生物多样性 ›› 2015, Vol. 23 ›› Issue (5): 649-657. DOI: 10.17520/biods.2015032
所属专题: 森林动态监测样地专题; 土壤生物与土壤健康
赵爱花1,2, 杜晓军1,*(), 臧婧1, 张守仁1, 焦志华3
收稿日期:
2015-02-10
接受日期:
2015-02-10
出版日期:
2015-09-20
发布日期:
2015-10-12
通讯作者:
杜晓军
基金资助:
Aihua Zhao1,2, Xiaojun Du1,*(), Jing Zang1, Shouren Zhang1, Zhihua Jiao3
Received:
2015-02-10
Accepted:
2015-02-10
Online:
2015-09-20
Published:
2015-10-12
Contact:
Du Xiaojun
摘要:
土壤微生物在森林生态系统中起着重要作用。高通量测序方法的出现为进一步认识土壤微生物提供了契机。本文利用Illumina Miseq高通量测序技术对宝天曼森林土壤的细菌多样性进行了初步研究。结果显示: 在31个采样点内, 随着采样点增加, 检测出不同分类水平的土壤细菌类群也在增多, 当采样点达到31个时, 检测出的土壤细菌类群达到45门163纲319目495科785属和42,632个OTU; 31个土壤样品中所检测出的细菌类群平均有34.2门114.7纲215.2目323.7科446.6属5,924.7个OTU, 其中门、纲、目分类水平上的优势类群(所占比例)分别为变形菌门(Proteobacteria)(38.30%)、α-变形菌纲(α-Proteobacteria)(18.08%)、根瘤菌目(Rhizobiales)(10.62%)。这些初步研究结果表明在一定程度上宝天曼森林土壤有较高的细菌多样性水平, 为进一步认识森林土壤细菌多样性与植物多样性关系等奠定了基础。
赵爱花, 杜晓军, 臧婧, 张守仁, 焦志华 (2015) 宝天曼落叶阔叶林土壤细菌多样性. 生物多样性, 23, 649-657. DOI: 10.17520/biods.2015032.
Aihua Zhao, Xiaojun Du, Jing Zang, Shouren Zhang, Zhihua Jiao (2015) Soil bacterial diversity in the Baotianman deciduous broad-leaved forest. Biodiversity Science, 23, 649-657. DOI: 10.17520/biods.2015032.
样品编号 Sample identity | 原始序列数 Original sequence number | 原始OTU数 Original OTU number | 标准化序列数 Even sequence number | 标准化后OTU数 Even OTU number |
---|---|---|---|---|
0101 | 37,569 | 7,148 | 36,000 | 6,979 |
0105 | 39,949 | 5,671 | 36,000 | 5,320 |
0203 | 39,698 | 5,661 | 36,000 | 5,327 |
0218 | 39,337 | 5,579 | 36,000 | 5,320 |
0306 | 39,281 | 6,396 | 36,000 | 6,097 |
0318 | 39,760 | 6,263 | 36,000 | 5,906 |
0411 | 39,756 | 6,008 | 36,000 | 5,672 |
0606 | 39,636 | 6,642 | 36,000 | 6,286 |
0701 | 39,945 | 6,059 | 36,000 | 5,694 |
0819 | 39,864 | 6,324 | 36,000 | 5,933 |
0913 | 39,827 | 5,275 | 36,000 | 4,971 |
0919 | 39,720 | 5,958 | 36,000 | 5,645 |
1002 | 39,844 | 5,486 | 36,000 | 5,175 |
1006 | 39,551 | 6,658 | 36,000 | 6,322 |
1018 | 39,711 | 5,526 | 36,000 | 5,184 |
1104 | 39,746 | 6,380 | 36,000 | 6,036 |
1210 | 39,569 | 6,255 | 36,000 | 5,933 |
1212 | 39,659 | 6,016 | 36,000 | 5,691 |
1318 | 39,809 | 6,706 | 36,000 | 6,326 |
1405 | 39,825 | 5,910 | 36,000 | 5,547 |
1510 | 39,379 | 5,650 | 36,000 | 5,378 |
1512 | 37,588 | 5,555 | 36,000 | 5,413 |
1607 | 39,739 | 6,338 | 36,000 | 5,981 |
1615 | 39,212 | 6,246 | 36,000 | 5,978 |
1618 | 39,578 | 6,552 | 36,000 | 6,200 |
1704 | 39,495 | 6,405 | 36,000 | 6,024 |
1718 | 39,130 | 6,910 | 36,000 | 6,564 |
1808 | 39,739 | 6,833 | 36,000 | 6,498 |
1814 | 39,866 | 6,850 | 36,000 | 6,501 |
1902 | 39,155 | 7,283 | 36,000 | 6,920 |
1913 | 38,882 | 7,145 | 36,000 | 6,844 |
表1 样品序列数及OTU数
Table 1 Sequence numbers and OTU numbers of individual samples
样品编号 Sample identity | 原始序列数 Original sequence number | 原始OTU数 Original OTU number | 标准化序列数 Even sequence number | 标准化后OTU数 Even OTU number |
---|---|---|---|---|
0101 | 37,569 | 7,148 | 36,000 | 6,979 |
0105 | 39,949 | 5,671 | 36,000 | 5,320 |
0203 | 39,698 | 5,661 | 36,000 | 5,327 |
0218 | 39,337 | 5,579 | 36,000 | 5,320 |
0306 | 39,281 | 6,396 | 36,000 | 6,097 |
0318 | 39,760 | 6,263 | 36,000 | 5,906 |
0411 | 39,756 | 6,008 | 36,000 | 5,672 |
0606 | 39,636 | 6,642 | 36,000 | 6,286 |
0701 | 39,945 | 6,059 | 36,000 | 5,694 |
0819 | 39,864 | 6,324 | 36,000 | 5,933 |
0913 | 39,827 | 5,275 | 36,000 | 4,971 |
0919 | 39,720 | 5,958 | 36,000 | 5,645 |
1002 | 39,844 | 5,486 | 36,000 | 5,175 |
1006 | 39,551 | 6,658 | 36,000 | 6,322 |
1018 | 39,711 | 5,526 | 36,000 | 5,184 |
1104 | 39,746 | 6,380 | 36,000 | 6,036 |
1210 | 39,569 | 6,255 | 36,000 | 5,933 |
1212 | 39,659 | 6,016 | 36,000 | 5,691 |
1318 | 39,809 | 6,706 | 36,000 | 6,326 |
1405 | 39,825 | 5,910 | 36,000 | 5,547 |
1510 | 39,379 | 5,650 | 36,000 | 5,378 |
1512 | 37,588 | 5,555 | 36,000 | 5,413 |
1607 | 39,739 | 6,338 | 36,000 | 5,981 |
1615 | 39,212 | 6,246 | 36,000 | 5,978 |
1618 | 39,578 | 6,552 | 36,000 | 6,200 |
1704 | 39,495 | 6,405 | 36,000 | 6,024 |
1718 | 39,130 | 6,910 | 36,000 | 6,564 |
1808 | 39,739 | 6,833 | 36,000 | 6,498 |
1814 | 39,866 | 6,850 | 36,000 | 6,501 |
1902 | 39,155 | 7,283 | 36,000 | 6,920 |
1913 | 38,882 | 7,145 | 36,000 | 6,844 |
图2 宝天曼森林动态监测样地31个土壤样品中检测到的不同分类水平上的细菌数量
Fig. 2 The quantity of bacteria at different taxonomic levels in the 31 soil samples in the Baotianman Forest Dynamics Plot
图3 宝天曼森林动态监测样地31个土壤样品中检测到的不同分类水平上细菌类群数随采样点数增加的稀疏曲线
Fig. 3 Rarefaction curves of the observed bacterial quantity at different taxonomic levels varying with number of samples in the Baotianman Forest Dynamics Plot
[1] | Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2010) Examining the global distribution of dominant archaeal populations in soil.The International Society for Microbial Ecology, 5, 908-917. |
[2] | Cai CQ (蔡晨秋), Tang L (唐丽), Long CL (龙春林) (2011) Soil microbial diversity and its research methods.Journal of Anhui Agricultural Science(安徽农业科学), 39, 17274-17276, 17278. (in Chinese with English abstract) |
[3] | Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data.Nature Methods, 7, 335-336. |
[4] | Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences,USA, 108(S1), 4516-4522. |
[5] | Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina Hiseq and Miseq platforms.The International Society for Microbial Ecology, 6, 1621-1624. |
[6] | Chakravorty S, Helb D, Burday M, Connell N, Allan D (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbiological Methods, 69, 330-339. |
[7] | Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis.Nucleic Acids Research, 42(Datbase issue), D633-D642. |
[8] | Delmont TO, Prestat E, Keegan KP, Faubladier M, Robe P, Clark IM, Pelletier E, Hirsch PR, Meyer F, Gilbert JA, Le Paslier D, Simonet P, Vogel TM (2012) Structure, fluctuation and magnitude of a natural grassland soil metagenome. The International Society for Microbial Ecology, 6, 1677-1687. |
[9] | Fernando WJD, Li R (2012) Opening the black box: understanding the influence of cropping systems and plant communities on bacterial and fungal population dynamics. Ceylon Journal of Science (Biology Science), 41, 89-110. |
[10] | Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities.Proceedings of the National Academy of Sciences, USA, 103, 626-631. |
[11] | Fierer N, Leff JW, Adams BJ, Nielsend UN, Thomas BS, Lauber CL, Sarah O, Gilberte JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.Proceedings of the National Academy of Sciences, USA, 109, 21390-21395. |
[12] | Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils.Environmental Microbiology, 13, 1642-1654. |
[13] | Gu FX (顾峰雪), Wen QK (文启凯), Pan BR (潘伯荣), Yang YS (杨玉锁) (2000) A preliminary study on soil microorganisms of artificial vegetation in the center of Taklimakan Desert.Biodiversity Science(生物多样性), 8, 297-303. (in Chinese with English abstract) |
[14] | Guo LD (郭良栋) (2012) Progress of microbial species diversity research in China.Biodiversity Science(生物多样性), 20, 572-580. (in Chinese with English abstract) |
[15] | Hackl E, Pfeffer M, Donat C, Bachmann G, Zechmeister-Boltenstern S (2005) Composition of the microbial communities in the mineral soil under different types of natural forest.Soil Biology and Biochemistry, 37, 661-671. |
[16] | Hackl E, Zechmeister-Boltenstern S, Bodrossy L, Sessitsch A (2004) Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils.Applied Environmental Microbiology, 70, 5057-5065. |
[17] | He ZL, van Nostrand JD, Deng Y, Zhou JZ (2011) Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities.Frontiers of Environmental Science and Engineering in China, 5, 1-20. |
[18] | Jiang HY (姜海燕), Yan W (闫伟), Li XT (李晓彤), Yang XL (杨秀丽), Lv HL (吕洪丽) (2010) The diversity of soil microorganism under different vegetations of Larix gmelinii forest in Great Xing’an Mountains.Microbiology China(微生物学通报), 37, 186-190. (in Chinese with English abstract) |
[19] | Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses.The International Society for Microbial Ecology, 3, 442-453. |
[20] | Lauber CL, Micah H, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale.Applied and Environmental Microbiology, 75, 5111-5120. |
[21] | Li H, Ye D, Wang X, Settles ML, Wang J, Hao Z, Zhou L, Dong P, Jiang Y, Ma ZS (Sam) (2014) Soil bacterial communities of different natural forest types in Northeast China. Plant Soil, 383, 203-216. |
[22] | Liu YD (刘雨迪), Chen XY (陈小云), Liu MQ (刘满强), Qin JT (秦江涛), Li HX (李辉信), Hu F (胡锋) (2013) Changes in soil microbial properties and nematode assemblage over time during rice cultivation. Biodiversity Science(生物多样性), 21, 334-342. (in Chinese with English abstract) |
[23] | Macrae A (2000) The use of 16S rDNA methods in soil microbial ecology.Brazilian Journal of Microbiology, 31, 77-82. |
[24] | Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies.Bioinformatics, 27, 2957-2963. |
[25] | Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schöning I, Schrumpf M, Daniel R (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils.PLoS ONE, 6, e17000. |
[26] | Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity.The International Society for Microbial Ecology, 1, 283-290. |
[27] | Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. The International Society for Microbial Ecology, 4, 1340-1351. |
[28] | Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain.Soil Biology and Biochemistry, 57, 204-211. |
[29] | Shi P (时鹏), Gao Q (高强), Wang SP (王淑平), Zhang Y (张妍) (2010) Effects of continuous cropping of corn and fertilization on soil microbial community functional diversity.Acta Ecologica Sinica(生态学报), 30, 6173-6182. (in Chinese with English abstract) |
[30] | Song CS (宋朝枢) (1994) Scientific Investigation in the Baotianman Nature Reserve (宝天曼自然保护区科学考察集). China Forestry Publishing House, Beijing. (in Chinese) |
[31] | Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology.International Journal of Systematic Bacteriology, 44, 846-849. |
[32] | Sun X (孙欣), Gao Y (高莹), Yang YF (杨云锋) (2013) Recent advancement in microbial environmental research using metagenomics tools.Biodiversity Science(生物多样性), 21, 393-400. (in Chinese with English abstract) |
[33] | Teng QH (滕齐辉), Cao H (曹慧), Cui ZL (崔中利), Wang Y (王英), Sun B (孙波), Hao HT (郝红涛), Li SP (李顺鹏) (2006) PCR-RFLP analysis of bacterial 16S rDNA from a typical garden soil in Taihu region.Biodiversity Science(生物多样性), 14, 345-351. (in Chinese with English abstract) |
[34] | Tiedje JM, Asuming-Brempong S, Nüsslein K, Marsh TL, Flynn SJ (1999) Opening the black box of soil microbial diversity.Applied Soil Ecology, 13, 109-122. |
[35] | van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems.Ecology Letters, 11, 296-310. |
[36] | Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics.PLoS Computational Biology, 6, e1000667. |
[37] | Wu ZY (吴则焰), Lin WX (林文雄), Chen ZF (陈志芳), Fang CX (方长旬), Zhang ZX (张志兴), Wu LK (吴林坤), Zhou MM (周明明), Chen T (陈婷) (2013) Variations of soil microbial community diversity along an elevational gradient in mid-subtropical forest.Chinese Journal of Plant Ecology(植物生态学报), 37, 397-406. (in Chinese with English abstract) |
[38] | Yang GP (杨官品), Nan L (男兰), Jia HB (贾海波), Zhu YH (朱艳红), Liu YJ (刘英杰), Zhang K (张凯) (2000) Bacterial genetic diversity in soils and their correlation with vegetation.Acta Genetica Sinica(遗传学报), 27, 278-282. (in Chinese with English abstract) |
[39] | Yuan YL, Si GC, Wang J, Luo TX, Zhang GX (2014) Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau.FEMS Microbiology Ecology, 87, 121-132. |
[40] | Zhang JP (张建萍), Dong NY (董乃源), Yu HB (余浩滨), Zhou YJ (周勇军), Lu YL (陆永良), Geng RM (耿锐梅), Yu LQ (余柳青) (2008) Bacteria diversity in paddy field soil by 16S rDNA-RFLP analysis in Ningxia.Biodiversity Science(生物多样性), 16, 586-592. (in Chinese with English abstract) |
[41] | Zhang YG, Cong J, Lu H, Li GL, Qu YY, Su XJ, Zhou JZ, Li DQ (2014a) Community structure and elevational diversity patterns of soil Acidobacteria.Journal of Environmental Sciences, 26, 1717-1724. |
[42] | Zhang YG, Cong J, Lu H, Yang CY, Yang YF, Zhou JZ, Li DQ (2014b) An integrated study to analyze soil microbial community structure and metabolic potential in two forest types.PLoS ONE, 9, e93773. |
[43] | Zhao XL (赵先丽), Zhou GS (周广胜), Zhou L (周莉), Lv GH (吕国红), Jia QY (贾庆宇), Xie YB (谢艳兵) (2007) A preliminary study on soil microorganism in Panjin reed wetland.Journal of Meteorology and Environment(气象与环境学报), 23, 30-33. (in Chinese with English abstract) |
[1] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[2] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[3] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[4] | 罗正明, 刘晋仙, 张变华, 周妍英, 郝爱华, 杨凯, 柴宝峰. 不同退化阶段亚高山草甸土壤原生生物群落多样性特征及驱动因素[J]. 生物多样性, 2023, 31(8): 23136-. |
[5] | 李发扬, 李滢钰, 蒋文妮, 刘曙光, 霍超, 孙巧奇, 邹红菲. 火后恢复时间影响大兴安岭寒温带森林内部与边缘鸟类多样性[J]. 生物多样性, 2023, 31(7): 22665-. |
[6] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[7] | 毛莹儿, 周秀梅, 王楠, 李秀秀, 尤育克, 白尚斌. 毛竹扩张对杉木林土壤细菌群落的影响[J]. 生物多样性, 2023, 31(6): 22659-. |
[8] | 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响[J]. 生物多样性, 2023, 31(6): 22518-. |
[9] | 赵坤明, 陈圣宾, 杨锡福. 基于红外相机技术调查四川都江堰破碎化森林鸟兽多样性及优势种活动节律[J]. 生物多样性, 2023, 31(6): 22529-. |
[10] | 陈星, 涂淑雯, 戴尊, 高爽, 王幼芳, 邢诗晨, 魏博嘉, 唐录艳, 师瑞萍, 王晓蕊, 刘永英, 赵东平, 唐霞, 姚雪, 赵明水, 吴晗星, 祁祥斌, 张健, 李敏, 王健. 浙江天目山国家级自然保护区苔藓植物多样性[J]. 生物多样性, 2023, 31(4): 22649-. |
[11] | 薛玉洁, 程安鹏, 李珊, 刘晓娟, 李景文. 亚热带森林中环境和物种多样性对灌木存活的影响[J]. 生物多样性, 2023, 31(3): 22443-. |
[12] | 沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云. 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异[J]. 生物多样性, 2023, 31(3): 22436-. |
[13] | 赵雯, 王丹丹, 热依拉·木民, 黄开钏, 刘顺, 崔宝凯. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 2023, 31(2): 22258-. |
[14] | 杨预展, 余建平, 钱海源, 陈小南, 陈声文, 袁志林. 钱江源国家公园体制试点区水稻田土壤微生物群落的格局及其驱动机制[J]. 生物多样性, 2023, 31(2): 22392-. |
[15] | 唐楚飞, 葛成, 曹烨, 曹弘毅, 宋晓晓, 廖怀建. 城市森林不同林分类型的昆虫多样性: 以南京紫金山南麓为例[J]. 生物多样性, 2023, 31(2): 22357-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn