生物多样性 ›› 2015, Vol. 23 ›› Issue (5): 658-664. DOI: 10.17520/biods.2015102 cstr: 32101.14.biods.2015102
所属专题: 传粉生物学; 昆虫多样性与生态功能
杜家潇1,2, 孟璐1, 孙海芹2,*(), 包颖1,*(
)
收稿日期:
2015-04-27
接受日期:
2015-06-23
出版日期:
2015-09-20
发布日期:
2015-10-12
通讯作者:
孙海芹,包颖
基金资助:
Jiaxiao Du1,2, Lu Meng1, Haiqin Sun2,*(), Ying Bao1,*(
)
Received:
2015-04-27
Accepted:
2015-06-23
Online:
2015-09-20
Published:
2015-10-12
Contact:
Sun Haiqin,Bao Ying
摘要:
一些研究显示盗蜜对自交植物的结实和结籽没有显著影响。然而, 对于既有传粉者为其传粉实现异交又能通过自交实现生殖保障的兼性自交植物来说, 盗蜜对其生殖的影响还知之甚少。由于兼性自交植物可以自交, 盗蜜对其总体结实可能不会有显著影响, 但可能会通过影响传粉者行为而影响传粉者介导的结实。为了验证这一假说, 本研究以兼性自交的一年生角蒿(Invarvillea sinensis var. sinensis)为研究材料, 通过野外调查和控制实验, 探讨了盗蜜对传粉者介导的结实(传粉者行为)和总体结实率的影响。结果表明: 角蒿的盗蜜者和主要传粉者相同, 均为密林熊蜂(Bombus patagiatus)。熊蜂盗蜜频率平均为20.24% (范围为0-51.43%)。盗蜜对角蒿总体结实率、每果结籽数和每果种子重量没有显著影响。然而, 被盗蜜花的柱头闭合比率显著高于未被盗蜜花, 说明盗蜜影响传粉者的访花行为和传粉者介导的结实率。另外, 被盗蜜花的高度显著高于未被盗蜜花, 说明盗蜜者倾向于从较大较高的花上盗蜜。这些结果为全面认识盗蜜对植物生殖的影响提供了新的信息。
杜家潇, 孟璐, 孙海芹, 包颖 (2015) 盗蜜对角蒿传粉者行为和生殖成功的影响. 生物多样性, 23, 658-664. DOI: 10.17520/biods.2015102.
Jiaxiao Du, Lu Meng, Haiqin Sun, Ying Bao (2015) Effects of nectar robbing on pollinator behavior and pollination success in facultative selfing Incarvillea sinensis var. sinensis. Biodiversity Science, 23, 658-664. DOI: 10.17520/biods.2015102.
图1 一年生角蒿的盗蜜昆虫和被盗蜜的花和花苞。(a)正在角蒿花上盗蜜的密林熊蜂; (b)正在花苞上盗蜜的密林熊蜂; (c)有盗蜜孔的角蒿花; (d)有盗蜜孔的花苞。
Fig. 1 Nectar robbers and flowers/buds of Incarvillea sinensis var. sinensis. (a) A bumble bee was robbing nectar from a flower; (b) A bumble bee was robbing nectar from a flower bud; (c) A flower with a hole bitten by a nectar robber; (d) A flower bud with a hole bitten by a nectar robber.
图2 罩网排除角蒿盗蜜者(传粉者)的结实比例(a)以及被盗蜜花和未被盗蜜花种子数(b)和种子重量(c)。相同字母表示无显著差异(P > 0.05)。
Fig. 2 Effects of nectar robbing on fruit set (a), seed number per fruit (b) and seed mass per fruit (c) in Incarvillea sinensis var. sinensis. The same letters indicate no significant differences (P > 0.05).
图3 角蒿被盗蜜花和未被盗蜜花柱头闭合比率(a)和花的高度(b)。不同字母表示显著差异(P < 0.001)。
Fig. 3 Percentage of stigmatic lobes closed (a) and flower height (b) in robbed flowers and not robbed flowers in Incarvillea sinensis var. sinensis. Different letters indicate significantly different (P < 0.001).
[1] | Chen S, Xing Y, Su T, Zhou Z, Dilcher ED, Soltis D (2012) Phylogeographic analysis reveals significant spatial genetic structure of Incarvillea sinensis as a product of mountain building.BMC Plant Biology, 12, 58. |
[2] | Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence.Annual Review of Ecology, Evolution and Systematics, 36, 47-79. |
[3] | Harder LD, Johnson SD (2009) Darwin’s beautiful contri- vances: evolutionary and functional evidence for floral adaptation.New Phytologist, 183, 530-545. |
[4] | Inouye DW (1980) The terminology of floral larceny.Ecology, 61, 1251-1253. |
[5] | Irwin RE (2003) Impact of nectar robbing on estimates of pollen flow: conceptual predictions and empirical outcomes.Ecology, 84, 485-495. |
[6] | Irwin RE, Bronstein JL, Manson JS, Richardson L (2010) Nectar robbing: ecological and evolutionary perspectives. Annual Review of Ecology, Evolution and Systematics, 41, 271-292. |
[7] | Irwin RE, Maloof JE (2002) Variation in nectar robbing over time, space, and species.Oecologia, 133, 525-533. |
[8] | Lara C, Ornelas J (2001) Preferential nectar robbing of flowers with long corollas: experimental studies of two hummingbird species visiting three plant species. Oecologia, 128, 263-273. |
[9] | Maloof JE, Inouye DW (2000) Are nectar robbers cheaters or mutualists?Ecology, 81, 2651-2661. |
[10] | Navarro L (2000) Pollination ecology of Anthyllis vulneraria subsp. vulgaris (Fabaceae): nectar robbers as pollinators.American Journal of Botany, 87, 980-985. |
[11] | Navarro L, Medel R (2009) Relationship between floral tube length and nectar robbing in Duranta erecta L. (Verbenaceae).Biological Journal of the Linnean Society, 96, 392-398. |
[12] | Parker GA, Smith JM (1990) Optimality theory in evolutionary biology.Nature, 348, 27-33. |
[13] | Primack RB (1987) Relationships among flowers, fruits, and seeds.Annual Review of Ecology and Systematics, 18, 409-430. |
[14] | Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests.Quarterly Review of Biology, 52, 137-154. |
[15] | Qu RM (曲荣明) (2007) Pollination Strategy of Plants in Sand Land: Case Studies in Mu Us (沙地中植物的传粉对策——毛乌素案例研究). PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese) |
[16] | Qu R, Li X, Luo Y, Dong M, Xu H, Chen X, Dafni A (2007) Wind-dragged corolla enhances self-pollination: a new mechanism of delayed self-pollination.Annals of Botany, 100, 1155-1164. |
[17] | Traveset A, Willson MF, Sabag C (1998) Effect of nectar-robbing birds on fruit set of Fuchsia magellanica in Tierra Del Fuego: a disrupted mutualism.Functional Ecology, 12, 459-464. |
[18] | Zhang C, Irwin RE, Wang Y, He YP, Yang YP, Duan YW (2011) Selective seed abortion induced by nectar robbing in the selfing plant Comastoma pulmonarium.New Phytologist, 192, 249-255. |
[19] | Zhang XS (张新时) (1994) Principles and optimal models for development of Maowusu sandy grassland.Journal of Plant Ecology(植物生态学报), 18, 1-16.(in Chinese with English abstract) |
[20] | Zhang YW (张彦文), Wang Y (王勇), Guo YH (郭友好) (2006) The effects of necar robbing on plant reproduction and evolution.Journal of Plant Ecology(植物生态学报), 30, 695-702. (in Chinese with English abstract). |
[21] | Zhang YW, Yu Q, Zhao JM, Guo YH (2009) Differential effects of nectar robbing by the same bumble-bee species on three sympatric Corydalis species with varied mating systems.Annals of Botany,104, 33-39. |
[22] | Zhang YW, Zhao JM, Inouye DW (2014) Nectar thieves influence reproductive fitness by altering behaviour of nectar robbers and legitimate pollinators in Corydalis ambigua (Fumariaceae).Journal of Ecology, 102, 229-237. |
[23] | Zhang Z, Santisuk T (1998) Bignoniaceae. In: Flora of China (eds Wu ZY, Raven PH, Hong DY), Vol. 18, pp. 213. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis. |
[1] | 王顺雨, 李杨, 吕晓琴, 李欣, 范权秀, 王晓月. 熊蜂盗蜜的花色偏好及对长距忍冬繁殖适合度的影响[J]. 生物多样性, 2025, 33(4): 24554-. |
[2] | 常艳芬. 铁角蕨科的多倍化与物种多样性形成[J]. 生物多样性, 2017, 25(6): 621-626. |
[3] | 张小龙, 杨丽华, 康明. 牛耳朵和马坝报春苣苔同域种群授粉后的生殖隔离[J]. 生物多样性, 2017, 25(6): 615-620. |
[4] | 谢平. 浅析物种概念的演变历史[J]. 生物多样性, 2016, 24(9): 1014-1019. |
[5] | 张德兴. 为什么在物种概念上难以达成共识?[J]. 生物多样性, 2016, 24(9): 1009-1013. |
[6] | 谢平. 细胞核和有性生殖是如何起源的?[J]. 生物多样性, 2016, 24(8): 966-976. |
[7] | 吕昊敏, 周仁超, 施苏华. 生态物种形成及其研究进展[J]. 生物多样性, 2015, 23(3): 398-407. |
[8] | 李忠虎, 刘占林, 王玛丽, 钱增强, 赵鹏, 祝娟, 杨一欣, 阎晓昊, 李银军, 赵桂仿. 基因流存在条件下的物种形成研究述评:生殖隔离机制进化[J]. 生物多样性, 2014, 22(1): 88-96. |
[9] | 胡红岩, 陈欢, 徐环李. 毛乌素沙地固沙植物披针叶黄华主要传粉昆虫及其访花行为[J]. 生物多样性, 2012, 20(3): 354-359. |
[10] | 黄云兰, 安秀峰, 师东, 张爱勤. 新疆荒漠植物耳叶补血草的爆发式开花式样与传粉模式[J]. 生物多样性, 2012, 20(3): 368-375. |
[11] | 夏婧, 郭友好. 开花时间与伴生种对鹤首马先蒿传粉和生殖成功的影响[J]. 生物多样性, 2012, 20(3): 330-336. |
[12] | 吴川, 戴伟民, 宋小玲, 强胜. 辽宁和江苏两省杂草稻植物性状多样性[J]. 生物多样性, 2010, 18(1): 29-36. |
[13] | 李鹏, 罗毅波. 中国特有兰科植物褐花杓兰的繁殖生物学特征及其与西藏杓兰的生殖隔离研究[J]. 生物多样性, 2009, 17(4): 406-413. |
[14] | 张文辉, 许晓波, 周建云, 孙玉玲, 谢宗强. 濒危植物秦岭冷杉地理分布和生物生态学特性研究[J]. 生物多样性, 2004, 12(4): 419-426. |
[15] | 唐亚, 陈建中. 斜翼致濒原因探讨[J]. 生物多样性, 1995, 03(2): 74-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn