生物多样性 ›› 2025, Vol. 33 ›› Issue (3): 24526.  DOI: 10.17520/biods.2024526  cstr: 32101.14.biods.2024526

• 昆蒙框架如何在中国体制下成为主流工作目标专题 • 上一篇    下一篇

基于遥感监测的《昆蒙框架》执行进展快速评估: 路径与展望

武慧1, 俞乐1,2*, 杜贞容3, 赵强1, 戚文超1, 曹越4, 王金洲5, 申小莉6, 孙尧7, 马克平6,8   

  1. 1. 清华大学地球系统科学系, 北京 100084; 2. 东亚迁徙鸟类与栖息地生态学教育部野外观测研究站, 北京 100084; 3. 大连理工大学信息与通信工程学院, 辽宁大连 116024; 4. 清华大学建筑学院景观学系, 北京 100084; 5. 中国环境科学研究院, 北京 100012; 6. 中国科学院植物研究所, 北京 100093; 7. 北京智谱华章科技有限公司, 北京 100089; 8. 东北林业大学林学院, 哈尔滨 150040
  • 收稿日期:2024-12-01 修回日期:2025-03-03 出版日期:2025-03-20 发布日期:2025-03-04
  • 通讯作者: 俞乐

Rapid assessment of the Kunming-Montreal Global Biodiversity Framework implementation progress based on remote sensing monitoring: Pathway and prospects

Hui Wu1, Le Yu1,2*, Zhenrong Du3, Qiang Zhao1, Wenchao Qi1, Yue Cao4, Jinzhou Wang5, Xiaoli Shen6, Yao Sun7, Keping Ma6,8   

  1. 1 Department of Earth System Science, Tsinghua University, Beijing 100084, China 

    2 Ministry of Education Ecological Field Station for East Asian Migratory Birds, Beijing 100084, China 

    3 School of Information and Communication Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China 

    4 Department of Landscape Architecture, School of Architecture, Tsinghua University, Beijing 100084, China 

    5 Chinese Research Academy of Environmental Sciences, Beijing 100012, China 

    6 Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 

    7 Beijing Zhipu Huazhang Technology Co., Ltd., Beijing 100089, China 

    8 College of Forestry, Northeast Forestry University, Harbin 150040, China

  • Received:2024-12-01 Revised:2025-03-03 Online:2025-03-20 Published:2025-03-04
  • Contact: Le Yu

摘要: 为有效遏制并扭转全球生物多样性快速丧失的严峻趋势, 《生物多样性公约》第十五次缔约方大会制定并通过了《昆明-蒙特利尔全球生物多样性框架》(简称《昆蒙框架》)这一最新行动纲领, 确定了4项长期目标及23项行动目标。目前, 有效跟踪盘点《昆蒙框架》目标进展是国际关注的热点, 但仍面临全球进展不明朗、监测不及时、评价不全面等多重挑战, 亟需突破标准不一、指标众多、数据不足等技术难题。本文旨在探索基于遥感监测的《昆蒙框架》执行进展快速评估路径, 通过遥感地基数据融合、定量定性评估结合, 满足多尺度《昆蒙框架》目标快速盘点需求。本文首先指出, 现有监测框架在有效评估《昆蒙框架》目标进展方面存在较大不确定性, 因此有必要研发一套执行性更强、空间分辨率更高、更新频率更快的指标集、指数计算方法和高质量数据集, 以确保《昆蒙框架》目标得到及时、有效的跟进与盘点。其次, 本文深入分析了遥感技术在生物多样性监测中的应用, 评估了其在《昆蒙框架》目标进展评估中的可行性。在此基础上, 进一步提出了构建数据-知识-计算一体化时空智能服务框架, 以支持生态系统制图、生物多样性制图以及遥感生物多样性核心变量(RS-EBVs)研发。最后, 本文建议采用基于RS-EBVs的定量评估方法, 结合基于缔约方国家生物多样性战略和行动计划和国家报告的定性评估, 并借助人工智能技术开发《昆蒙框架》实时进展监测智能体, 实现《昆蒙框架》进展的多尺度快速评估。这一系列技术手段旨在为《昆蒙框架》进展盘点提供切实可行的支持, 为各国制定和实施生物多样性保护政策提供科学依据。

关键词: 生物多样性, 遥感监测, 昆明-蒙特利尔全球生物多样性框架, 人工智能

Abstract

Background: The Earth is approaching a critical tipping point of irreversible biodiversity loss. As the latest global action plan for biodiversity conservation, the Kunming-Montreal Global Biodiversity Framework (KMGBF) sets out 4 long-term goals and 23 action targets. Tracking and assessing progress toward the KMGBF has become a global concern. However, challenges such as unclear progress, untimely monitoring, and incomplete evaluations remain prominent, highlighting the urgent need to address technical barriers like a large number of evaluation indicators, inconsistent assessment standards, and weak data foundations. 

Aims: This study aims to explore rapid assessment methods for evaluating the implementation progress of the KMGBF using remote sensing monitoring. By integrating remote sensing-based and ground-based data, as well as combining quantitative and qualitative evaluations, this approach seeks to meet the multi-scale needs of quickly tracking the progress of the KMGBF. 

Problems & Prospects: This paper first points out that the existing monitoring frameworks exhibit significant uncertainties in effectively assessing the progress of the KMGBF. Therefore, it is necessary to develop a more operationally robust set of indicators, indicator calculation methods, and high-quality datasets with higher spatial resolution and more frequent updates to ensure the timely and effective tracking and assessment of the KMGBF. Second, this paper provides an in-depth analysis of the application of remote sensing technology in biodiversity monitoring and evaluates its feasibility in assessing the progress of the KMGBF. Based on this analysis, a spatial intelligence service framework integrating data, knowledge, and computation is proposed to support ecosystem mapping, biodiversity mapping, and the development of remote sensing-based essential biodiversity variables (RS-EBVs). Finally, this paper advocates for a quantitative assessment approach based on RS-EBVs, complemented by a qualitative assessment derived from National Biodiversity Strategies and Action Plans (NBSAPs) and National Reports (NRs). Additionally, it suggests leveraging artificial intelligence to develop an intelligent real-time monitoring system for the KMGBF, enabling rapid multi-scale progress assessments. These technological approaches aim to provide practical and feasible support for tracking the progress of the KMGBF and offer scientific evidence for countries to formulate and implement biodiversity conservation policies.

Key words: biodiversity, remote sensing monitoring, Kunming-Montreal Global Biodiversity Framework, artificial intelligence