刚, 曲亚辉, 李会平. 雾灵山国家级自然保护区大型真菌物种多样性[J]. 生物多样性, 2021, 29(9): 1229-1235. |
[9] | 施雨含, 任宗昕, 王维嘉, 徐鑫, 刘杰, 赵延会, 王红. 中国-喜马拉雅三种黄耆属植物与其传粉熊蜂的空间分布预测[J]. 生物多样性, 2021, 29(6): 759-769. |
[10] | 王梦霞, 陈心怡, 张洁, 宋宇航, 杨娟. 菲律宾海脊索动物多样性评估: 基于OBIS数据库[J]. 生物多样性, 2021, 29(11): 1481-1489. |
[11] | 魏铁铮,王科,于晓丹,李熠,吴海军,吴红梅,王永会,卫晓丹,李斌斌,蒋岚,姚一建. 中国大型担子菌受威胁现状评估[J]. 生物多样性, 2020, 28(1): 41-53. |
[12] | 李熠,刘冬梅,王科,吴海军,蔡蕾,蔡磊,李俊生,姚一建. 中国大型真菌红色名录评估中存在的问题及今后的对策[J]. 生物多样性, 2020, 28(1): 66-73. |
[13] | 王科,刘冬梅,蔡蕾,吴海军,李熠,魏铁铮,王永会,吴红梅,卫晓丹,李斌斌,李俊生,姚一建. 中国大型真菌红色名录评估方法和程序[J]. 生物多样性, 2020, 28(1): 11-19. |
[14] | 姚一建,魏江春,庄文颖,蔡蕾,刘冬梅,李俊生,魏铁铮,李熠,王科,吴海军. 中国大型真菌红色名录评估研究进展[J]. 生物多样性, 2020, 28(1): 4-10. |
[15] | 袁海生, 魏玉莲, 周丽伟, 秦问敏, 崔宝凯, 何双辉. 东北4种林木干基腐朽病原真菌潜在分布范围预测及其生态位分析[J]. 生物多样性, 2019, 27(8): 873-879. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn