生物多样性 ›› 2015, Vol. 23 ›› Issue (5): 649-657. DOI: 10.17520/biods.2015032 cstr: 32101.14.biods.2015032
所属专题: 森林动态监测样地专题; 土壤生物与土壤健康
赵爱花1,2, 杜晓军1,*(), 臧婧1, 张守仁1, 焦志华3
收稿日期:
2015-02-10
接受日期:
2015-02-10
出版日期:
2015-09-20
发布日期:
2015-10-12
通讯作者:
杜晓军
基金资助:
Aihua Zhao1,2, Xiaojun Du1,*(), Jing Zang1, Shouren Zhang1, Zhihua Jiao3
Received:
2015-02-10
Accepted:
2015-02-10
Online:
2015-09-20
Published:
2015-10-12
Contact:
Du Xiaojun
摘要:
土壤微生物在森林生态系统中起着重要作用。高通量测序方法的出现为进一步认识土壤微生物提供了契机。本文利用Illumina Miseq高通量测序技术对宝天曼森林土壤的细菌多样性进行了初步研究。结果显示: 在31个采样点内, 随着采样点增加, 检测出不同分类水平的土壤细菌类群也在增多, 当采样点达到31个时, 检测出的土壤细菌类群达到45门163纲319目495科785属和42,632个OTU; 31个土壤样品中所检测出的细菌类群平均有34.2门114.7纲215.2目323.7科446.6属5,924.7个OTU, 其中门、纲、目分类水平上的优势类群(所占比例)分别为变形菌门(Proteobacteria)(38.30%)、α-变形菌纲(α-Proteobacteria)(18.08%)、根瘤菌目(Rhizobiales)(10.62%)。这些初步研究结果表明在一定程度上宝天曼森林土壤有较高的细菌多样性水平, 为进一步认识森林土壤细菌多样性与植物多样性关系等奠定了基础。
赵爱花, 杜晓军, 臧婧, 张守仁, 焦志华 (2015) 宝天曼落叶阔叶林土壤细菌多样性. 生物多样性, 23, 649-657. DOI: 10.17520/biods.2015032.
Aihua Zhao, Xiaojun Du, Jing Zang, Shouren Zhang, Zhihua Jiao (2015) Soil bacterial diversity in the Baotianman deciduous broad-leaved forest. Biodiversity Science, 23, 649-657. DOI: 10.17520/biods.2015032.
样品编号 Sample identity | 原始序列数 Original sequence number | 原始OTU数 Original OTU number | 标准化序列数 Even sequence number | 标准化后OTU数 Even OTU number |
---|---|---|---|---|
0101 | 37,569 | 7,148 | 36,000 | 6,979 |
0105 | 39,949 | 5,671 | 36,000 | 5,320 |
0203 | 39,698 | 5,661 | 36,000 | 5,327 |
0218 | 39,337 | 5,579 | 36,000 | 5,320 |
0306 | 39,281 | 6,396 | 36,000 | 6,097 |
0318 | 39,760 | 6,263 | 36,000 | 5,906 |
0411 | 39,756 | 6,008 | 36,000 | 5,672 |
0606 | 39,636 | 6,642 | 36,000 | 6,286 |
0701 | 39,945 | 6,059 | 36,000 | 5,694 |
0819 | 39,864 | 6,324 | 36,000 | 5,933 |
0913 | 39,827 | 5,275 | 36,000 | 4,971 |
0919 | 39,720 | 5,958 | 36,000 | 5,645 |
1002 | 39,844 | 5,486 | 36,000 | 5,175 |
1006 | 39,551 | 6,658 | 36,000 | 6,322 |
1018 | 39,711 | 5,526 | 36,000 | 5,184 |
1104 | 39,746 | 6,380 | 36,000 | 6,036 |
1210 | 39,569 | 6,255 | 36,000 | 5,933 |
1212 | 39,659 | 6,016 | 36,000 | 5,691 |
1318 | 39,809 | 6,706 | 36,000 | 6,326 |
1405 | 39,825 | 5,910 | 36,000 | 5,547 |
1510 | 39,379 | 5,650 | 36,000 | 5,378 |
1512 | 37,588 | 5,555 | 36,000 | 5,413 |
1607 | 39,739 | 6,338 | 36,000 | 5,981 |
1615 | 39,212 | 6,246 | 36,000 | 5,978 |
1618 | 39,578 | 6,552 | 36,000 | 6,200 |
1704 | 39,495 | 6,405 | 36,000 | 6,024 |
1718 | 39,130 | 6,910 | 36,000 | 6,564 |
1808 | 39,739 | 6,833 | 36,000 | 6,498 |
1814 | 39,866 | 6,850 | 36,000 | 6,501 |
1902 | 39,155 | 7,283 | 36,000 | 6,920 |
1913 | 38,882 | 7,145 | 36,000 | 6,844 |
表1 样品序列数及OTU数
Table 1 Sequence numbers and OTU numbers of individual samples
样品编号 Sample identity | 原始序列数 Original sequence number | 原始OTU数 Original OTU number | 标准化序列数 Even sequence number | 标准化后OTU数 Even OTU number |
---|---|---|---|---|
0101 | 37,569 | 7,148 | 36,000 | 6,979 |
0105 | 39,949 | 5,671 | 36,000 | 5,320 |
0203 | 39,698 | 5,661 | 36,000 | 5,327 |
0218 | 39,337 | 5,579 | 36,000 | 5,320 |
0306 | 39,281 | 6,396 | 36,000 | 6,097 |
0318 | 39,760 | 6,263 | 36,000 | 5,906 |
0411 | 39,756 | 6,008 | 36,000 | 5,672 |
0606 | 39,636 | 6,642 | 36,000 | 6,286 |
0701 | 39,945 | 6,059 | 36,000 | 5,694 |
0819 | 39,864 | 6,324 | 36,000 | 5,933 |
0913 | 39,827 | 5,275 | 36,000 | 4,971 |
0919 | 39,720 | 5,958 | 36,000 | 5,645 |
1002 | 39,844 | 5,486 | 36,000 | 5,175 |
1006 | 39,551 | 6,658 | 36,000 | 6,322 |
1018 | 39,711 | 5,526 | 36,000 | 5,184 |
1104 | 39,746 | 6,380 | 36,000 | 6,036 |
1210 | 39,569 | 6,255 | 36,000 | 5,933 |
1212 | 39,659 | 6,016 | 36,000 | 5,691 |
1318 | 39,809 | 6,706 | 36,000 | 6,326 |
1405 | 39,825 | 5,910 | 36,000 | 5,547 |
1510 | 39,379 | 5,650 | 36,000 | 5,378 |
1512 | 37,588 | 5,555 | 36,000 | 5,413 |
1607 | 39,739 | 6,338 | 36,000 | 5,981 |
1615 | 39,212 | 6,246 | 36,000 | 5,978 |
1618 | 39,578 | 6,552 | 36,000 | 6,200 |
1704 | 39,495 | 6,405 | 36,000 | 6,024 |
1718 | 39,130 | 6,910 | 36,000 | 6,564 |
1808 | 39,739 | 6,833 | 36,000 | 6,498 |
1814 | 39,866 | 6,850 | 36,000 | 6,501 |
1902 | 39,155 | 7,283 | 36,000 | 6,920 |
1913 | 38,882 | 7,145 | 36,000 | 6,844 |
图2 宝天曼森林动态监测样地31个土壤样品中检测到的不同分类水平上的细菌数量
Fig. 2 The quantity of bacteria at different taxonomic levels in the 31 soil samples in the Baotianman Forest Dynamics Plot
图3 宝天曼森林动态监测样地31个土壤样品中检测到的不同分类水平上细菌类群数随采样点数增加的稀疏曲线
Fig. 3 Rarefaction curves of the observed bacterial quantity at different taxonomic levels varying with number of samples in the Baotianman Forest Dynamics Plot
[1] | Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2010) Examining the global distribution of dominant archaeal populations in soil.The International Society for Microbial Ecology, 5, 908-917. |
[2] | Cai CQ (蔡晨秋), Tang L (唐丽), Long CL (龙春林) (2011) Soil microbial diversity and its research methods.Journal of Anhui Agricultural Science(安徽农业科学), 39, 17274-17276, 17278. (in Chinese with English abstract) |
[3] | Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data.Nature Methods, 7, 335-336. |
[4] | Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences,USA, 108(S1), 4516-4522. |
[5] | Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina Hiseq and Miseq platforms.The International Society for Microbial Ecology, 6, 1621-1624. |
[6] | Chakravorty S, Helb D, Burday M, Connell N, Allan D (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbiological Methods, 69, 330-339. |
[7] | Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis.Nucleic Acids Research, 42(Datbase issue), D633-D642. |
[8] | Delmont TO, Prestat E, Keegan KP, Faubladier M, Robe P, Clark IM, Pelletier E, Hirsch PR, Meyer F, Gilbert JA, Le Paslier D, Simonet P, Vogel TM (2012) Structure, fluctuation and magnitude of a natural grassland soil metagenome. The International Society for Microbial Ecology, 6, 1677-1687. |
[9] | Fernando WJD, Li R (2012) Opening the black box: understanding the influence of cropping systems and plant communities on bacterial and fungal population dynamics. Ceylon Journal of Science (Biology Science), 41, 89-110. |
[10] | Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities.Proceedings of the National Academy of Sciences, USA, 103, 626-631. |
[11] | Fierer N, Leff JW, Adams BJ, Nielsend UN, Thomas BS, Lauber CL, Sarah O, Gilberte JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.Proceedings of the National Academy of Sciences, USA, 109, 21390-21395. |
[12] | Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils.Environmental Microbiology, 13, 1642-1654. |
[13] | Gu FX (顾峰雪), Wen QK (文启凯), Pan BR (潘伯荣), Yang YS (杨玉锁) (2000) A preliminary study on soil microorganisms of artificial vegetation in the center of Taklimakan Desert.Biodiversity Science(生物多样性), 8, 297-303. (in Chinese with English abstract) |
[14] | Guo LD (郭良栋) (2012) Progress of microbial species diversity research in China.Biodiversity Science(生物多样性), 20, 572-580. (in Chinese with English abstract) |
[15] | Hackl E, Pfeffer M, Donat C, Bachmann G, Zechmeister-Boltenstern S (2005) Composition of the microbial communities in the mineral soil under different types of natural forest.Soil Biology and Biochemistry, 37, 661-671. |
[16] | Hackl E, Zechmeister-Boltenstern S, Bodrossy L, Sessitsch A (2004) Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils.Applied Environmental Microbiology, 70, 5057-5065. |
[17] | He ZL, van Nostrand JD, Deng Y, Zhou JZ (2011) Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities.Frontiers of Environmental Science and Engineering in China, 5, 1-20. |
[18] | Jiang HY (姜海燕), Yan W (闫伟), Li XT (李晓彤), Yang XL (杨秀丽), Lv HL (吕洪丽) (2010) The diversity of soil microorganism under different vegetations of Larix gmelinii forest in Great Xing’an Mountains.Microbiology China(微生物学通报), 37, 186-190. (in Chinese with English abstract) |
[19] | Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses.The International Society for Microbial Ecology, 3, 442-453. |
[20] | Lauber CL, Micah H, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale.Applied and Environmental Microbiology, 75, 5111-5120. |
[21] | Li H, Ye D, Wang X, Settles ML, Wang J, Hao Z, Zhou L, Dong P, Jiang Y, Ma ZS (Sam) (2014) Soil bacterial communities of different natural forest types in Northeast China. Plant Soil, 383, 203-216. |
[22] | Liu YD (刘雨迪), Chen XY (陈小云), Liu MQ (刘满强), Qin JT (秦江涛), Li HX (李辉信), Hu F (胡锋) (2013) Changes in soil microbial properties and nematode assemblage over time during rice cultivation. Biodiversity Science(生物多样性), 21, 334-342. (in Chinese with English abstract) |
[23] | Macrae A (2000) The use of 16S rDNA methods in soil microbial ecology.Brazilian Journal of Microbiology, 31, 77-82. |
[24] | Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies.Bioinformatics, 27, 2957-2963. |
[25] | Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schöning I, Schrumpf M, Daniel R (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils.PLoS ONE, 6, e17000. |
[26] | Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity.The International Society for Microbial Ecology, 1, 283-290. |
[27] | Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. The International Society for Microbial Ecology, 4, 1340-1351. |
[28] | Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain.Soil Biology and Biochemistry, 57, 204-211. |
[29] | Shi P (时鹏), Gao Q (高强), Wang SP (王淑平), Zhang Y (张妍) (2010) Effects of continuous cropping of corn and fertilization on soil microbial community functional diversity.Acta Ecologica Sinica(生态学报), 30, 6173-6182. (in Chinese with English abstract) |
[30] | Song CS (宋朝枢) (1994) Scientific Investigation in the Baotianman Nature Reserve (宝天曼自然保护区科学考察集). China Forestry Publishing House, Beijing. (in Chinese) |
[31] | Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology.International Journal of Systematic Bacteriology, 44, 846-849. |
[32] | Sun X (孙欣), Gao Y (高莹), Yang YF (杨云锋) (2013) Recent advancement in microbial environmental research using metagenomics tools.Biodiversity Science(生物多样性), 21, 393-400. (in Chinese with English abstract) |
[33] | Teng QH (滕齐辉), Cao H (曹慧), Cui ZL (崔中利), Wang Y (王英), Sun B (孙波), Hao HT (郝红涛), Li SP (李顺鹏) (2006) PCR-RFLP analysis of bacterial 16S rDNA from a typical garden soil in Taihu region.Biodiversity Science(生物多样性), 14, 345-351. (in Chinese with English abstract) |
[34] | Tiedje JM, Asuming-Brempong S, Nüsslein K, Marsh TL, Flynn SJ (1999) Opening the black box of soil microbial diversity.Applied Soil Ecology, 13, 109-122. |
[35] | van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems.Ecology Letters, 11, 296-310. |
[36] | Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics.PLoS Computational Biology, 6, e1000667. |
[37] | Wu ZY (吴则焰), Lin WX (林文雄), Chen ZF (陈志芳), Fang CX (方长旬), Zhang ZX (张志兴), Wu LK (吴林坤), Zhou MM (周明明), Chen T (陈婷) (2013) Variations of soil microbial community diversity along an elevational gradient in mid-subtropical forest.Chinese Journal of Plant Ecology(植物生态学报), 37, 397-406. (in Chinese with English abstract) |
[38] | Yang GP (杨官品), Nan L (男兰), Jia HB (贾海波), Zhu YH (朱艳红), Liu YJ (刘英杰), Zhang K (张凯) (2000) Bacterial genetic diversity in soils and their correlation with vegetation.Acta Genetica Sinica(遗传学报), 27, 278-282. (in Chinese with English abstract) |
[39] | Yuan YL, Si GC, Wang J, Luo TX, Zhang GX (2014) Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau.FEMS Microbiology Ecology, 87, 121-132. |
[40] | Zhang JP (张建萍), Dong NY (董乃源), Yu HB (余浩滨), Zhou YJ (周勇军), Lu YL (陆永良), Geng RM (耿锐梅), Yu LQ (余柳青) (2008) Bacteria diversity in paddy field soil by 16S rDNA-RFLP analysis in Ningxia.Biodiversity Science(生物多样性), 16, 586-592. (in Chinese with English abstract) |
[41] | Zhang YG, Cong J, Lu H, Li GL, Qu YY, Su XJ, Zhou JZ, Li DQ (2014a) Community structure and elevational diversity patterns of soil Acidobacteria.Journal of Environmental Sciences, 26, 1717-1724. |
[42] | Zhang YG, Cong J, Lu H, Yang CY, Yang YF, Zhou JZ, Li DQ (2014b) An integrated study to analyze soil microbial community structure and metabolic potential in two forest types.PLoS ONE, 9, e93773. |
[43] | Zhao XL (赵先丽), Zhou GS (周广胜), Zhou L (周莉), Lv GH (吕国红), Jia QY (贾庆宇), Xie YB (谢艳兵) (2007) A preliminary study on soil microorganism in Panjin reed wetland.Journal of Meteorology and Environment(气象与环境学报), 23, 30-33. (in Chinese with English abstract) |
[1] | 吴晓晴 张美惠 葛苏婷 李漫淑 宋坤 沈国春 达良俊 张健. 上海近自然林重建过程中木本植物物种多样性与地上生物量的时空动态——以闵行区生态岛为例[J]. 生物多样性, 2025, 33(5): 24444-. |
[2] | 罗敏, 杨永川, 靳程, 周礼华, 龙宇潇. 城市森林兽类组成特征及人类活动的影响——以重庆中心城区为例[J]. 生物多样性, 2025, 33(5): 24402-. |
[3] | 刘咏华, 童光蓉, 余航远, 王宁宁, 任海保, 陈磊, 马克平, 米湘成. 钱江源-百山祖国家公园候选区钱江源园区冠层三维结构及光谱特征对人为干扰的响应[J]. 生物多样性, 2025, 33(4): 24174-. |
[4] | 宋威, 程才, 王嘉伟, 吴纪华. 土壤微生物对植物多样性–生态系统功能关系的调控作用[J]. 生物多样性, 2025, 33(4): 24579-. |
[5] | 李艳朋, 陈洁, 卢春洋, 许涵. 海南尖峰岭热带山地雨林64 ha次生林动态监测样地群落结构特征[J]. 生物多样性, 2025, 33(2): 24445-. |
[6] | 何欣怡, 潘玉梅, 祝燕, 陈佳仪, 张思榕, 张乃莉. 暖温带森林外生菌根树种优势和植物多样性对土壤氮素周转的影响[J]. 生物多样性, 2024, 32(9): 24173-. |
[7] | 靳川, 张子嘉, 底凯, 张卫荣, 乔栋, 程思源, 胡中民. 海南热带雨林植物光合荧光气体交换和叶功能性状数据集[J]. 生物多样性, 2024, 32(9): 24139-. |
[8] | 李艳朋, 盘李军, 陈洁, 许涵, 杨立新. 亚热带人工混交林叶功能性状对森林演替的响应规律及影响因素[J]. 生物多样性, 2024, 32(7): 24049-. |
[9] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[10] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[11] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[12] | 徐智超, 朱美慧, 毛子昆, 王绪高. 氮添加对东北温带阔叶红松林幼苗动态的影响[J]. 生物多样性, 2024, 32(12): 24255-. |
[13] | 徐凯伦, 陈小荣, 张敏华, 于婉婉, 吴素美, 朱志成, 陈定云, 兰荣光, 董舒, 刘宇. 演替和地形共同影响浙江百山祖森林群落的性系统多样性[J]. 生物多样性, 2024, 32(12): 24338-. |
[14] | 陈明苗, 张楚然, 邓云, 李生发, 李逢昌, 唐志忠, 魏兆喆, 张彩彩, 林露湘. 地形因子对亚热带半湿润常绿阔叶林木本植物萌生特征的影响[J]. 生物多样性, 2024, 32(12): 24282-. |
[15] | 王兴煜, 孟京辉, 任思远, 祝燕. 北京东灵山暖温带落叶阔叶林群落生物多样性与地上生物量的关系[J]. 生物多样性, 2024, 32(12): 24230-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn