生物多样性 ›› 2014, Vol. 22 ›› Issue (5): 608-617. DOI: 10.3724/SP.J.1003.2014.14112
刘芳1,3, 李琪1,*(), 申聪聪2, 褚海燕2, 梁文举1
收稿日期:
2014-06-03
接受日期:
2014-08-01
出版日期:
2014-09-20
发布日期:
2014-10-09
通讯作者:
李琪
基金资助:
Fang Liu1,3, Qi Li1,*(), Congcong Shen2, Haiyan Chu2, Wenju Liang1
Received:
2014-06-03
Accepted:
2014-08-01
Online:
2014-09-20
Published:
2014-10-09
Contact:
Li Qi
摘要:
裸肉足虫作为联结微生物和大中型土壤动物的重要环节, 在土壤生态系统物质循环和能量流动过程中起着重要作用。为探明裸肉足虫群落沿海拔梯度的分布特征及其主要驱动因子, 作者在长白山北坡选择不同海拔梯度(700 m、1,000 m、1,300 m、1,600 m、1,900 m和2,200 m), 采用最大可能数法对裸肉足虫进行了培养计数, 并采用平板培养、标记、分离再培养的方法进行了分类鉴定, 分析比较了不同海拔梯度裸肉足虫的群落组成和结构特征。结果表明: 长白山北坡裸肉足虫物种丰富, 不同海拔梯度裸肉足虫丰富度指数存在显著差异, 且与土壤酸碱度呈极显著正相关关系。其中林分较为单一的岳桦(Betula ermanii)林带(1,900 m)裸肉足虫丰富度最低, 位于植被交错带的针阔混交林带(1,000 m)裸肉足虫丰富度最大, Shannon-Wiener多样性指数和Pielou均匀度指数在不同海拔梯度间不存在显著性差异, 但变化趋势与丰富度一致。聚类分析结果显示, 1,300 m、1,600 m和1,900 m海拔带以及700 m和2,200 m海拔带裸肉足虫群落组成较为相似。典范对应分析(canonical correspondence analysis, CCA)显示, 裸肉足虫群落组成和结构主要受土壤酸碱度、铵态氮以及碳氮比的影响, 而海拔和土壤含水量对其没有显著影响。综上, 裸肉足虫群落多样性随海拔梯度的增加并未呈现递减或单峰的变化趋势, 土壤的基本理化性质是驱动裸肉足虫群落分布的主要因素; 此外, 地上植被也可能通过凋落物和根系分泌物间接影响裸肉足虫的群落组成和多样性。
刘芳, 李琪, 申聪聪, 褚海燕, 梁文举 (2014) 长白山不同海拔梯度裸肉足虫群落分布特征. 生物多样性, 22, 608-617. DOI: 10.3724/SP.J.1003.2014.14112.
Fang Liu, Qi Li, Congcong Shen, Haiyan Chu, Wenju Liang (2014) Distribution of gymnamoebae communities along an elevational gradient in Changbai Mountains. Biodiversity Science, 22, 608-617. DOI: 10.3724/SP.J.1003.2014.14112.
图1 长白山不同海拔梯度土壤理化特性。不同字母表示在α=0.05水平上差异显著(n=5)。
Fig. 1 Soil physicochemical characteristics along an elevational gradient in Changbai Mountains. Different letters above the bars indicate differences between elevations at the 0.05 significance level (n=5).
属名及其缩写 Taxa (genus) with abbreviations | 裸肉足虫出现频率 Detection frequency of gymnamoebae (p) | 营养类群 Feeding guild | |||||
---|---|---|---|---|---|---|---|
700 m | 1,000 m | 1,300 m | 1,600 m | 1,900 m | 2,200 m | ||
棘变虫属 Acanthamoeba (Acant) | +++ | +++ | +++ | +++ | +++ | +++ | O |
变形虫属 Amoeba (Amoeb) | – | – | + | – | – | – | B |
Acrachnula (Acrac) | – | + | + | + | – | + | F |
粘虫属 Biomyxa (Biomy) | – | – | – | – | – | ++ | P |
卡变虫属 Cashia (Cashi) | + | ++ | – | – | + | – | B+Y |
指变虫属 Dactylamoeba (Dacty) | ++ | + | – | – | – | – | P+A |
刺变虫属 Echinamoeba (Echin) | +++ | ++++ | +++ | +++ | +++ | +++ | B |
丝变虫属 Filamoeba (Filam) | ++ | +++ | ++ | – | – | + | B |
拟斑瘤菌虫属 Guttulinopsis (Guttu) | + | +++ | – | – | – | + | B |
哈氏虫属 Hartmannella (Hartm) | + | +++ | ++ | + | ++ | +++ | B |
马氏虫属 Mayorella (Mayor) | – | – | – | – | – | ++ | B+P+A |
纳氏虫属 Naegleria (Naegl) | + | +++ | +++ | + | + | ++ | B |
核形虫属 Nuclearia (Nucle) | +++ | +++ | – | + | – | + | F+A |
副变虫属 Paramoeba (Param) | – | – | – | – | – | ++ | P+A |
平变虫属 Platyamoeba (Platy) | +++ | +++ | +++ | +++ | +++ | +++ | B |
多卓变虫属 Polychaos (Polyc) | – | + | – | – | – | – | P+A |
根变虫属 Rhizamoeba (Rhiza) | + | – | + | – | – | + | P |
囊变虫属 Saccamoeba (Sacca) | ++ | ++ | +++ | + | – | + | B |
Stachyamoeba (Stach) | + | +++ | + | + | – | ++ | B |
甲变虫属 Thecamoeba (Theca) | +++ | +++ | +++ | +++ | +++ | +++ | B+P |
毛变虫属 Tricamoeba (Trica) | – | – | ++ | – | – | – | # |
简变虫属 Vahlkampfia (Vahlk) | +++ | +++ | +++ | +++ | +++ | +++ | B |
蒲变虫属 Vannella (Vanne) | + | ++ | – | – | – | ++ | B |
杆变虫属 Vexillifera (Vexil) | +++ | +++ | +++ | +++ | +++ | ++ | B |
表1 不同海拔梯度裸肉足虫各属出现的频率和隶属营养类型
Table 1 Detection frequency and feeding guild of different gymnamoebae genera along elevational gradients
属名及其缩写 Taxa (genus) with abbreviations | 裸肉足虫出现频率 Detection frequency of gymnamoebae (p) | 营养类群 Feeding guild | |||||
---|---|---|---|---|---|---|---|
700 m | 1,000 m | 1,300 m | 1,600 m | 1,900 m | 2,200 m | ||
棘变虫属 Acanthamoeba (Acant) | +++ | +++ | +++ | +++ | +++ | +++ | O |
变形虫属 Amoeba (Amoeb) | – | – | + | – | – | – | B |
Acrachnula (Acrac) | – | + | + | + | – | + | F |
粘虫属 Biomyxa (Biomy) | – | – | – | – | – | ++ | P |
卡变虫属 Cashia (Cashi) | + | ++ | – | – | + | – | B+Y |
指变虫属 Dactylamoeba (Dacty) | ++ | + | – | – | – | – | P+A |
刺变虫属 Echinamoeba (Echin) | +++ | ++++ | +++ | +++ | +++ | +++ | B |
丝变虫属 Filamoeba (Filam) | ++ | +++ | ++ | – | – | + | B |
拟斑瘤菌虫属 Guttulinopsis (Guttu) | + | +++ | – | – | – | + | B |
哈氏虫属 Hartmannella (Hartm) | + | +++ | ++ | + | ++ | +++ | B |
马氏虫属 Mayorella (Mayor) | – | – | – | – | – | ++ | B+P+A |
纳氏虫属 Naegleria (Naegl) | + | +++ | +++ | + | + | ++ | B |
核形虫属 Nuclearia (Nucle) | +++ | +++ | – | + | – | + | F+A |
副变虫属 Paramoeba (Param) | – | – | – | – | – | ++ | P+A |
平变虫属 Platyamoeba (Platy) | +++ | +++ | +++ | +++ | +++ | +++ | B |
多卓变虫属 Polychaos (Polyc) | – | + | – | – | – | – | P+A |
根变虫属 Rhizamoeba (Rhiza) | + | – | + | – | – | + | P |
囊变虫属 Saccamoeba (Sacca) | ++ | ++ | +++ | + | – | + | B |
Stachyamoeba (Stach) | + | +++ | + | + | – | ++ | B |
甲变虫属 Thecamoeba (Theca) | +++ | +++ | +++ | +++ | +++ | +++ | B+P |
毛变虫属 Tricamoeba (Trica) | – | – | ++ | – | – | – | # |
简变虫属 Vahlkampfia (Vahlk) | +++ | +++ | +++ | +++ | +++ | +++ | B |
蒲变虫属 Vannella (Vanne) | + | ++ | – | – | – | ++ | B |
杆变虫属 Vexillifera (Vexil) | +++ | +++ | +++ | +++ | +++ | ++ | B |
图2 长白山不同海拔梯度裸肉足虫群落丰度(a)、Shannon-Wiener多样性指数(b)、Margalef丰富度指数(c)和Pielou均匀度指数(d)。不同字母表示在0.05水平上差异显著(n=5)。
Fig. 2 Abundance (a), Shannon-Wiener diversity index (b), Margalef richness index (c), and Pielou evenness index (d) of gymnamoebae community along an elevational gradient in Changbai Mountains. These bars represent the standard error of the mean. Different letters above the bars indicate differences between elevations at the 0.05 significance level (n=5).
图3 不同海拔裸肉足虫属聚类分析树状图(以平方欧氏距离使用最近邻元素聚类法进行系统聚类)
Fig. 3 Cluster analysis dendrogram of gynameobae genera across six elevations using nearest neighbors method based on squared Euclidean distance.
图4 裸肉足虫群落和土壤环境因子之间的典范对应分析排序图。(a)采样点和环境变量排序图; (b)裸肉足虫属与环境变量的排序图。 700 m; 1,000 m; 1,300 m; 1,600 m; 1,900 m; 2,200 m。对应的环境变量: TC: 全碳; TN: 全氮; C/N: 碳氮比; Altitude: 海拔; NH4+-N: 铵态氮。裸肉足虫属名缩写见表1。
Fig. 4 Canonical correspondence analysis biplot of gymnamoebae community along an elevational gradient in Changbai Mountains in relation to soil physicochemical factors. (a) biplot of samples and soil physicochemical factors; (b) biplot of gymnamoebae genus and soil physicochemical factors. Soil physicochemical factors: TC, Total carbon content; TN, Total nitrogen content; C/N, Carbon nitrogen ratio; WC, Water content; NH4+-N, Ammonium nitrogen. Genus abbreviations is represented by the first five letters of Latin name as listed in Table 1, e.g., Vahlk = Vahlkampfia ).
附图1 长白山部分土壤裸肉足虫照片。a-c: 甲变虫属; d, e: 简变虫属; f, g: 马氏虫属; h, i: 蒲变虫属; j: 平变虫属; k-m:棘变虫属; n: 刺变虫属。
Fig. S1 Partially selected naked amoeba picture identified from Changbai Mountains. a, Thecamoeba striata; b, Thecamoeba similis; c, floating form of Thecamoeba sp.; d, Vahlkampfia atopa; e, Vahlkampfia avara; f, Mayorella penardi; g, Mayorella cantabrigiensis; h, floating form of Vannella sp.; i, Vanella lata n. sp.; j, Platyamoeba stenopodia; k, Biomyxa sp.; l, Acrachnula sp.; m, Acanthamoeba sp.; n, Echinamoeba silvestris.; http://www.biodiversity-science.net/fileup/PDF/w2014-112-1.pdf
1 | Adl MS, Gupta VVSR (2006) Protists in soil ecology and forest nutrient cycling. Canadian Journal of Forest Research, 36, 1805-1817. |
2 | Anderson OR (2002) Laboratory and field-based studies of abundances, small-scale patchiness, and diversity of gymnamoebae in soils of varying porosity and organic content: evidence of microbiocoenoses. Journal of Eukaryotic Microbiology, 49, 17-23. |
3 | Anderson OR (2006) The density and diversity of gymnamoebae associated with terrestrial moss communities (Bryophyta: Bryopsida) in a northeastern U.S. forest. Journal of Eukaryotic Microbiology, 53, 275-279. |
4 | Ba S (巴桑), Huang X (黄香), Pu B (普布), Ma ZX (马正学) (2014) Community characteristics of sarcodines and flagellates and water environment evaluation in Lalu Wetlands. Wetland Science(湿地科学), 12, 182-191. (in Chinese with English abstract) |
5 | Bai F, Sang WG, Li GQ, Liu RG, Chen LZ, Wang K (2008) Long-term protection effects of national reserve to forest vegetation in 4 decades: biodiversity change analysis of major forest types in Changbai Mountain Nature Reserve, China. Science in China, Series C: Life Sciences, 51, 948-958. |
6 | Bass P, Bischoff PJ (2001) Seasonal variability in abundance and diversity of soil gymnamoebae along a short transect in southeastern USA. Journal of Eukaryotic Microbiology, 48, 475-479. |
7 | Bischoff PJ (2002) An analysis of the abundance, diversity and patchiness of terrestrial gymnamoebae in relation to soil depth and precipitation events following a drought in southeastern U.S.A. Acta Protozoologica, 41, 183-189. |
8 | Bonkowski M (2003) Protozoa and plant growth: the microbial loop in soil revisited. New Phytologist, 162, 617-631. |
9 | Bovee EC, Sawyer TK (1979) Marine Flora and Fauna of the Northeastern United States: Protozoa, Sarcodina, Amoebae. U.S. Government Printing Office, Washington, D.C. |
10 | Brown S, Smirnov AV (2004) Diversity of gymnamoebae in grassland soil in southern Scotland. Protistology, 3, 191-195. |
11 | Chen SF (陈素芳), Xu RL (徐润林) (2003) Advances of the studies on the soil protozoa. Acta Scientiarum Naturalium Universitatis Sunyatseni(中山大学学报(自然科学版)), 42(Suppl.), 187-194. (in Chinese with English abstract) |
12 | Clarholm M (1981) Protozoan grazing of bacteria in soil-impact and importance. Microbial Ecology, 7, 343-350. |
13 | Corno G, Jürgens K (2006) Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Applied and Environmental Microbiology, 72, 78-86. |
14 | Cortés-Pérez S, Rodríguez-Zaragoza S, Mendoza-López MR (2013) Trophic structure of amoeba communities near roots of Medicago sativa after contamination with fuel oil no. 6. Microbial Ecology, 67, 430-442. |
15 | Couâteaux MM, Darbyshire JF (1998) Functional diversity amongst soil protozoa. Applied Soil Ecology, 10, 229-237. |
16 | Cui ZD (崔振东) (1986) Ecological distribution of soil protozoa under coniferous-broad-leaved mixed forest in northern slope of Changbai Mountain. Journal of Ecology(生态学杂志), 5(2), 1-5. (in Chinese with English abstract) |
17 | Culter DW (1920) A method for estimating the number of active protozoa in the soil. The Journal of Agricultural Science, 10, 135-143. |
18 | Esteban GF, Clarke KJ, Olmo JL, Finlay BJ (2006) Soil protozoa: an intensive study of population dynamics and community structure in an upland grassland. Applied Soil Ecology, 33, 137-151. |
19 | Farrell M, Prendergast-Miller M, Jones DL, Hill PW, Condron LM (2014) Soil microbial organic nitrogen uptake is regulated by carbon availability. Soil Biology and Biochemistry, 77, 261-267. |
20 | Feng WS (冯伟松), Yu YH (余育和) (2000) Ecological studies on the soil protozoans of the Fildes Peninsula, Antarctica. Acta Hydrobiologica Sinica(水生生物学报), 24, 610-615. (in Chinese with English abstract) |
21 | Fierer N, McCain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, Knight R (2011) Microbes do not follow the elevational diversity patterns of plants and animals. Ecology, 92, 797-804. |
22 | Guo ZL (郭忠玲), Zheng JP (郑金萍), Ma YD (马元丹), Li QK (李庆康), Yu GR (于贵瑞), Han SJ (韩士杰), Fan CN (范春楠), Liu WD (刘万德) (2006) Researches on litter fall decomposition rates and model simulating of main species in various forest vegetations of Changbai Mountains, China. Acta Ecologica Sinica(生态学报), 26, 1037-1046. (in Chinese with English abstract) |
23 | Hao ZQ (郝占庆), Li BH (李步杭), Zhang J (张健), Wang XG (王绪高), Ye J (叶吉), Yao XL (姚晓琳) (2008) Broad-leaved korean pine (Pinus koraiensis) mixed forest plot in Changbaishan (CBS) of China: community composition and structure. Journal of Plant Ecology(植物生态学报), 32, 238-250. (in Chinese with English abstract) |
24 | Jiang P (姜萍), Zhao G (赵光), Ye J (叶吉), Cui GF (崔国发), Deng HB (邓红兵) (2003) Structure of forest communities on the northern slope of Changbai Mountain and its variation along elevation gradient. Chinese Journal of Ecology(生态学杂志), 22(6), 28-32. (in Chinese with English abstract) |
25 | Ma ZX (马正学), Shen HX (申海香), Kang RQ (康瑞琴), Ning YZ (宁应之), Ran LY (冉丽媛) (2009) Species diversity of aquatic sarcomastigophora in scenic spots and historic sites of Maiji Mountain. Acta Hydrobiologica Sinica(水生生物学报), 33, 468-477. (in Chinese with English abstract) |
26 | Margalef R (1972) Homage to Evelyn Hutchinson, or why is there an upper limit to diversity. Transactions of the Connecticut Academy of Arts and Sciences, 44, 211-235. |
27 | Mayzlish E, Steinberger Y (2004) Effects of chemical inhibitors on soil protozoan dynamics in a desert ecosystem. Biology and Fertility of Soils, 39, 415-421. |
28 | Mayzlish-Gati E, Steinberger Y (2007) Ameba community dynamics and diversity in a desert ecosystem. Biology and Fertility of Soils, 43, 357-366. |
29 | Ning YZ (宁应之), Shen YF (沈韫芬) (1998a) Soil protozoa in typical zones of China. I. Faunal characteristics and distribution of species. Acta Zoologica Sinica(动物学报), 44, 5-10. (in Chinese with English abstract) |
30 | Ning YZ (宁应之), Shen YF (沈韫芬) (1998b) Soil protozoa in typical zones of China. II. Ecology study. Acta Zoologica Sinica(动物学报), 44, 271-276. (in Chinese with English abstract) |
31 | Ning YZ (宁应之), Li QL (李琦路), Li XH (李晓鸿), Ma ZX (马正学), Mao JP (毛金平), Liu K (刘恺), Bai XM (白雪梅) (2007) Specific diversity of soil amoebae and flagellates in the National Nature Reserve of Baishuijiang, Gansu. Chinese Journal of Zoology(动物学杂志), 42(4), 81-88. (in Chinese with English abstract) |
32 | Page FC (1988) A New Key to Freshwater and Soil Gymn- amoebae. Freshwater biological Association, Ambleside. |
33 | Pielou EC (1966) Species diversity and pattern diversity in the study of ecological succession. Journal of Theoretical Biology, 10, 370-383. |
34 | Shannon CE, Weaver W (1949) The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL. |
35 | Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry, 57, 204-211. |
36 | Shen HX (申海香), Ma ZX (马正学), Ma SS (马尚盛), Ning YZ (宁应之), Wang J (王娟) (2009) Community characteristics of soil sarcodinid and flagellate in Taohuagou Forest Park in Xiaolong Mountains of Gansu. Chinese Journal of Ecology(生态学杂志), 28(1), 38-44. (in Chinese with English abstract) |
37 | Smirnov AV, Brown S (2004) Guide to the methods of study and identification of soil gymnamoebae. Protistology, 3, 148-190. |
38 | Wall DH, Bardgett RD, Kelly EF (2010) Biodiversity in the dark. Nature Geoscience, 3, 297-298. |
39 | Xu RL (徐润林), Sun YX (孙逸湘) (2000) Community characteristics of soil ciliated protozoan at Dapeng Peninsula. Chinese Journal of Applied Ecology(应用生态学报), 11, 428-430. (in Chinese with English abstract) |
40 | Xu WD (徐文铎), He XY (何兴元), Chen W (陈玮), Liu CF (刘常富) (2004) Characteristics and succession rules of vegetation types in Changbai Mountain. Chinese Journal of Ecology(生态学杂志), 23(5), 162-174. (in Chinese with English abstract) |
41 | Yu DY (于德永), Hao ZQ (郝占庆), Ji LZ (姬兰柱), Li Y (李扬), Xiong ZP (熊在平), Ye J (叶吉) (2003) Dissimilarity of plant communities with changes in altitudes on the northern slope of Changbai Mountain. Chinese Journal of Ecology(生态学杂志), 22(5), 1-5. (in Chinese with English abstract) |
42 | Zou T (邹涛), Shen HX (申海香), Ma ZX (马正学), Ning YZ (宁应之) (2009) Community characteristics of soil sarco- mastigophora in the Mayan forest region of the National Nature Reserve of Xiaolong Mountains. Zoological Research(动物学研究), 30, 571-577. (in Chinese with English abstract) |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 王腾, 李纯厚, 王广华, 赵金发, 石娟, 谢宏宇, 刘永, 刘玉. 西沙群岛七连屿珊瑚礁鱼类的物种组成与演替[J]. 生物多样性, 2024, 32(6): 23481-. |
[5] | 宋芬, 周芸芸, 黄太福, 杨存存, 于桂清, 田书荣, 向左甫. 基于红外相机技术的林麝行为PAE编码与多样性[J]. 生物多样性, 2024, 32(6): 24042-. |
[6] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[7] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[8] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[9] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[10] | 姚祝, 魏雪, 马金豪, 任晓, 王玉英, 胡雷, 吴鹏飞. 气候暖湿化对高寒草甸土壤线虫群落的短期影响[J]. 生物多样性, 2024, 32(5): 23483-. |
[11] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[12] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[13] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[14] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[15] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn