生物多样性 ›› 2014, Vol. 22 ›› Issue (6): 764-772. DOI: 10.3724/SP.J.1003.2014.14176
所属专题: 野生动物的红外相机监测
徐爱春1,2, 斯幸峰1, 王彦平1, 丁平1,,A;*()
收稿日期:
2014-08-25
接受日期:
2014-11-24
出版日期:
2014-11-20
发布日期:
2014-12-11
通讯作者:
丁平
基金资助:
Aichun Xu1,2, Xingfeng Si1, Yanping Wang1, Ping Ding1,*()
Received:
2014-08-25
Accepted:
2014-11-24
Online:
2014-11-20
Published:
2014-12-11
Contact:
Ding Ping
摘要:
作为典型的陆桥岛屿, 千岛湖成为检验栖息地片段化理论的自然研究平台。2011年5月1日至2014年3月31日, 我们在千岛湖32个岛屿和1个大陆对照样点布设了60台红外相机, 对千岛湖体型较大的地栖兽类及其最小监测时长进行了监测和研究。在27,798个相机日的监测中, 共获得动物影像照片23,639张, 照片清晰、可进行物种鉴定的有2,414张, 占照片总数的10.2%; 其中体型较大的地栖兽类独立照片988张, 识别为9个物种: 穿山甲(Manis pentadactyla)、黄麂(Muntiacus reevesi)、野猪(Sus scrofa)、华南兔(Lepus sinensis)、马来豪猪(Hystrix brachyuran)、猪獾(Arctonyx collaris)、鼬獾(Melogale moschata)、花面狸(Paguma larvata)和豹猫(Prionailurus bengalensis), 平均独立照片拍摄率为40.9%。种-面积曲线研究表明, 岛屿上的地栖兽类物种丰富度随着岛屿面积的增大而增大, 曲线的z值为0.27。大岛(>10 ha)中, 最小监测时长随面积增加而增加, 而小岛没有明显趋势; 最小监测时长随隔离度增加而减小, 但关系不显著(d.f. = 20, F = 3.067, P = 0.095), 表明建湖后栖息地的片段化与岛屿化导致了一些对面积或栖息地较为敏感的大型兽类在小岛屿上的局部灭绝。因此, 我们建议对于面积较大的片段化栖息地, 红外相机应保证较长的最小监测时长, 而面积较小的片段化栖息地在监测中应根据隔离度、基质性质、物种种类适时调整调查强度, 以完整反映当地物种实际情况。
徐爱春, 斯幸峰, 王彦平, 丁平 (2014) 千岛湖片段化栖息地地栖哺乳动物的红外相机监测及最小监测时长. 生物多样性, 22, 764-772. DOI: 10.3724/SP.J.1003.2014.14176.
Aichun Xu, Xingfeng Si, Yanping Wang, Ping Ding (2014) Camera traps and the minimum trapping effort for ground-dwelling mammals in fragmented habitats in the Thousand Island Lake, Zhejiang Province. Biodiversity Science, 22, 764-772. DOI: 10.3724/SP.J.1003.2014.14176.
图1 千岛湖湖区以及调查样点(样点按照面积大小排序, 8号样点在近邻大陆)
Fig. 1 Thousand Island Lake in Zhejiang Province, China with 33 study sites numbered in order of decreasing area. Site 8 is on the mainland.
样点 Site | 相机数* No. of cameras (n) | 调查强度 Trapping efforts (Camera day/month) | 大型兽类物种数 No. of mammals | 面积 Area (ha) | 隔离度 Isolation (m) | 最小监测时长 Minimum trapping effort (Camera day) | ||
---|---|---|---|---|---|---|---|---|
Observed (n) | Estimated±se(n) | |||||||
1 | 20 | 4,880/160 | 9 | 9.5±1.32 | 1,153.88 | 861.00 | 81 | |
2 | 10 | 2,450/80 | 8 | 8±0 | 128.32 | 1,417.81 | 28 | |
3 | 10 | 1,220/40 | 6 | 6±0 | 47.98 | 1,066.10 | 21 | |
4 | 10 | 1,210/40 | 3 | 3±0 | 27.49 | 1,158.87 | 13 | |
5 | 5 | 765/25 | 2 | 2±0 | 3.70 | 2,225.45 | 27 | |
9 | 5 | 608/20 | 1 | 1±0 | 1.44 | 1,106.53 | 77 | |
10 | 3 | 636/21 | 3 | 3±0 | 1.33 | 730.95 | 15 | |
12 | 3 | 636/21 | 2 | 2±0 | 1.31 | 868.22 | 108 | |
13 | 3 | 610/20 | 1 | 1±0 | 0.86 | 3,609.61 | 3 | |
15 | 3 | 728/24 | 2 | 2±0 | 0.84 | 690.03 | 15 | |
16 | 3 | 608/20 | 1 | 1±0 | 0.84 | 1,026.58 | 21 | |
17 | 5 | 615/20 | 2 | 2±0 | 0.79 | 2,657.77 | 29 | |
18 | 5 | 605/20 | 2 | 2±0 | 0.69 | 200.31 | 44 | |
19 | 3 | 608/20 | 3 | 3±0 | 0.62 | 1378.00 | 175 | |
20 | 5 | 605/20 | 2 | 2±0 | 0.62 | 2,333.60 | 61 | |
21 | 5 | 615/20 | 2 | 2±0 | 0.53 | 1,939.94 | 17 | |
22 | 5 | 605/20 | 2 | 2±0 | 0.46 | 1,982.69 | 5 | |
23 | 3 | 642/21 | 3 | 3±0 | 0.42 | 1,056.16 | 56 | |
25 | 5 | 615/20 | 1 | 1±0 | 0.36 | 2,227.08 | 62 | |
28 | 3 | 608/20 | 1 | 1±0 | 0.25 | 3,650.55 | 5 | |
31 | 3 | 547/18 | 1 | 1±0 | 0.14 | 387.10 | 275 | |
33 | 3 | 636/21 | 1 | 1±0 | 0.08 | 947.67 | 11 | |
8 | 5 | 615/20 | 6 | 7±0 | 1.50 | 0 | 27 | |
6 | 5 | 615/20 | 0 | 2.56 | 2,199.38 | - | ||
11 | 5 | 615/20 | 0 | 1.32 | 2,121.37 | - | ||
14 | 5 | 615/20 | 0 | 0.85 | 2,184.55 | - | ||
26 | 5 | 615/20 | 0 | 0.29 | 3,073.21 | - | ||
27 | 5 | 615/20 | 0 | 0.25 | 2,658.07 | - | ||
30 | 5 | 615/20 | 0 | 0.19 | 2,137.68 | - | ||
32 | 5 | 615/20 | 0 | 0.12 | 2,073.07 | - | ||
7 | 3 | 608/20 | - | 2.17 | 998.41 | - | ||
24 | 3 | 610/20 | - | 0.39 | 4,075.04 | - | ||
29 | 3 | 608/20 | - | 0.19 | 398.18 | - |
表1 千岛湖湖区33个调查样点的基本参数以及各自的红外相机置放数目。其中8号样点在邻近的大陆, 其余均在岛屿上。样点按照面积从大到小排列, 编号对应于图1。
Table 1 Characteristics of the 33 study sites in Thousand Island Lake region, Zhejiang Province, China. Site 8 is located on the nearby mainland. Other sites are all on islands. Each site is numbered in order of decreasing area as in Fig. 1
样点 Site | 相机数* No. of cameras (n) | 调查强度 Trapping efforts (Camera day/month) | 大型兽类物种数 No. of mammals | 面积 Area (ha) | 隔离度 Isolation (m) | 最小监测时长 Minimum trapping effort (Camera day) | ||
---|---|---|---|---|---|---|---|---|
Observed (n) | Estimated±se(n) | |||||||
1 | 20 | 4,880/160 | 9 | 9.5±1.32 | 1,153.88 | 861.00 | 81 | |
2 | 10 | 2,450/80 | 8 | 8±0 | 128.32 | 1,417.81 | 28 | |
3 | 10 | 1,220/40 | 6 | 6±0 | 47.98 | 1,066.10 | 21 | |
4 | 10 | 1,210/40 | 3 | 3±0 | 27.49 | 1,158.87 | 13 | |
5 | 5 | 765/25 | 2 | 2±0 | 3.70 | 2,225.45 | 27 | |
9 | 5 | 608/20 | 1 | 1±0 | 1.44 | 1,106.53 | 77 | |
10 | 3 | 636/21 | 3 | 3±0 | 1.33 | 730.95 | 15 | |
12 | 3 | 636/21 | 2 | 2±0 | 1.31 | 868.22 | 108 | |
13 | 3 | 610/20 | 1 | 1±0 | 0.86 | 3,609.61 | 3 | |
15 | 3 | 728/24 | 2 | 2±0 | 0.84 | 690.03 | 15 | |
16 | 3 | 608/20 | 1 | 1±0 | 0.84 | 1,026.58 | 21 | |
17 | 5 | 615/20 | 2 | 2±0 | 0.79 | 2,657.77 | 29 | |
18 | 5 | 605/20 | 2 | 2±0 | 0.69 | 200.31 | 44 | |
19 | 3 | 608/20 | 3 | 3±0 | 0.62 | 1378.00 | 175 | |
20 | 5 | 605/20 | 2 | 2±0 | 0.62 | 2,333.60 | 61 | |
21 | 5 | 615/20 | 2 | 2±0 | 0.53 | 1,939.94 | 17 | |
22 | 5 | 605/20 | 2 | 2±0 | 0.46 | 1,982.69 | 5 | |
23 | 3 | 642/21 | 3 | 3±0 | 0.42 | 1,056.16 | 56 | |
25 | 5 | 615/20 | 1 | 1±0 | 0.36 | 2,227.08 | 62 | |
28 | 3 | 608/20 | 1 | 1±0 | 0.25 | 3,650.55 | 5 | |
31 | 3 | 547/18 | 1 | 1±0 | 0.14 | 387.10 | 275 | |
33 | 3 | 636/21 | 1 | 1±0 | 0.08 | 947.67 | 11 | |
8 | 5 | 615/20 | 6 | 7±0 | 1.50 | 0 | 27 | |
6 | 5 | 615/20 | 0 | 2.56 | 2,199.38 | - | ||
11 | 5 | 615/20 | 0 | 1.32 | 2,121.37 | - | ||
14 | 5 | 615/20 | 0 | 0.85 | 2,184.55 | - | ||
26 | 5 | 615/20 | 0 | 0.29 | 3,073.21 | - | ||
27 | 5 | 615/20 | 0 | 0.25 | 2,658.07 | - | ||
30 | 5 | 615/20 | 0 | 0.19 | 2,137.68 | - | ||
32 | 5 | 615/20 | 0 | 0.12 | 2,073.07 | - | ||
7 | 3 | 608/20 | - | 2.17 | 998.41 | - | ||
24 | 3 | 610/20 | - | 0.39 | 4,075.04 | - | ||
29 | 3 | 608/20 | - | 0.19 | 398.18 | - |
图2 千岛湖湖区调查岛屿上的大型兽类种-面积曲线。黑色实心点表示大陆样点(仅供对照)。缩写: S: 物种丰富度; A: 岛屿面积。
Fig. 2 The species-area relationship of large mammal communities on 32 study islands in Thousand Island Lake. Black circle indicates the site on the mainland (for comparison). Abbreviations: S, Species number; A, Island area.
图3 千岛湖湖区部分样点(1, 2, 3和8号)的物种稀疏曲线。监测日表示1个样点中所有相机工作1天。
Fig. 3 Rarefaction curves of large mammal communities on sites 1, 2, 3 and 8 in Thousand Island Lake region. Monitoring day represents all cameras on a site monitoring one day.
图4 千岛湖湖区大型兽类群落在不同样点间最小监测时长与岛屿面积和隔离度的关系。圆圈的大小表明该样点的大型兽类物种丰富度。样点编号对应于图1。
Fig. 4 Relationships between minimum trapping efforts and island areas and isolations, respectively, on islands and mainland of larger mammal communities in Thousand Island Lake region. The size of each circle indicates the number of species on each site. Site numbers follow Fig. 1.
目/科 Order/Family | 种名 Species | 总照片数 No. of photos | 独立照片数 Independent photograph | 所占比例* % | ||
---|---|---|---|---|---|---|
鳞甲目 Pholidota | ||||||
鲮鲤科 Manidae | 1 | 穿山甲 Manis pentadactyla | 5 | 3 | 60.0 | |
兔形目 Lagomorpha | ||||||
兔科 Leporidae | 2 | 华南兔 Lepus sinensis | 366 | 157 | 42.9 | |
啮齿目 Rodentia | ||||||
豪猪科 Hystricidae | 3 | 马来豪猪 Hystrix brachyuran | 1 | 1 | 100 | |
食肉目 Carnivora | ||||||
鼬科 Mustelidae | 4 | 猪獾 Arctonyx collaris | 268 | 132 | 49.3 | |
5 | 鼬獾 Melogale moschata | 922 | 365 | 39.6 | ||
灵猫科 Viverridae | 6 | 花面狸 Paguma larvata | 55 | 34 | 61.8 | |
猫科 Felidae | 7 | 豹猫 Prionailurus bengalensis | 20 | 10 | 50 | |
偶蹄目 Artiodactyla | ||||||
猪科 Suidae | 8 | 野猪 Sus scrofa | 331 | 112 | 33.8 | |
鹿科 Cervidae | 9 | 黄麂 Muntiacus reevesi | 446 | 174 | 39.0 | |
合计 | 2,414 | 988 | 40.9 |
表2 千岛湖湖区红外相机监测地栖兽类的基本结果
Table 2 Summary of ground-dwelling mammal species detected by camera traps in Thousand Island Lake region, China
目/科 Order/Family | 种名 Species | 总照片数 No. of photos | 独立照片数 Independent photograph | 所占比例* % | ||
---|---|---|---|---|---|---|
鳞甲目 Pholidota | ||||||
鲮鲤科 Manidae | 1 | 穿山甲 Manis pentadactyla | 5 | 3 | 60.0 | |
兔形目 Lagomorpha | ||||||
兔科 Leporidae | 2 | 华南兔 Lepus sinensis | 366 | 157 | 42.9 | |
啮齿目 Rodentia | ||||||
豪猪科 Hystricidae | 3 | 马来豪猪 Hystrix brachyuran | 1 | 1 | 100 | |
食肉目 Carnivora | ||||||
鼬科 Mustelidae | 4 | 猪獾 Arctonyx collaris | 268 | 132 | 49.3 | |
5 | 鼬獾 Melogale moschata | 922 | 365 | 39.6 | ||
灵猫科 Viverridae | 6 | 花面狸 Paguma larvata | 55 | 34 | 61.8 | |
猫科 Felidae | 7 | 豹猫 Prionailurus bengalensis | 20 | 10 | 50 | |
偶蹄目 Artiodactyla | ||||||
猪科 Suidae | 8 | 野猪 Sus scrofa | 331 | 112 | 33.8 | |
鹿科 Cervidae | 9 | 黄麂 Muntiacus reevesi | 446 | 174 | 39.0 | |
合计 | 2,414 | 988 | 40.9 |
[1] | Carbone C, Christie S, Conforti K, Coulson T, Franklin N, Ginsberg JR, Griffiths M, Holden J, Kawanishi K, Kinnaird M, Laidlaw R, Lynam A, Macdonald DW, Martyr D, McDougal C, Nath L, O’Brien T, Seidensticker J, Smith DJL, Sunquist M, Tilson R, Wan Shahruddin WN (2001) The use of photographic rates to estimate densities of tigers and other cryptic mammals.Animal Conservation, 4, 75-79. |
[2] | Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability.Biometrics, 43, 783-791. |
[3] | Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation.Philosophical Transactions of the Royal Society B: Biological Sciences, 345, 101-118. |
[4] | Cutler TL, Swann DE (1999) Using remote photography in wildlife ecology: a review.Wildlife Society Bulletin, 27, 571-581. |
[5] | Ding Z, Feeley KJ, Wang Y, Pakeman RJ, Ding P (2013) Patterns of bird functional diversity on land-bridge island fragments. Journal of Animal Ecology, 82, 781-790. |
[6] | Ferraz G, Russell GJ, Stouffer PC, Bierregaard RO, Pimm SL, Lovejoy TE (2003) Rates of species loss from Amazonian forest fragments.Proceedings of the National Academy of Sciences, USA, 100, 14069-14073. |
[7] | Gibson L, Lynam AJ, Bradshaw CJA, He F, Bickford DP, Woodruff DS, Bumrungsri S, Laurance WF (2013) Near-complete extinction of native small mammal fauna 25 years after forest fragmentation.Science, 341, 1508-1510. |
[8] | Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4, 379-391. |
[9] | Gotelli NJ, Graves GR (1996) Null Models in Ecology. Smithsonian Institution Press, Washington, DC. |
[10] | Hu G (胡广) (2011) Multi-Scale Effects of Habitat Loss and Fragmentation on Plant Species Diversity: A Case Study in the Thousand Island Lake (生境丧失和片段化对植物物种多样性的多尺度影响: 以千岛湖陆桥岛屿为例). PhD dissertation, Zhejiang University, Hangzhou. (in Chinese with English abstract) |
[11] | Hu G, Feeley K, Wu J, Xu G, Yu M (2011) Determinants of plant species richness and patterns of nestedness in fragmented landscapes: evidence from land-bridge islands.Landscape Ecology, 26, 1405-1417. |
[12] | James FC, Rathbun S (1981) Rarefaction, relative abundance, and diversity of avian communities.Auk, 98, 785-800. |
[13] | Karanth KU, Nichols JD (1998) Estimation of tiger densities in India using photographic captures and recaptures.Ecology, 79, 2852-2862. |
[14] | Kauffman MJ, Sanjayan M, Lowenstein J, Nelson A, Jeo RM, Crooks KR (2007) Remote camera-trap methods and analy- ses reveal impacts of rangeland management on Namibian carnivore communities.Oryx, 41, 70-78. |
[15] | MacArthur RH, Wilson EO(1967) The Theory of Island Biogeography. Princeton University Press, Princeton, NJ. |
[16] | MacKenzie DI, Nicholas JD, Royle JA, Pollock KH, Bailey LL, Hines JE(2006) Occupancy Estimation and Modeling:Inferring Patterns and Dynamics of Species Occurrence.Academic Press, Amsterdam. |
[17] | McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects.Ecological Applications, 12, 335-345. |
[18] | O’Connell AF, Nichols JD, Karanth KU (2011) Camera Traps in Animal Ecology: Methods and Analyses. Springer-Verlag, New York. |
[19] | O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape.Animal Conservation, 6, 131-139. |
[20] | R Development Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (Accessed 2014.11.26). |
[21] | Rosenzweig ML (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge, UK. |
[22] | Rowcliffe JM, Field J, Turvey ST, Carbone C (2008) Estimating animal density using camera traps without the need for individual recognition. Journal of Applied Ecology, 45, 1228-1236. |
[23] | Schoereder JH, Galbiati C, Ribas CR, Sobrinho TG, Sperber CF, DeSouza O, Lopes-Andrade C (2004) Should we use proportional sampling for species-area studies?Journal of Biogeography, 31, 1219-1226. |
[24] | Si X, Kays R, Ding P (2014a) How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps.PeerJ, 2, e374. |
[25] | Si X, Pimm SL, Russell GJ, Ding P (2014b) Turnover of breeding bird communities on islands in an inundated lake.Journal of Biogeography, 41, 2283-2292. |
[26] | Simberloff D (1978) Use of rarefaction and related methods in ecology. In: Biological Data in Water Pollution Assessment: Quantitative and Statistical Analyses (eds Dickson TL, Cairns J Jr, Livingston R), pp. 150-165. American Society for Testing and Materials, Philadelphia, PA. |
[27] | Tobler MW, Carrillo-Percastegui SE, Leite Pitman R, Mares R, Powell G (2008) An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals.Animal Conservation, 11, 169-178. |
[28] | Wang Y, Zhang M, Wang S, Ding Z, Zhang J, Sun J, Li P, Ding P (2012) No evidence for the small-island effect in avian communities on islands of an inundated lake.Oikos, 121, 1945-1952. |
[29] | Wu AL (武阿莉), Chen P (陈鹏), Zhang XF (张晓峰) (2014) Shooting rate of Catopuma temminckii by auto-induction infrared camera and estimation of population density in Changqing Nature Reserve.Shaanxi Forest Science and Technology(陕西林业科技), (1), 22-24. (in Chinese with English abstract) |
[30] | Yasuda M (2004) Monitoring diversity and abundance of mammals with camera traps: a case study on Mount Tsukuba, central Japan.Mammal Study, 29, 37-46. |
[31] | Zhang SS (章书声) (2013) Infrared-triggered Camera Technology in the Investigation of Mammals in Gutianshan National Nature Reserve (红外触发相机技术在古田山兽类资源监测中的应用). Master dissertation, Zhejiang Normal University, Jinhua, Zhejiang. (in Chinese with English abstract) |
[32] | Zhao QY (赵庆洋), Bao YX (鲍毅新), Sun B (孙波), Zhang LL (张龙龙), Hu ZY (胡知渊) (2009) Community distribution pattern and the affecting factors of small mammals in Qiandao Lake, Zhejiang.Zoological Research(动物学研究), 30, 671-678. (in Chinese with English abstract) |
[1] | 边琦 王成 程贺 韩丹 赵伊琳 殷鲁秦. 声学指数在城市森林鸟类多样性评估中的应用探索[J]. 生物多样性, 2023, 31(1): 22080-. |
[2] | 吴科毅 阮文达 周棣锋 陈庆春 张承云 潘新园 余上 刘阳 肖荣波. 基于音节聚类分析的被动声学监测技术及其在鸟类监测中的应用[J]. 生物多样性, 2023, 31(1): 22370-. |
[3] | 马海港 范鹏来. 被动声学监测技术在陆生哺乳动物研究中的应用、进展和展望[J]. 生物多样性, 2023, 31(1): 22374-. |
[4] | 王士政 孙翊斐 李珍珍 舒越 冯佳伟 王天明. 鸟类迁徙对图们江下游湿地声景时间格局的影响[J]. 生物多样性, 2023, 31(1): 22337-. |
[5] | 孙翊斐 王士政 冯佳伟 王天明. 东北虎豹国家公园森林声景的昼夜和季节变化[J]. 生物多样性, 2023, 31(1): 22523-. |
[6] | 张屹美 王言一 何衍 周冰 田苗 夏灿玮. Beta声学指数的特征和应用[J]. 生物多样性, 2023, 31(1): 22513-. |
[7] | 韦怡, 姜广顺. 虎豹及有蹄类猎物种群数量监测方法概述[J]. 生物多样性, 2022, 30(9): 21551-. |
[8] | 初漠嫣, 梁书洁, 李沛芸, 贾丁, 阿卜杜赛麦提·买尔迪亚力, 李雪阳, 姜楠, 赵翔, 李发祥, 肖凌云, 吕植. 三江源国家级自然保护区内云塔村雪豹种群动态[J]. 生物多样性, 2022, 30(9): 22157-. |
[9] | 张敏, 田春坡, 车先丽, 赵岩岩, 陈什旺, 周霞, 邹发生. 广东省鸟类新记录及其与自然和社会经济因素的关联性[J]. 生物多样性, 2022, 30(5): 21396-. |
[10] | 姜丙坤, 孙斯翀, 刘颂蕊, 李彬彬. 同一健康理念下中国野生动物源疫病监测及响应体系发展对策[J]. 生物多样性, 2022, 30(11): 22270-. |
[11] | 张立博, 李春荣, 陈国远, 刘方正, 罗建武, 周越, 冯春婷, 王伟. 江苏盐城滨海地区风机对鸟类的影响[J]. 生物多样性, 2022, 30(11): 22173-. |
[12] | 任淯, 陶胜利, 胡天宇, 杨海涛, 关宏灿, 苏艳军, 程凯, 陈梦玺, 万华伟, 郭庆华. 中国生物多样性核心监测指标遥感产品体系构建与思考[J]. 生物多样性, 2022, 30(10): 22530-. |
[13] | 张健, 孔宏智, 黄晓磊, 傅声雷, 郭良栋, 郭庆华, 雷富民, 吕植, 周玉荣, 马克平. 中国生物多样性研究的30个核心问题[J]. 生物多样性, 2022, 30(10): 22609-. |
[14] | 肖治术, 肖文宏, 王天明, 李晟, 连新明, 宋大昭, 邓雪琴, 周岐海. 中国野生动物红外相机监测与研究: 现状及未来[J]. 生物多样性, 2022, 30(10): 22451-. |
[15] | 吴慧, 徐学红, 冯晓娟, 米湘成, 苏艳军, 肖治术, 朱朝东, 曹垒, 高欣, 宋创业, 郭良栋, 吴东辉, 江建平, 沈浩, 马克平. 全球视角下的中国生物多样性监测进展与展望[J]. 生物多样性, 2022, 30(10): 22434-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn