生物多样性 ›› 2022, Vol. 30 ›› Issue (12): 22282. DOI: 10.17520/biods.2022282
所属专题: 土壤生物与土壤健康; 昆虫多样性与生态功能
冯怡琳1,2, 王永珍3, 林永一3, 赵文智2,3, 高俊伟4, 刘继亮3,*()
收稿日期:
2022-05-23
接受日期:
2022-09-06
出版日期:
2022-12-20
发布日期:
2022-10-24
通讯作者:
*E-mail: liujl707@lzb.ac.cn
基金资助:
Yilin Feng1,2, Yongzhen Wang3, Yongyi Lin3, Wenzhi Zhao2,3, Junwei Gao4, Jiliang Liu3,*()
Received:
2022-05-23
Accepted:
2022-09-06
Online:
2022-12-20
Published:
2022-10-24
Contact:
*E-mail: liujl707@lzb.ac.cn
摘要:
收获蚁蚁穴是戈壁生态系统中重要的微生境, 它通过汇集凋落物和改善土壤环境强烈影响动植物的分布及多样性。鉴于此, 本文选择戈壁荒漠收获蚁(Messor desertus)蚁穴为研究对象, 于2020年5月、6月和10月利用陷阱法调查了蚁穴及毗邻裸地大型土壤动物的种类组成及数量变化, 并分析其影响要素。结果表明: (1) 10月, 蚁穴和裸地间大型土壤动物群落组成存在显著差异, 而5月和6月二者间相差较小, 10月(62.9%)蚁穴和裸地大型土壤动物的平均相异性高于5月(34.8%)和6月(39.3%); (2) 5月, 蚁穴大型土壤动物均匀度指数显著低于裸地, 6月, 蚁穴大型土壤动物活动密度和类群丰富度均显著高于裸地, 10月, 蚁穴大型土壤动物类群丰富度和多样性指数均显著高于裸地; (3)荒漠收获蚁蚁穴显著提高了其他食性土壤动物的活动密度及类群丰富度, 还增强了捕食性和非捕食性土壤动物的相互作用关系并改变了荒漠收获蚁与蚁穴大型土壤动物类群的种间相互作用关系; (4) pRDA排序结果表明, 土壤电导率、全氮和粉粒含量是影响蚁穴和裸地大型土壤动物分布的主要土壤因子。总之, 戈壁生态系统荒漠收获蚁蚁穴微生境提高了大型土壤动物多样性, 改变了大型土壤动物类群间的营养和非营养关系, 这会影响大型土壤动物的营养结构及其功能。
冯怡琳, 王永珍, 林永一, 赵文智, 高俊伟, 刘继亮 (2022) 戈壁生态系统蚁穴微生境对大型土壤动物多样性的影响. 生物多样性, 30, 22282. DOI: 10.17520/biods.2022282.
Yilin Feng, Yongzhen Wang, Yongyi Lin, Wenzhi Zhao, Junwei Gao, Jiliang Liu (2022) Effects of ant nest microhabitats on the diversity of soil macrofauna in gobi ecosystems. Biodiversity Science, 30, 22282. DOI: 10.17520/biods.2022282.
图1 荒漠收获蚁蚁穴周边的植物和动物。(a)红砂幼苗及草本; (b)荒漠沙蜥; (c)沙狐; (d)大耳猬。
Fig. 1 The plants and animals around the Messor desertus ant nests. (a) Reaumuria songarica seedlings and herbs; (b) Phrynocephalus przewalskii; (c) Vulpes corsac; (d) Hemiechinus auritus.
环境变量 Environmental variables | 蚁穴 Ant nest microhabitats | 裸地 Bare ground microhabitats |
---|---|---|
pH | 8.19 ± 0.03 | 8.34 ± 0.10 |
电导率 Electrical conductivity (us/cm) | 760.34 ± 54.95 | 3,485.71 ± 991.06* |
有机碳 Soil organic carbon (g/kg) | 3.67 ± 0.24 | 3.40 ± 0.17 |
全氮 Total nitrogen (g/kg) | 0.12 ± 0.01 | 0.10 ± 0.01+ |
全磷 Total phosphorus (g/kg) | 0.37 ± 0.01 | 0.45 ± 0.02* |
全钾 Total potassium (g/kg) | 22.62 ± 0.30 | 24.25 ± 0.33* |
黏粒 Clay content (%) | 2.44 ± 0.18 | 6.63 ± 1.27* |
粉粒 Silt content (%) | 27.24 ± 2.76 | 37.21 ± 3.62* |
砂粒 Sand content (%) | 70.33 ± 2.93 | 56.16 ± 4.80* |
表1 蚁穴和毗邻裸地微生境的土壤理化性质
Table 1 Soil physical and chemical properties in ant nest and adjacent bare ground microhabitats
环境变量 Environmental variables | 蚁穴 Ant nest microhabitats | 裸地 Bare ground microhabitats |
---|---|---|
pH | 8.19 ± 0.03 | 8.34 ± 0.10 |
电导率 Electrical conductivity (us/cm) | 760.34 ± 54.95 | 3,485.71 ± 991.06* |
有机碳 Soil organic carbon (g/kg) | 3.67 ± 0.24 | 3.40 ± 0.17 |
全氮 Total nitrogen (g/kg) | 0.12 ± 0.01 | 0.10 ± 0.01+ |
全磷 Total phosphorus (g/kg) | 0.37 ± 0.01 | 0.45 ± 0.02* |
全钾 Total potassium (g/kg) | 22.62 ± 0.30 | 24.25 ± 0.33* |
黏粒 Clay content (%) | 2.44 ± 0.18 | 6.63 ± 1.27* |
粉粒 Silt content (%) | 27.24 ± 2.76 | 37.21 ± 3.62* |
砂粒 Sand content (%) | 70.33 ± 2.93 | 56.16 ± 4.80* |
采样期 Sampling periods (S) | 微生境 Microhabitats (M) | S × M | ||||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
活动密度 Activity density | 91.80 | < 0.001 | 5.15 | 0.028 | 0.34 | 0.714 |
类群丰富度 Groups richness | 5.94 | 0.005 | 14.56 | < 0.001 | 0.72 | 0.493 |
多样性指数 Diversity index | 12.37 | < 0.001 | 2.59 | 0.115 | 2.17 | 0.126 |
均匀度指数 Evenness index | 60.47 | < 0.001 | 1.86 | 0.180 | 1.43 | 0.251 |
表2 采样期和微生境对大型土壤动物活动密度、类群丰富度、多样性指数和均匀度指数的二因素方差分析结果
Table 2 The results of two-way ANOVA analysis of sampling periods and microhabitats effected on the variance of the activity density, groups richness, diversity index and evenness index of soil macrofauna community
采样期 Sampling periods (S) | 微生境 Microhabitats (M) | S × M | ||||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
活动密度 Activity density | 91.80 | < 0.001 | 5.15 | 0.028 | 0.34 | 0.714 |
类群丰富度 Groups richness | 5.94 | 0.005 | 14.56 | < 0.001 | 0.72 | 0.493 |
多样性指数 Diversity index | 12.37 | < 0.001 | 2.59 | 0.115 | 2.17 | 0.126 |
均匀度指数 Evenness index | 60.47 | < 0.001 | 1.86 | 0.180 | 1.43 | 0.251 |
图2 5月、6月和10月蚁穴和毗邻的裸地大型土壤动物活动密度、类群丰富度、多样性指数和均匀度指数比较。+ P < 0.1, * P < 0.05。
Fig. 2 The activity density, groups richness, diversity index and evenness index of soil macrofauna community between ant nest and adjacent bare ground microhabitats in May, June and October
图3 蚁穴和毗邻裸地微生境捕食性、植食性和其他食性土壤动物活动密度、类群丰富度和相对多度比较
Fig. 3 The activity density, groups richness, and relative abundance of predatory, herbivorous, and other groups in soil macrofauna community between ant nest and adjacent bare ground microhabitats
图4 蚁穴(ANM)和裸地(BGM)微生境捕食性和非捕食性土壤动物活动密度的关系
Fig. 4 The relationship of the activity density of predators and non-predators between ant nest (ANM) and adjacent bare ground (BGM) microhabitats
图5 蚁穴和毗邻裸地微生境大型土壤动物与3个土壤因子的RDA排序图。图中○代表蚁穴, □代表毗邻裸地。实线箭头代表环境因子, EC为电导率, TN为土壤全氮, SC为粉粒含量; 虚线箭头代表土壤动物类群, Kar: 卡尔避日蛛科; But: 钳蝎科; Scl: 硬体盲蛛科; Lyc: 狼蛛科; Gna: 平腹蛛科; Sal: 跳蛛科; Phi: 逍遥蛛科; The: 球蛛科; Eri: 微蛛亚科; Tho: 蟹蛛科; Oni: 潮虫科; Chr: 草蛉科; Phl: 管蓟马科; Acr: 蝗科; Lyg: 长蝽科; Cic: 叶蝉科; Mar: 绵蚧科; Aphi: 蚜科; Car: 步甲科; His: 阎甲科; Sta: 隐翅虫科; Coc: 瓢虫科; Geo: 粪金龟科; Cur: 象甲科; Apho: 蜉金龟科; Sio: 锯谷盗科; Cet: 花金龟科; Ten: 拟步甲科; Asi: 食虫虻科; Syr: 食蚜蝇科; Noc: 夜蛾科幼虫; Sph: 泥蜂科; Cha: 小蜂科; Ves: 胡蜂科; Sce: 缘腹细蜂科; For: 蚁科。
Fig. 5 The RDA two-dimensional ordination diagram of soil macrofauna community and three soil factors in ant nest and adjacent bare ground microhabitats. ○ represents ant nests, □ represents bare ground microhabitats. The solid arrows represent environmental factors. EC, Electrical conductivity; TN, Total nitrogen; SC, Silt content. Dotted arrows represent soil macrofauna communities. Kar, Karschiidae; But, Buthidae; Scl, Sclerosomatidae; Lyc, Lycosidae; Gna, Gnaphosidae; Sal, Salticidae; Phi, Philodromidae; The, Theridiidae; Eri, Erigoninae; Tho, Thomisidae; Oni, Oniscidae; Chr, Chrysopidae; Phl, Phlaeothripidae; Acr, Acrididae; Lyg, Lygaeidae; Cic, Cicadellidae; Mar, Margarodidae; Aphi, Aphididae; Car, Carabidae; His, Histeridae; Sta, Staphylinidae; Coc, Coccinellidae; Geo, Geotrupidae; Cur, Curculionidae; Apho, Aphodiidae; Sio, Siovanidae; Cet, Cetoniidae; Ten, Tenebrionidae; Asi, Asilidae; Syr, Syrphidae; Noc, Noctuidae larvae; Sph, Sphecidae; Cha, Chalcididae; Ves, Vespidae; Sce, Scelionidae; For, Formicidae.
蚁穴 Ant nest microhabitats | 裸地 Bare ground microhabitats | |||
---|---|---|---|---|
r | P | r | P | |
大型土壤动物 Soil macrofauna | ||||
活动密度 Activity density | -0.16 | 0.459 | -0.12 | 0.576 |
类群丰富度 Groups richness | -0.16 | 0.452 | -0.16 | 0.448 |
多样性指数 Diversity index | -0.01 | 0.992 | -0.16 | 0.460 |
均匀度指数 Evenness index | 0.11 | 0.627 | -0.02 | 0.944 |
主要类群 Dominant groups | ||||
平腹蛛科 Gnaphosidae | -0.04 | 0.854 | -0.22 | 0.309 |
球蛛科 Theridiidae | -0.11 | 0.604 | -0.17 | 0.429 |
长蝽科 Lygaeidae | -0.24 | 0.264 | -0.05 | 0.830 |
叶蝉科 Cicadellidae | 0.12 | 0.584 | 0.48 | 0.018 |
蚜科 Aphididae | 0.39 | 0.061 | 0.52 | 0.009 |
隐翅虫科 Staphylinidae | -0.30 | 0.158 | -0.13 | 0.545 |
粪金龟科 Geotrupidae | 0.06 | 0.786 | -0.46 | 0.025 |
象甲科 Curculionidae | 0.42 | 0.041 | -0.16 | 0.449 |
拟步甲科 Tenebrionidae | -0.05 | 0.816 | -0.37 | 0.075 |
蚁科 Formicidae | -0.44 | 0.033 | -0.21 | 0.337 |
表3 蚁穴和裸地微生境荒漠收获蚁活动密度与大型土壤动物群落结构参数及主要类群活动密度的Spearman相关系数
Table 3 Spearman’s correlation coefficient of the activity density in Messor desertus and community structure parameters of soil macrofauna community, the activity density of dominant groups at ant nest and bare ground microhabitats
蚁穴 Ant nest microhabitats | 裸地 Bare ground microhabitats | |||
---|---|---|---|---|
r | P | r | P | |
大型土壤动物 Soil macrofauna | ||||
活动密度 Activity density | -0.16 | 0.459 | -0.12 | 0.576 |
类群丰富度 Groups richness | -0.16 | 0.452 | -0.16 | 0.448 |
多样性指数 Diversity index | -0.01 | 0.992 | -0.16 | 0.460 |
均匀度指数 Evenness index | 0.11 | 0.627 | -0.02 | 0.944 |
主要类群 Dominant groups | ||||
平腹蛛科 Gnaphosidae | -0.04 | 0.854 | -0.22 | 0.309 |
球蛛科 Theridiidae | -0.11 | 0.604 | -0.17 | 0.429 |
长蝽科 Lygaeidae | -0.24 | 0.264 | -0.05 | 0.830 |
叶蝉科 Cicadellidae | 0.12 | 0.584 | 0.48 | 0.018 |
蚜科 Aphididae | 0.39 | 0.061 | 0.52 | 0.009 |
隐翅虫科 Staphylinidae | -0.30 | 0.158 | -0.13 | 0.545 |
粪金龟科 Geotrupidae | 0.06 | 0.786 | -0.46 | 0.025 |
象甲科 Curculionidae | 0.42 | 0.041 | -0.16 | 0.449 |
拟步甲科 Tenebrionidae | -0.05 | 0.816 | -0.37 | 0.075 |
蚁科 Formicidae | -0.44 | 0.033 | -0.21 | 0.337 |
[1] |
Alper J (1998) Ecosystem ‘engineers’ shape habitats for other species. Science, 280, 1195-1196.
DOI URL |
[2] | Bao SD (2000) Soil and Agricultural Chemistry Analysis. China Agriculture Press, Beijing. (in Chinese) |
[ 鲍士旦 (2000) 土壤农化分析. 中国农业出版社, 北京.] | |
[3] |
Boulton AM, Amberman KD (2006) How ant nests increase soil biota richness and abundance: A field experiment. Biodiversity and Conservation, 15, 69-82.
DOI URL |
[4] |
Boulton AM, Jaffee BA, Scow KM (2003) Effects of a common harvester ant (Messor andrei) on richness and abundance of soil biota. Applied Soil Ecology, 23, 257-265.
DOI URL |
[5] |
Brown G, Scherber C, Ramos P Jr, Ebrahim EK (2012) The effects of harvester ant (Messor ebeninus Forel) nests on vegetation and soil properties in a desert dwarf shrub community in north-eastern Arabia. Flora, 207, 503-511.
DOI URL |
[6] |
Cammeraat LH, Willott SJ, Compton SG, Incoll LD (2002) The effects of ants’ nests on the physical, chemical and hydrological properties of a rangeland soil in semi-arid Spain. Geoderma, 105, 1-20.
DOI URL |
[7] | Chang YD, He DH (2002) Seed storage behavior of Messor aciculatus and its effect on seed germination. Entomological Knowledge, 39, 445-450. (in Chinese with English abstract) |
[ 长有德, 贺达汉 (2002) 针毛收获蚁贮食行为及贮藏对种子活力的影响. 昆虫知识, 39, 445-450.] | |
[8] |
Chen YW, Li XR (2012) Spatio-temporal distribution of nests and influence of ant (Formica cunicularia lat.) activity on soil property and seed bank after revegetation in the Tengger Desert. Arid Land Research and Management, 26, 365-378.
DOI URL |
[9] |
Doblas-Miranda E, Sánchez-Piñero F, González-Megías A (2009) Different microhabitats affect soil macroinvertebrate assemblages in a Mediterranean arid ecosystem. Applied Soil Ecology, 41, 329-335.
DOI URL |
[10] |
Dostál P, Březnová M, Kozlíčková V, Herben T, Kovář P (2005) Ant-induced soil modification and its effect on plant below-ground biomass. Pedobiologia, 49, 127-137.
DOI URL |
[11] |
Farji-Brener AG, Werenkraut V (2017) The effects of ant nests on soil fertility and plant performance: A meta-analysis. Journal of Animal Ecology, 86, 866-877.
DOI PMID |
[12] |
Feng YM, Wu B, Yao AD, Cao XY, Cong RC, Yao B, Wang F, Lu Q (2014) A study on classification system and inventory of gobi. Acta Geographica Sinica, 69, 391-398. (in Chinese with English abstract)
DOI |
[ 冯益明, 吴波, 姚爱冬, 曹晓阳, 丛日春, 姚斌, 王锋, 卢琦 (2014) 戈壁分类体系与编目研究. 地理学报, 69, 391-398.]
DOI |
|
[13] |
Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: A review. Biodiversity and Conservation, 7, 1221-1244.
DOI URL |
[14] | Frouz J, Jílková V (2008) The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecological News, 11, 191-199. |
[15] | Ghobadi M, Mahdavi M, Agosti D (2016) Changes in soil properties by harvester ant’s activity (Messor spp.) in Roodshoor Steppe rangeland of Saveh, Iran. Journal of Rangeland Science, 3, 273-285. |
[16] |
Gibb H, Grossman BF, Dickman CR, Decker O, Wardle GM (2019) Long-term responses of desert ant assemblages to climate. Journal of Animal Ecology, 88, 1549-1563.
DOI PMID |
[17] | He DH, Xin M, Chang YD, Li QX (2003) Studies on the foraging function of Messor aciculants (F. Smith) on plant seeds in desert steppe ecosystem of Ningxia, China. Acta Ecologica Sinica, 23, 1063-1070. (in Chinese with English abstract) |
[ 贺达汉, 辛明, 长有德, 李秋霞 (2003) 宁夏荒漠草原针毛收获蚁对植物种子的觅食作用. 生态学报, 23, 1063-1070.] | |
[18] |
Jouquet P, Dauber J, Lagerlöf J, Lavelle P, Lepage M (2006) Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Applied Soil Ecology, 32, 153-164.
DOI URL |
[19] |
Li FR, Liu JL, Liu CA, Liu QJ, Niu RX (2013) Shrubs and species identity effects on the distribution and diversity of ground-dwelling arthropods in a gobi desert. Journal of Insect Conservation, 17, 319-331.
DOI URL |
[20] | Li XR, Gao YH, Su JQ, Jia RL, Zhang ZS (2014) Ants mediate soil water in arid desert ecosystems: Mitigating rainfall interception induced by biological soil crusts? Applied Soil Ecology, 78, 57-64. |
[21] | Liang HB, Yu PY (2000) Species of ground beetles (Coleoptera: Carabidae) predating oriental armyworm (Lepidoptera: Notuidae) in China. Natural Enemies of Insects, 22, 160-167. (in Chinese with English abstract) |
[ 梁宏斌, 虞佩玉 (2000) 中国捕食粘虫的步甲种类检索. 昆虫天敌, 22, 160-167.] | |
[22] |
Liu JL, Li FR, Liu CA, Liu QJ (2012) Influences of shrub vegetation on distribution and diversity of a ground beetle community in a gobi desert ecosystem. Biodiversity and Conservation, 21, 2601-2619.
DOI URL |
[23] | Liu JL, Li FR, Liu QJ, Niu RX (2010) Seasonal variation of ground dwelling arthropod communities in an arid desert of the middle Heihe River Basin. Acta Prataculturae Sinica, 19, 161-169. (in Chinese with English abstract) |
[ 刘继亮, 李锋瑞, 刘七军, 牛瑞雪 (2010) 黑河中游干旱荒漠地面节肢动物群落季节变异规律. 草业学报, 19, 161-169.] | |
[24] | Liu JL, Zhao WZ, Li FR, Ba YB (2021) Community dynamics of ground Arachnid arthropods in a gravel gobi desert of the middle of the Hexi Corridor, China. Journal of Desert Research, 41, 155-164. (in Chinese with English abstract) |
[ 刘继亮, 赵文智, 李锋瑞, 巴义彬 (2021) 河西走廊中部砾质戈壁蛛形纲节肢动物群落特征. 中国沙漠, 41, 155-164.] | |
[25] |
Liu RT, Zhao HL, Zhao XY (2009) Effect of vegetation restoration on ant nest-building activities following mobile dune stabilization in the Horqin Sandy land, Northern China. Land Degradation & Development, 20, 562-571.
DOI URL |
[26] |
Noumi Z, Chaieb M, Le Bagousse-Pinguet Y, Michalet R (2016) The relative contribution of short-term versus long-term effects in shrub-understory species interactions under arid conditions. Oecologia, 180, 529-542.
DOI PMID |
[27] | Ren GD, Yu YZ (1999) The Darkling Beetles from Deserts and Semideserts of China (Coleoptera: Tenebrionidae). Hebei University Press, Baoding. (in Chinese) |
[ 任国栋, 于有志 (1999) 中国荒漠半荒漠的拟步甲科昆虫. 河北大学出版社, 保定.] | |
[28] |
Sánchez-Piñero F, Gómez JM (1995) Use of ant-nest debris by darkling beetles and other arthropod species in an arid system in south Europe. Journal of Arid Environments, 31, 91-104.
DOI URL |
[29] |
Sanders D, Jones CG, Thébault E, Bouma TJ, van der Heide T, van Belzen J, Barot S (2014) Integrating ecosystem engineering and food webs. Oikos, 123, 513-524.
DOI URL |
[30] |
Sanders D,van Veen FJF (2011) Ecosystem engineering and predation: The multi-trophic impact of two ant species. Journal of Animal Ecology, 80, 569-576.
DOI PMID |
[31] |
Shen YC, Wang XH, Cheng WM, Wu JF, Lu Q, Feng YM (2016) Integrated physical regionalization of stony deserts in China. Progress in Geography, 35, 57-66. (in Chinese with English abstract)
DOI |
[ 申元村, 王秀红, 程维明, 吴金凤, 卢琦, 冯益明 (2016) 中国戈壁综合自然区划研究. 地理科学进展, 35, 57-66.]
DOI |
|
[32] | Song DX, Zhu MS, Chen J (1999) The Spiders of China. Hebei Science and Technology Publishing House, Shijiazhuang. |
[33] |
Taucare-Ríos A, Veloso C, Canals M, Bustamante RO (2020) Daily thermal preference variation of the sand recluse spider Sicarius thomisoides (Araneae: Sicariidae). Journal of Thermal Biology, 87, 102465.
DOI URL |
[34] | Ter Braak CJF, Šmilauer P (2012) Canoco Reference Manual and User’s Guide: Software for Ordination (version 5.0). Microcomputer Power, Ithaca, USA. |
[35] |
Wagner D, Brown MJF, Gordon DM (1997) Harvester ant nests, soil biota and soil chemistry. Oecologia, 112, 232-236.
DOI PMID |
[36] | Xin M (2015) Studies on the Taxonomy of the Formicidae from the Northwest China ( Hymenoptera). PhD dissertation, Ningxia University, Yinchuan. (in Chinese with English abstract) |
[ 辛明 (2015) 中国西北地区蚁科分类研究(膜翅目). 博士学位论文, 宁夏大学, 银川.] | |
[37] | Zhao YJ, Zhao M, Mao WY, Yu YW (2019) Review on the effects of ants on animals, plants and soil in grasslands. Journal of Yunnan Agricultural University (Natural Science), 34, 889-895. (in Chinese with English abstract) |
[ 赵一军, 赵敏, 毛文娅, 于应文 (2019) 蚂蚁对草地动植物及土壤作用的研究进展. 云南农业大学学报(自然科学), 34, 889-895.] | |
[38] | Zheng LY, Gui H (1999) Insect Classification. Nanjing Normal University Press, Nanjing. (in Chinese) |
[ 郑乐怡, 归鸿 (1999) 昆虫分类. 南京师范大学出版社, 南京.] |
[1] | 任嘉隆, 王永珍, 冯怡琳, 赵文智, 严祺涵, 秦畅, 方静, 辛未冬, 刘继亮. 基于陷阱法采集的河西走廊戈壁荒漠甲虫数据集[J]. 生物多样性, 2024, 32(2): 23375-. |
[2] | 王健铭, 曲梦君, 王寅, 冯益明, 吴波, 卢琦, 何念鹏, 李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素[J]. 生物多样性, 2022, 30(6): 21503-. |
[3] | 林永一, 王永珍, 冯怡琳, 赵文智, 高俊伟, 刘继亮. 河西走廊中部戈壁地表甲虫群落动态变化及其影响因素[J]. 生物多样性, 2022, 30(12): 22343-. |
[4] | 吴建波, 阮维斌, 谢凤行, 李晶, 高玉葆. 毛乌素沙地三种植物根际土壤线虫群落和多样性分析[J]. 生物多样性, 2008, 16(6): 547-554. |
[5] | 葛宝明, 程宏毅, 郑祥, 孔军苗, 鲍毅新. 浙江金华不同城市绿地大型土壤动物群落结构与多样性[J]. 生物多样性, 2005, 13(3): 197-203. |
[6] | 韩博平. 生态系统营养结构多样性的测度[J]. 生物多样性, 1995, 03(4): 222-226. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn