生物多样性 ›› 2022, Vol. 30 ›› Issue (12): 22343. DOI: 10.17520/biods.2022343
所属专题: 昆虫多样性与生态功能
林永一1, 王永珍1, 冯怡琳2, 赵文智1,2, 高俊伟3, 刘继亮1,*()
收稿日期:
2022-06-21
接受日期:
2022-08-10
出版日期:
2022-12-20
发布日期:
2022-11-01
通讯作者:
*E-mail: liujl707@lzb.ac.cn
基金资助:
Yongyi Lin1, Yongzhen Wang1, Yilin Feng2, Wenzhi Zhao1,2, Junwei Gao3, Jiliang Liu1,*()
Received:
2022-06-21
Accepted:
2022-08-10
Online:
2022-12-20
Published:
2022-11-01
Contact:
*E-mail: liujl707@lzb.ac.cn
摘要:
地表甲虫是戈壁主要的地表昆虫类群, 但我们对其种属组成和活动节律的认识还很有限。2018-2020年1-12月我们利用陷阱法对河西走廊中部典型砾质戈壁地表甲虫种类及数量进行了连续观测, 并测定了该区降水和温度。本文研究发现: (1)戈壁地表甲虫由步甲科、叶甲科、象甲科、粪金龟科和拟步甲科5科21种组成, 阿小鳖甲(Microdera kraatzi alashanica)、戈壁琵甲(Blaps gobiensis)和波笨粪金龟(Lethrus potanini)是优势地表甲虫种; (2)戈壁地表甲虫活动节律存在明显年季变异, 地表甲虫的活动期在3-10月, 地表甲虫活动密度的最大值出现在4-7月, 而物种丰富度的最大值均在5月出现; (3)降水增多的2019年地表甲虫的活动密度明显增加, 且2019年地表甲虫物种丰富度和多样性指数显著高于2018年; (4)地表甲虫的取食类型和个体大小影响它们的活动节律, 降水增多的年份提高了植食性的象甲科和部分拟步甲科的活动密度, 而一些拟步甲科的活动密度对降水的响应存在一定的滞后性; (5)降水和温度变化强烈影响地表甲虫活动节律, 地表甲虫的个体数和物种数与月降水量和月平均温度呈显著的二次曲线和指数关系, 植食性和捕食性甲虫对降水及温度变化响应较腐食性甲虫敏感, 大甲虫对降水变化的响应较中甲虫和小甲虫敏感。总之, 降水及温度变化影响了戈壁地表甲虫的活动节律, 而不同地表甲虫种对二者的响应因其生理生态特征不同而异, 从而影响了地表甲虫群落动态变化规律。
林永一, 王永珍, 冯怡琳, 赵文智, 高俊伟, 刘继亮 (2022) 河西走廊中部戈壁地表甲虫群落动态变化及其影响因素. 生物多样性, 30, 22343. DOI: 10.17520/biods.2022343.
Yongyi Lin, Yongzhen Wang, Yilin Feng, Wenzhi Zhao, Junwei Gao, Jiliang Liu (2022) Dynamic change of ground-dwelling beetle community in a gobi desert of the middle of Hexi Corridor and its influencing factors. Biodiversity Science, 30, 22343. DOI: 10.17520/biods.2022343.
图1 2018-2020年1-12月研究区月降水量(MP)、月平均温度(MAT)、月平均最高温度(MATmax)和月平均最低温度(MATmin)
Fig. 1 Monthly precipitation (MP), monthly average tempera- ture (MAT), monthly average maximum temperature (MATmax) and minimum temperatures (MATmin) at the study area from January to December during 2018 and 2020
图3 2018-2020年戈壁地表甲虫活动密度(a)、物种数(b)、多样性指数(c)和均匀度指数(d)比较。柱形图上方的a、b、c代表是否存在显著性差异(P < 0.05), 字母相同代表无显著性差异, 字母不同代表存在显著性差异。
Fig. 3 Comparison of activity density (a), species number (b), diversity index (c) and evenness index (d) of ground-dwelling beetles in gobi from 2018 to 2020. The letters above the bar chart, a, b and c represent whether there are significant differences (P < 0.05). The same letters indicate no significant differences, while different letters indicate significant differences.
图4 2018-2020年戈壁主要地表甲虫种活动密度比较。图中柱形图上方的a、b、c代表是否存在显著性差异(P < 0.05), 字母相同代表无显著性差异, 字母不同代表存在显著性差异。
Fig. 4 Comparison of activity densities of nine major ground-dwelling beetle species in gobi from 2018 to 2020. The letters above the bar chart, a, b and c represent whether there are significant differences (P < 0.05). The same letters indicate no significant differences, while different letters indicate significant differences.
图5 2018-2020年3-10月地表甲虫活动密度和物种丰富度变化
Fig. 5 Changes in activity density and species richness of ground-dwelling beetles from March to October during 2018 and 2020
图7 地表甲虫个体数和物种数与月降水量和月平均温度的关系
Fig. 7 Relationship between the number of individuals and species of ground-dwelling beetles and monthly precipitation and monthly average temperature
地表甲虫 Ground-dwelling beetles | 月降水量 MP | 月平均温度 MAT | ||
---|---|---|---|---|
r | P | r | P | |
群落 Community | ||||
所有地表甲虫 | ||||
活动密度 Activity density | 0.33 | 0.116 | 0.56 | 0.005 |
物种丰富度 Species richness | 0.40 | 0.052 | 0.56 | 0.005 |
捕食性甲虫 Predatory beetles | ||||
活动密度 Activity density | 0.69 | < 0.001 | 0.69 | 0.001 |
物种丰富度 Species richness | 0.69 | < 0.001 | 0.66 | < 0.001 |
植食性甲虫 Herbivorous beetles | ||||
活动密度 Activity density | 0.72 | < 0.001 | 0.37 | 0.076 |
物种丰富度 Species richness | 0.76 | < 0.001 | 0.44 | 0.032 |
腐食性甲虫 Detritivorous beetles | ||||
活动密度 Activity density | 0.17 | 0.435 | 0.49 | 0.015 |
物种丰富度 Species richness | 0.14 | 0.525 | 0.45 | 0.029 |
个体大小 Body size | ||||
大甲虫 Large beetles | ||||
活动密度 Activity density | 0.43 | 0.035 | 0.50 | 0.013 |
物种丰富度 Species richness | 0.45 | 0.028 | 0.49 | 0.016 |
中甲虫 Medium beetles | ||||
活动密度 Activity density | 0.28 | 0.193 | ?0.10 | 0.646 |
物种丰富度 Species richness | 0.37 | 0.076 | ?0.02 | 0.929 |
小甲虫 Small beetles | ||||
活动密度 Activity density | 0.19 | 0.369 | 0.64 | < 0.001 |
物种丰富度 Species richness | 0.21 | 0.333 | 0.73 | < 0.001 |
主要甲虫种 Dominant beetle species | ||||
波笨粪金龟 Lethrus potanini | 0.60 | 0.002 | 0.13 | 0.552 |
大甜菜象 Cleonus verrucosus | 0.45 | 0.029 | 0.71 | < 0.001 |
深洼齿足象 Deracanthus jakovlevi | 0.54 | 0.007 | 0.26 | 0.214 |
宽突东鳖甲 Anatolica sternalis | ?0.25 | 0.232 | ?0.34 | 0.105 |
戈壁琵甲 Blaps gobiensis | 0.34 | 0.107 | 0.45 | 0.028 |
中华砚甲 Cyphogenia chinensis | 0.15 | 0.498 | 0.51 | 0.011 |
洛氏脊漠甲 Pterocoma loczyi | 0.04 | 0.837 | 0.17 | 0.420 |
阿小鳖甲 Microdera kraatzi alashanica | 0.20 | 0.340 | 0.64 | < 0.001 |
克氏扁漠甲 Sternotrigon kraatzi | 0.19 | 0.375 | 0.57 | 0.004 |
表1 地表甲虫群落、营养功能群、个体大小及主要类群与月降水量和平均温度的Spearman相关系数。MP表示月降水量, MAT表示月平均温度。黑色加粗数字表示存在显著性差异, P < 0.05。
Table 1 Spearman correlation coefficients between the community, trophic groups, body sizes, and dominant taxa of ground-dwelling beetles and monthly precipitation (MP) and monthly average temperature (MAT). Bold black numbers indicate significant difference, P < 0.05
地表甲虫 Ground-dwelling beetles | 月降水量 MP | 月平均温度 MAT | ||
---|---|---|---|---|
r | P | r | P | |
群落 Community | ||||
所有地表甲虫 | ||||
活动密度 Activity density | 0.33 | 0.116 | 0.56 | 0.005 |
物种丰富度 Species richness | 0.40 | 0.052 | 0.56 | 0.005 |
捕食性甲虫 Predatory beetles | ||||
活动密度 Activity density | 0.69 | < 0.001 | 0.69 | 0.001 |
物种丰富度 Species richness | 0.69 | < 0.001 | 0.66 | < 0.001 |
植食性甲虫 Herbivorous beetles | ||||
活动密度 Activity density | 0.72 | < 0.001 | 0.37 | 0.076 |
物种丰富度 Species richness | 0.76 | < 0.001 | 0.44 | 0.032 |
腐食性甲虫 Detritivorous beetles | ||||
活动密度 Activity density | 0.17 | 0.435 | 0.49 | 0.015 |
物种丰富度 Species richness | 0.14 | 0.525 | 0.45 | 0.029 |
个体大小 Body size | ||||
大甲虫 Large beetles | ||||
活动密度 Activity density | 0.43 | 0.035 | 0.50 | 0.013 |
物种丰富度 Species richness | 0.45 | 0.028 | 0.49 | 0.016 |
中甲虫 Medium beetles | ||||
活动密度 Activity density | 0.28 | 0.193 | ?0.10 | 0.646 |
物种丰富度 Species richness | 0.37 | 0.076 | ?0.02 | 0.929 |
小甲虫 Small beetles | ||||
活动密度 Activity density | 0.19 | 0.369 | 0.64 | < 0.001 |
物种丰富度 Species richness | 0.21 | 0.333 | 0.73 | < 0.001 |
主要甲虫种 Dominant beetle species | ||||
波笨粪金龟 Lethrus potanini | 0.60 | 0.002 | 0.13 | 0.552 |
大甜菜象 Cleonus verrucosus | 0.45 | 0.029 | 0.71 | < 0.001 |
深洼齿足象 Deracanthus jakovlevi | 0.54 | 0.007 | 0.26 | 0.214 |
宽突东鳖甲 Anatolica sternalis | ?0.25 | 0.232 | ?0.34 | 0.105 |
戈壁琵甲 Blaps gobiensis | 0.34 | 0.107 | 0.45 | 0.028 |
中华砚甲 Cyphogenia chinensis | 0.15 | 0.498 | 0.51 | 0.011 |
洛氏脊漠甲 Pterocoma loczyi | 0.04 | 0.837 | 0.17 | 0.420 |
阿小鳖甲 Microdera kraatzi alashanica | 0.20 | 0.340 | 0.64 | < 0.001 |
克氏扁漠甲 Sternotrigon kraatzi | 0.19 | 0.375 | 0.57 | 0.004 |
[1] |
Barrows C (2012) Temporal patterns of abundance of arthropods on sand dunes. The Southwestern Naturalist, 57, 262-266.
DOI URL |
[2] |
Bartholomew A,El Moghrabi J (2018) Seasonal preference of darkling beetles (Tenebrionidae) for shrub vegetation due to high temperatures, not predation or food availability. Journal of Arid Environments, 156, 34-40.
DOI URL |
[3] |
Bezborodov V, Shabalin S (2015) Lamellicorn beetles (Coleoptera: Scarabaeoidea) of Sakhalin Island: Taxonomical structure, fauna, ecology and zoogeography. Caucasian Entomological Bulletin, 11, 317-325.
DOI URL |
[4] |
Carpaneto GM, Fattorini S (2001) Spatial and seasonal organisation of a darkling beetle (Coleoptera, Tenebrionidae) community inhabiting a Mediterranean coastal dune system. Italian Journal of Zoology, 68, 207-214.
DOI URL |
[5] |
Cloudsley-Thompson JL (2001) Thermal and water relations of desert beetles. Naturwissenschaften, 88, 447-460.
DOI URL |
[6] |
de Los Santos A, Ferrer F, Crist TO (2006) Thermal habitat and life history of two congeneric species of darkling beetles (Coleoptera: Tenebrionidae) on Tenerife (Canary Islands). Journal of Arid Environments, 65, 363-385.
DOI URL |
[7] | Duncan FD, Dickman CR (2001) Respiratory patterns and metabolism in tenebrionid and carabid beetles from the Simpson Desert, Australia. Oecoligica, 129, 509-517. |
[8] |
Elek Z, Lövei GL (2007) Patterns in ground beetle (Coleoptera: Carabidae) assemblages along an urbanisation gradient in Denmark. Acta Oecologica, 32, 104-111.
DOI URL |
[9] |
Feng YM, Wu B, Yao AD, Cao XY, Cong RC, Yao B, Wang F, Lu Q (2014) A study on classification system and inventory of gobi. Acta Geographica Sinica, 69, 391-398. (in Chinese with English abstract)
DOI |
[ 冯益明, 吴波, 姚爱冬, 曹晓阳, 丛日春, 姚斌, 王锋, 卢琦 (2014) 戈壁分类体系与编目研究. 地理学报, 69, 391-398.]
DOI |
|
[10] | Feng YM, Wu B, Zhou N, Che TT, Wang F, Cong RC, Cao YL, Lu Q (2013) Gobi classification system based on remote sensing image recognition. Journal of Desert Research, 33, 635-641. (in Chinese with English abstract) |
[ 冯益明, 吴波, 周娜, 车腾腾, 王锋, 丛日春, 曹燕丽, 卢琦 (2013) 基于遥感影像识别的戈壁分类体系研究. 中国沙漠, 33, 635-641.] | |
[11] |
Gibb H, Grossman BF, Dickman CR, Decker O, Wardle GM (2019) Long-term responses of desert ant assemblages to climate. Journal of Animal Ecology, 88, 1549-1563.
DOI PMID |
[12] | He Q, Wang XP, Yang GJ (2011) Species diversity of carabid beetles in desert-steppe in Yanchi of Ningxia, China. Acta Ecologica Sinica, 31, 923-932. (in Chinese with English abstract) |
[ 贺奇, 王新谱, 杨贵军 (2011) 宁夏盐池荒漠草原步甲物种多样性. 生态学报, 31, 923-932.] | |
[13] |
Jia L, Zhang JY, Ren GD (2019) Spatial distribution pattern of Tenebrionidae and its relationships with meteorological factors in Alxa Plateau, China. Chinese Journal of Applied Ecology, 30, 3316-3326. (in Chinese with English abstract)
DOI |
[ 贾龙, 张建英, 任国栋 (2019) 阿拉善高原拟步甲空间分布格局及其与气象因子的关系. 应用生态学报, 30, 3316-3326.]
DOI |
|
[14] | Krasnov B, Ayal Y (1995) Seasonal changes in darkling beetle communities (Coleoptera: Tenebrionidae) in the Ramon erosion cirque, Negev Highlands, Israel. Journal of Arid Environments, 31, 335-347. |
[15] |
Kwok ABC, Wardle GM, Greenville AC, Dickman CR (2016) Long-term patterns of invertebrate abundance and relationships to environmental factors in arid Australia. Austral Ecology, 41, 480-491.
DOI URL |
[16] |
Langlands PR, Brennan KEC, Pearson DJ (2006) Spiders, spinifex, rainfall and fire: Long-term changes in an arid spider assemblage. Journal of Arid Environments, 67, 36-59.
DOI URL |
[17] | Liang HB, Yu PY (2000) Species of ground beetles (Coleoptera: Carabidae) predating oriental armyworm (Lepidoptera: Notuidae) in China. Natural Enemies Insects, 22, 160-167. (in Chinese with English abstract) |
[ 梁宏斌, 虞佩玉 (2000) 中国捕食粘虫的步甲种类检索. 昆虫天敌, 22, 160-167.] | |
[18] |
Liu JL, Li FR, Liu CG, Liu QJ (2012) Influences of shrub vegetation on distribution and diversity of a ground beetle community in a Gobi desert ecosystem. Biodiversity and Conservation, 21, 2601-2619.
DOI URL |
[19] | Liu JL, Li FR, Liu QJ, Niu RX (2010) Seasonal variation of ground dwelling arthropod communities in an arid desert of the middle Heihe River Basin. Acta Prataculturae Sinica, 19, 161-169. (in Chinese with English abstract) |
[ 刘继亮, 李锋瑞, 刘七军, 牛瑞雪 (2010) 黑河中游干旱荒漠地面节肢动物群落季节变异规律. 草业学报, 19, 161-169.] | |
[20] | Liu JL, Zhao WZ, Li FR (2015) Distribution of ground arthropod community in arid desert in the middle reaches of Heihe River. Arid Zone Research, 32, 1192-1200. (in Chinese with English abstract) |
[ 刘继亮, 赵文智, 李锋瑞 (2015) 黑河中游荒漠地面节肢动物分布特征. 干旱区研究, 32, 1192-1200.] | |
[21] |
Liu JL, Zhao WZ, Li FR (2015) Effects of shrub presence & shrub species on ground beetle assemblages (Carabidae, Curculionidae and Tenebrionidae) in a sandy desert, northwestern China. Journal of Arid Land, 7, 110-121.
DOI URL |
[22] |
Lou QZ, Xu YC, Ma JH, Lü ZZ (2011) Diversity of ground-dwelling beetles within the southern Gurbantunggut Desert and its relationship with environmental factors. Biodiversity Science, 19, 441-452. (in Chinese with English abstract)
DOI URL |
[ 娄巧哲, 徐养诚, 马吉宏, 吕昭智 (2011) 古尔班通古特沙漠南缘地表甲虫物种多样性及其与环境的关系. 生物多样性, 19, 441-452.]
DOI |
|
[23] | Lu T, Wang HZ, Wang X, Chen TF, Yang SW, Zhang XM (2001) Study on the biological properties of Lethrus apterus. Acta Agrestia Sinica, 9, 287-289, 295. (in Chinese with English abstract) |
[ 鲁挺, 王辉珠, 汪玺, 陈天福, 杨生武, 张新民 (2001) 无翅大头粪金龟生物学特性研究. 草地学报, 9, 287-289, 295.]
DOI |
|
[24] |
Nielsen UN, Ball BA (2015) Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Global Change Biology, 21, 1407-1421.
DOI PMID |
[25] | Paknia O, Grundler M, Pfeiffer M (2013) Species richness and niche differentiation of darkling beetles (Coleoptera:Tenebrionidae) in Mongolian steppe ecosystems. In: SteppeEcosystems: Management and Restoration (eds Biological Diversity, Prieto MBM, Diaz JT), pp. 47-72. Nova Science Publishers, New York. |
[26] | Pfeiffer M, Enkhmunkh B (2013) Diversity and community pattern of darkling beetles (Coleoptera: Tenebrionidae) in arid Mongolia. Wissenschaftliche Beiträge Der Martin- Luther-Universität Halle-Wittenberg, 12, 251-266. |
[27] |
Polis G (1991) Complex trophic interactions in deserts: An empirical critique of food-web theory. The American Naturalist, 138, 123-155.
DOI URL |
[28] | Ren GD, Yu YZ (1999) The Darkling Beetles from Deserts and Semi-deserts of China (Coleoptera: Tenebrionidae). Hebei University Publishing House, Baoding. (in Chinese) |
[ 任国栋, 于有志 (1999) 中国荒漠半荒漠的拟步甲科昆虫. 河北大学出版社, 保定.] | |
[29] | Sackmann P, Flores GE (2009) Temporal and spatial patterns of tenebrionid beetle diversity in NW Patagonia, Argentina. Journal of Arid Environments, 73, 1095-1102. |
[30] |
Shen YC, Wang XH, Cheng WM, Wu JF, Lu Q, Feng YM (2016) Integrated physical regionalization of stony deserts in China. Progress in Geography, 35, 57-66. (in Chinese with English abstract)
DOI |
[ 申元村, 王秀红, 程维明, 吴金凤, 卢琦, 冯益明 (2016) 中国戈壁综合自然区划研究. 地理科学进展, 35, 57-66.]
DOI |
|
[31] |
Stapp P (1997) Microhabitat use and community structure of darkling beetles (Coleoptera: Tenebrionidae) in shortgrass prairie: Effects of season shrub and soil type. The American Midland Naturalist, 137, 298-311.
DOI URL |
[32] | Thomas DB (1979) Patterns in the abundance of some tenebrionid beetles in the Mojave Deseret. Environmental Entomology, 8, 568-574. |
[33] | Wang J, Lü ZZ, Yin F (2016) The influence of landscape heterogeneity on diversity of ground beetles in arid regions. Journal of Environmental Entomology, 38, 67-76. (in Chinese with English abstract) |
[ 王晶, 吕昭智, 殷飞 (2016) 干旱区景观异质性对地表甲虫多样性的影响. 环境昆虫学报, 38, 67-76.] | |
[34] | Whicker AD, Tracy CR (1987) Tenebrionid beetles in the shortgrass prairie: Daily and seasonal patterns of activity and temperature. Ecological Entomology, 12, 97-108. |
[35] | Xu YC, Lou QZ, Ma JH, Lü ZZ (2013) Darkling beetles diversity in southern marginal zone of the Gurbantonggut desert. Arid Zone Research, 30, 674-680. (in Chinese with English abstract) |
[ 徐养诚, 娄巧哲, 马吉宏, 吕昭智 (2013) 古尔班通古特沙漠南缘拟步甲的物种多样性. 干旱区研究, 30, 674-680.] | |
[36] | Yang GJ, He HM, Wang XP (2012) The time structure and population dynamics of the desert-steppe darkling beetle community in Yanchi, Ningxia, China. Chinese Journal of Applied Entomology, 49, 1610-1617. (in Chinese with English abstract) |
[ 杨贵军, 贺海明, 王新谱 (2012) 盐池荒漠草地拟步甲昆虫群落时间结构和动态. 应用昆虫学报, 49, 1610-1617.] | |
[37] | Yu LQ, Li JW, Li JQ, Cong RC, Lu Q (2014) Classification and specialty of the natural resources in the desert and Gobi ecosystem in China. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 35, 59-66. (in Chinese with English abstract) |
[ 于琳倩, 李景文, 李俊清, 丛日春, 卢琦 (2014) 中国沙漠、戈壁自然资源分类体系及其组成特点. 内蒙古农业大学学报(自然科学版), 35, 59-66.] | |
[38] | Zhang JY, Jia L, Yu YZ (2004) The biological characteristics of blaps gobiensis (Coleoptera: Tenebrionidae). Journal of Ningxia University (Natural Science Edition), 25, 264-267. (in Chinese with English abstract) |
[ 张建英, 贾龙, 于有志 (2004) 戈壁琵甲(鞘翅目: 拟步甲科)生物学特性的研究. 宁夏大学学报(自然科学版), 25, 264-267.] | |
[39] | Zheng LY, Gui H (1999) Insect Classification. Nanjing Normal University Press, Nanjing. (in Chinese) |
[ 郑乐怡, 归鸿 (1999) 昆虫分类. 南京师范大学出版社, 南京.] |
[1] | 程建伟, 徐满厚, 窦永静, 王亚东, 王桠楠, 刘新民, 李永宏. 内蒙古典型草原马粪分解过程中节肢动物群落的季节动态变化[J]. 生物多样性, 2024, 32(6): 24018-. |
[2] | 任嘉隆, 王永珍, 冯怡琳, 赵文智, 严祺涵, 秦畅, 方静, 辛未冬, 刘继亮. 基于陷阱法采集的河西走廊戈壁荒漠甲虫数据集[J]. 生物多样性, 2024, 32(2): 23375-. |
[3] | 薛玉洁, 程安鹏, 李珊, 刘晓娟, 李景文. 亚热带森林中环境和物种多样性对灌木存活的影响[J]. 生物多样性, 2023, 31(3): 22443-. |
[4] | 罗彩访, 杨涛, 张秋雨, 王馨培, 沈泽昊. 滇中半湿润常绿阔叶林木本植物的功能特征和功能多样性及其影响因子[J]. 生物多样性, 2023, 31(11): 23215-. |
[5] | 王健铭, 曲梦君, 王寅, 冯益明, 吴波, 卢琦, 何念鹏, 李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素[J]. 生物多样性, 2022, 30(6): 21503-. |
[6] | 罗恬, 俞方圆, 练琚愉, 王俊杰, 申健, 吴志峰, 叶万辉. 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例[J]. 生物多样性, 2022, 30(5): 21414-. |
[7] | 付飞, 魏慧玉, 常育腾, 王备新, 陈凯. 澜沧江中游水生昆虫生活史和生态学性状多样性的海拔格局: 气候和土地利用的影响[J]. 生物多样性, 2022, 30(5): 21332-. |
[8] | 冯怡琳, 王永珍, 林永一, 赵文智, 高俊伟, 刘继亮. 戈壁生态系统蚁穴微生境对大型土壤动物多样性的影响[J]. 生物多样性, 2022, 30(12): 22282-. |
[9] | 雍青措姆, 习新强, 牛克昌. 高寒草甸植物物种丧失对草原毛虫的影响[J]. 生物多样性, 2022, 30(11): 22069-. |
[10] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
[11] | 李艳朋, 倪云龙, 许涵, 练琚愉, 叶万辉. 鼎湖山南亚热带常绿阔叶林植物功能性状变异与不同垂直层次个体生长的关联[J]. 生物多样性, 2021, 29(9): 1186-1197. |
[12] | 欧阳园丽, 张参参, 林小凡, 田立新, 顾菡娇, 陈伏生, 卜文圣. 中国亚热带不同菌根树种的根叶形态学性状特征与生长差异: 以江西新岗山为例[J]. 生物多样性, 2021, 29(6): 746-758. |
[13] | 邵晨, 李耀琪, 罗奥, 王志恒, 席祯翔, 刘建全, 徐晓婷. 不同生活型被子植物功能性状与基因组大小的关系[J]. 生物多样性, 2021, 29(5): 575-585. |
[14] | 张剑坛, 李艳朋, 张入匀, 倪云龙, 周文莹, 练琚愉, 叶万辉. 基于枝条木材密度分级的鼎湖山南亚热带常绿阔叶林树高曲线模型[J]. 生物多样性, 2021, 29(4): 456-466. |
[15] | 魏慧玉,陈凯,王备新. 澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性[J]. 生物多样性, 2020, 28(4): 504-514. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn