生物多样性 ›› 2021, Vol. 29 ›› Issue (11): 1513-1529. DOI: 10.17520/biods.2021124
所属专题: 土壤生物与土壤健康
王楠1,2, 黄菁华1,3,*(), 霍娜1,2, 杨盼盼3,4, 张欣玥1,5, 赵世伟1,2,3
收稿日期:
2021-04-02
接受日期:
2021-06-03
出版日期:
2021-11-20
发布日期:
2021-08-12
通讯作者:
黄菁华
作者简介:
E-mail: jhhuang@nwafu.edu.cn基金资助:
Nan Wang1,2, Jinghua Huang1,3,*(), Na Huo1,2, Panpan Yang3,4, Xinyue Zhang1,5, Shiwei Zhao1,2,3
Received:
2021-04-02
Accepted:
2021-06-03
Online:
2021-11-20
Published:
2021-08-12
Contact:
Jinghua Huang
摘要:
线虫是土壤食物网的重要组分, 也是土壤健康与生态系统恢复的重要指示生物, 因此准确测定线虫群落特征是发挥其生态指示作用的基础。传统线虫学研究多采用形态学鉴定方法, 但高通量测序技术近年来也逐渐受到重视。然而, 关于这两种方法的对比研究目前仍比较缺乏。本研究同时采用形态学鉴定和高通量测序法, 在黄土高原宁夏南部山区, 对不同植被恢复方式下(农田、自然恢复草地、柠条(Caragana korshinskii)人工林地和苜蓿人工草地)土壤线虫的数量、群落格局和生态指数进行了测定和比较。结果表明: (1)高通量测序仅能提供线虫类群的相对多度, 而形态学鉴定法能够测定土壤线虫的绝对多度, 后者测定结果表明3种植被恢复样地, 特别是自然恢复草地和柠条人工林地, 较农田具有更高的土壤线虫多度; (2)高通量测序法检获的线虫类群数(3纲4目26科42属)高于形态学鉴定法的测定结果(2纲3目18科27属), 但两种方法仅检获15个共有线虫属, 前者检测到的植物寄生线虫属数(22属)较后者(7属)显著增加, 而食细菌线虫和杂食-捕食线虫则相反; (3)在两种方法下, 相比农田, 3种植被恢复样地尤其是自然恢复草地和柠条人工林地, 其食微线虫的相对多度均显著下降, 而植物寄生线虫和杂食-捕食线虫的相对多度大幅上升, 这也导致线虫成熟度指数(MI)和植物寄生线虫指数(PPI)的提高及瓦斯乐卡指数(WI)的显著下降; (4)相比形态学鉴定法, 高通量测序法能检测到更丰富多样的植物寄生线虫, 在该方法下土壤线虫群落的组成、结构和生态指数在植被恢复样地与农田之间的差异也更为显著。综上所述, 采用形态学鉴定和高通量测序法测定的不同植被恢复方式下的线虫群落特征具有显著差异。
王楠, 黄菁华, 霍娜, 杨盼盼, 张欣玥, 赵世伟 (2021) 宁南山区不同植被恢复方式下土壤线虫群落特征:形态学鉴定与高通量测序法比较. 生物多样性, 29, 1513-1529. DOI: 10.17520/biods.2021124.
Nan Wang, Jinghua Huang, Na Huo, Panpan Yang, Xinyue Zhang, Shiwei Zhao (2021) Characteristics of soil nematode community under different vegetation restoration approaches in the mountainous region of southern Ningxia: A comparative study based on morphological identification and high-throughput sequencing methods. Biodiversity Science, 29, 1513-1529. DOI: 10.17520/biods.2021124.
样地 Sampling site | 植被特征 Vegetation characteristics | 恢复年限 Restoration year | 经度 Longitude | 纬度 Latitude | 海拔 Altitude (m) | 坡向 Aspect | 坡度 Slope degree (°) |
---|---|---|---|---|---|---|---|
农田 Cropland (CL) | 玉米 Corn | >20 | 106°27′54′′ E | 36°0′42′′ N | 1,530 | 西偏北14° W14°N | 7 |
自然恢复草地 Natural grassland (NR) | 长芒草 Stipa bungeana 百里香 Thymus mongolicus 冰草 Agropyron cristatum | 24 | 106°28′12′′ E | 36°0′35′′ N | 1,673 | 西偏北12° W12°N | 24 |
柠条人工林地 Caragana korshinskii plantation (CK) | 柠条 Caragana korshinskii 长芒草 Stipa bungeana 冰草 Agropyron cristatum | 24 | 106°28′12′′ E | 36°0′40′′ N | 1,670 | 西偏北22° W22°N | 23 |
苜蓿人工草地 Medicago sativa grassland (MS) | 紫花苜蓿 Medicago sativa 长芒草 Stipa bungeana | 12 | 106°28′02′′ E | 36°0′46′′ N | 1,591 | 西偏北16° W16°N | 15 |
表1 宁南山区不同植被类型样地概况
Table 1 Descriptions of the sampling sites under different vegetation types in the mountainous area of southern Ningxia
样地 Sampling site | 植被特征 Vegetation characteristics | 恢复年限 Restoration year | 经度 Longitude | 纬度 Latitude | 海拔 Altitude (m) | 坡向 Aspect | 坡度 Slope degree (°) |
---|---|---|---|---|---|---|---|
农田 Cropland (CL) | 玉米 Corn | >20 | 106°27′54′′ E | 36°0′42′′ N | 1,530 | 西偏北14° W14°N | 7 |
自然恢复草地 Natural grassland (NR) | 长芒草 Stipa bungeana 百里香 Thymus mongolicus 冰草 Agropyron cristatum | 24 | 106°28′12′′ E | 36°0′35′′ N | 1,673 | 西偏北12° W12°N | 24 |
柠条人工林地 Caragana korshinskii plantation (CK) | 柠条 Caragana korshinskii 长芒草 Stipa bungeana 冰草 Agropyron cristatum | 24 | 106°28′12′′ E | 36°0′40′′ N | 1,670 | 西偏北22° W22°N | 23 |
苜蓿人工草地 Medicago sativa grassland (MS) | 紫花苜蓿 Medicago sativa 长芒草 Stipa bungeana | 12 | 106°28′02′′ E | 36°0′46′′ N | 1,591 | 西偏北16° W16°N | 15 |
样地 Sampling site | pH | 土壤含水量 SM (%) | 有机碳 SOC (g/kg) | 全氮 TN (g/kg) | 速效磷 Olsen-P (mg/kg) | 铵态氮 NH4+-N (mg/kg) | 硝态氮 NO3--N (mg/kg) |
---|---|---|---|---|---|---|---|
农田 Cropland (CL) | 8.24a | 6.40a | 7.34b | 0.80c | 45.58a | 0.73ab | 1.76a |
自然恢复草地 Natural grassland (NR) | 8.02b | 5.55a | 15.90a | 1.42a | 5.20b | 1.46a | 2.70a |
柠条人工林地 Caragana korshinskii plantation (CK) | 8.00b | 6.02a | 17.47a | 1.32ab | 5.73b | 0.62ab | 2.25a |
苜蓿人工草地 Medicago sativa grassland (MS) | 8.26a | 6.37a | 8.11b | 0.97bc | 7.40b | 0.40b | 1.20a |
表2 宁南山区不同植被类型样地土壤理化性质
Table 2 Soil physical and chemical properties in the sampling sites under different vegetation types in the mountainous area of southern Ningxia
样地 Sampling site | pH | 土壤含水量 SM (%) | 有机碳 SOC (g/kg) | 全氮 TN (g/kg) | 速效磷 Olsen-P (mg/kg) | 铵态氮 NH4+-N (mg/kg) | 硝态氮 NO3--N (mg/kg) |
---|---|---|---|---|---|---|---|
农田 Cropland (CL) | 8.24a | 6.40a | 7.34b | 0.80c | 45.58a | 0.73ab | 1.76a |
自然恢复草地 Natural grassland (NR) | 8.02b | 5.55a | 15.90a | 1.42a | 5.20b | 1.46a | 2.70a |
柠条人工林地 Caragana korshinskii plantation (CK) | 8.00b | 6.02a | 17.47a | 1.32ab | 5.73b | 0.62ab | 2.25a |
苜蓿人工草地 Medicago sativa grassland (MS) | 8.26a | 6.37a | 8.11b | 0.97bc | 7.40b | 0.40b | 1.20a |
图1 形态学鉴定法下宁南山区不同植被类型样地土壤线虫数量(平均值 + 标准误)。CL: 农田; NR: 自然恢复草地; CK: 柠条人工林地; MS: 苜蓿人工草地。
Fig. 1 Total abundance of soil nematodes in the sampling sites under different vegetation types in the mountainous region of southern Ningxia determined by morphological identification method (mean + SE). CL, Cropland; NR, Natural grassland; CK, Caragana korshinskii plantation; MS, Medicago sativa grassland.
样地 Sampling site | 序列数 Sequence number | OTU数目 Number of OTUs | 不能识别OTU比例 Proportion of unidentified OTUs (%) | 覆盖率 Coverage (%) |
---|---|---|---|---|
农田 Cropland (CL) | 447ab | 26 | 59.82 | 98.23a |
自然恢复草地 Natural grassland (NR) | 633ab | 38 | 59.12 | 98.44a |
柠条人工林地 Caragana korshinskii plantation (CK) | 938a | 48 | 57.53 | 98.24a |
苜蓿人工草地 Medicago sativa grassland (MS) | 151b | 42 | 57.40 | 98.02a |
表3 高通量测序法下宁南山区不同植被类型样地土壤线虫测序信息
Table 3 Sequence information of soil nematodes in the sampling sites under different vegetation types in the mountainous region of southern Ningxia determined by high-throughput sequencing method
样地 Sampling site | 序列数 Sequence number | OTU数目 Number of OTUs | 不能识别OTU比例 Proportion of unidentified OTUs (%) | 覆盖率 Coverage (%) |
---|---|---|---|---|
农田 Cropland (CL) | 447ab | 26 | 59.82 | 98.23a |
自然恢复草地 Natural grassland (NR) | 633ab | 38 | 59.12 | 98.44a |
柠条人工林地 Caragana korshinskii plantation (CK) | 938a | 48 | 57.53 | 98.24a |
苜蓿人工草地 Medicago sativa grassland (MS) | 151b | 42 | 57.40 | 98.02a |
线虫属 Nematode genus | 营养类群 Trophic group | c-p值 c-p value | 相对多度 Relative abundance (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
农田 (CL) | 自然恢复草地 (NR) | 柠条人工林地 (CK) | 苜蓿人工草地 (MS) | |||||||
I | II | I | II | I | II | I | II | |||
头叶属 Cephalobus | BF | 2 | 19.5 | 22.0 | 0.6 | 2.7 | 7.6 | 5.4 | 22.6 | 5.8 |
拟丽突属 Acrobeloides | BF | 2 | 0.3 | 11.4 | - | 1.9 | 2.5 | 4.2 | 0.3 | 5.0 |
管咽属 Aulolaimus | BF | 3 | - | - | - | - | - | - | - | 0.8 |
中杆属 Mesorhabditis | BF | 1 | - | 5.1 | - | - | - | - | - | - |
三等齿属 Pelodera | BF | 1 | - | 4.6 | - | - | - | - | - | - |
无咽属 Alaimus | BF | 4 | - | 1.6 | - | - | - | - | - | - |
丽突属 Acrobeles | BF | 2 | 1.7 | - | 11.5 | - | 8.3 | - | 6.1 | - |
鹿角唇属 Cervidellus | BF | 2 | 2.4 | - | 4.1 | - | 6.0 | - | 0.6 | - |
板唇属 Chiloplacus | BF | 2 | - | - | 1.9 | - | 0.3 | - | - | - |
真头叶属 Eucephalobus | BF | 2 | 5.6 | - | 3.5 | - | 2.2 | - | 2.9 | - |
线虫属 Nematode genus | 营养类群 Trophic group | c-p值 c-p value | 相对多度 Relative abundance (%) | |||||||
农田 (CL) | 自然恢复草地 (NR) | 柠条人工林地 (CK) | 苜蓿人工草地 (MS) | |||||||
I | II | I | II | I | II | I | II | |||
小杆属 Rhabditis | BF | 1 | 6.0 | - | - | - | 0.3 | - | - | - |
茎属 Ditylenchus | PP | 2 | 13.5 | 11.4 | 4.5 | 0.1 | 7.0 | 0.2 | 16.8 | 2.1 |
垫刃属 Tylenchus | PP | 2 | 0.3 | - | 6.0 | - | 2.2 | <0.1 | 1.3 | - |
螺旋属 Helicotylenchus | PP | 3 | 1.2 | - | 1.9 | - | 2.2 | 0.1 | - | 2.5 |
短体属 Pratylenchus | PP | 3 | 1.9 | - | 1.6 | - | 0.3 | - | 1.0 | 1.2 |
矮化属 Tylenchorhynchus | PP | 3 | 3.9 | - | 21.1 | - | 16.2 | 0.4 | 4.5 | 0.4 |
剑属 Xiphinema | PP | 5 | 0.3 | - | 0.3 | 1.2 | 1.3 | 2.0 | - | 0.7 |
盘旋属 Rotylenchus | PP | 3 | 3.4 | - | 4.4 | <0.1 | 4.8 | - | 18.9 | - |
针属 Paratylenchus | PP | 2 | - | <0.1 | - | 61.5 | - | 39.9 | - | 34.4 |
细小线虫属 Gracilacus | PP | 2 | - | - | - | 0.2 | - | 0.1 | - | 0.2 |
根结线虫属 Meloidogyne | PP | 3 | - | - | - | - | - | 0.4 | - | - |
细纹垫刃属 Lelenchus | PP | 2 | - | 0.3 | - | - | - | - | - | 0.8 |
新平滑垫刃属 Neopsilenchus | PP | 2 | - | - | - | - | - | 0.2 | - | 0.2 |
伞滑刃属 Bursaphelenchus | PP | 2 | - | - | - | - | - | 0.2 | - | 0.7 |
米卡垫刃属 Miculenchus | PP | 2 | - | - | - | - | - | 0.2 | - | - |
轮线虫属 Criconemoides | PP | 3 | - | - | - | 10.2 | - | 13.6 | - | 4.5 |
大默林属 Amplimerlinius | PP | 3 | - | - | - | 11.0 | - | 0.4 | - | 0.4 |
裸矛属 Psilenchus | PP | 2 | - | - | - | - | - | - | - | 1.2 |
突腔唇属 Ecphyadophora | PP | 2 | - | - | - | 0.1 | - | - | - | - |
叉针属 Boleodorus | PP | 2 | - | 0.6 | - | 0.1 | - | 0.1 | - | 0.4 |
剑尾垫刃属 Malenchus | PP | 2 | - | 0.8 | - | - | - | - | - | - |
巴兹尔属 Basiria | PP | 2 | - | - | - | - | - | - | - | 1.1 |
牙咽属 Dorylaimellus | PP | 5 | - | - | - | - | - | - | - | 0.2 |
垫咽属 Tylencholaimus | FF | 4 | 4.1 | - | 9.6 | 0.2 | 6.3 | 0.5 | 12.7 | 0.4 |
滑刃属 Aphelenchoides | FF | 2 | 0.6 | - | 1.0 | 0.2 | - | 0.4 | - | 0.8 |
真滑刃属 Aphelenchus | FF | 2 | 25.4 | 8.8 | 6.1 | 0.2 | 6.0 | 3.3 | 3.2 | 9.5 |
艾普鲁斯属 Aprutides | FF | 2 | - | - | - | 0.1 | - | - | - | - |
瘤咽属 Tylencholaimellus | FF | 4 | - | 28.0 | - | 0.8 | - | 1.4 | - | 11.2 |
丝尾垫刃属 Filenchus | FF | 2 | - | 1.8 | - | - | - | - | - | - |
孔咽属 Aporcelaimellus | OP | 5 | 2.0 | 0.1 | 1.6 | 0.7 | 3.8 | 1.1 | 2.9 | 4.3 |
前矛线属 Prodorylaimus | OP | 5 | - | - | 0.3 | 0.2 | - | 0.1 | - | - |
Allodorylaimus | OP | 4 | - | 3.4 | - | 0.8 | - | 0.8 | - | 1.5 |
中矛线属 Mesodorylaimus | OP | 5 | - | - | - | 3.3 | - | 9.8 | - | - |
独壁齿属 Campydora | OP | 4 | - | - | - | 4.1 | - | 14.4 | - | 8.3 |
真矛线属 Eudorylaimus | OP | 4 | - | - | - | - | 1.9 | - | 1.0 | - |
高知属 Kochinema | OP | 4 | - | - | 1.9 | - | 1.3 | - | 0.3 | - |
微矛线属 Microdorylaimus | OP | 4 | - | - | - | - | 0.6 | - | - | - |
缢咽属 Paraxonchium | OP | 5 | 1.0 | - | - | - | 0.3 | - | - | - |
索努斯属 Thonus | OP | 4 | 4.7 | - | 3.5 | - | 7.9 | - | 2.2 | - |
盘咽属 Discolaimus | OP | 5 | - | - | 0.3 | 0.4 | 0.3 | 0.8 | 0.3 | 1.6 |
Paractinolaimus | OP | 5 | - | <0.1 | - | - | - | - | - | - |
狭咽属 Discolaimium | OP | 5 | 1.9 | - | 7.6 | 0.4 | 5.4 | 0.8 | 2.2 | 1.6 |
Paravulvus | OP | 5 | 0.3 | - | 6.7 | - | 4.8 | - | 0.3 | - |
属数 Genera number | 21 | 16 | 22 | 23 | 25 | 27 | 19 | 28 |
表4 基于形态学鉴定法和高通量测序法测定的宁南山区不同植被类型样地中土壤线虫属的相对多度
Table 4 Relative abundance of soil nematode genera in the sampling sites under different vegetation types in the mountainous region of southern Ningxia based on morphological identification and high-throughput sequencing
线虫属 Nematode genus | 营养类群 Trophic group | c-p值 c-p value | 相对多度 Relative abundance (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
农田 (CL) | 自然恢复草地 (NR) | 柠条人工林地 (CK) | 苜蓿人工草地 (MS) | |||||||
I | II | I | II | I | II | I | II | |||
头叶属 Cephalobus | BF | 2 | 19.5 | 22.0 | 0.6 | 2.7 | 7.6 | 5.4 | 22.6 | 5.8 |
拟丽突属 Acrobeloides | BF | 2 | 0.3 | 11.4 | - | 1.9 | 2.5 | 4.2 | 0.3 | 5.0 |
管咽属 Aulolaimus | BF | 3 | - | - | - | - | - | - | - | 0.8 |
中杆属 Mesorhabditis | BF | 1 | - | 5.1 | - | - | - | - | - | - |
三等齿属 Pelodera | BF | 1 | - | 4.6 | - | - | - | - | - | - |
无咽属 Alaimus | BF | 4 | - | 1.6 | - | - | - | - | - | - |
丽突属 Acrobeles | BF | 2 | 1.7 | - | 11.5 | - | 8.3 | - | 6.1 | - |
鹿角唇属 Cervidellus | BF | 2 | 2.4 | - | 4.1 | - | 6.0 | - | 0.6 | - |
板唇属 Chiloplacus | BF | 2 | - | - | 1.9 | - | 0.3 | - | - | - |
真头叶属 Eucephalobus | BF | 2 | 5.6 | - | 3.5 | - | 2.2 | - | 2.9 | - |
线虫属 Nematode genus | 营养类群 Trophic group | c-p值 c-p value | 相对多度 Relative abundance (%) | |||||||
农田 (CL) | 自然恢复草地 (NR) | 柠条人工林地 (CK) | 苜蓿人工草地 (MS) | |||||||
I | II | I | II | I | II | I | II | |||
小杆属 Rhabditis | BF | 1 | 6.0 | - | - | - | 0.3 | - | - | - |
茎属 Ditylenchus | PP | 2 | 13.5 | 11.4 | 4.5 | 0.1 | 7.0 | 0.2 | 16.8 | 2.1 |
垫刃属 Tylenchus | PP | 2 | 0.3 | - | 6.0 | - | 2.2 | <0.1 | 1.3 | - |
螺旋属 Helicotylenchus | PP | 3 | 1.2 | - | 1.9 | - | 2.2 | 0.1 | - | 2.5 |
短体属 Pratylenchus | PP | 3 | 1.9 | - | 1.6 | - | 0.3 | - | 1.0 | 1.2 |
矮化属 Tylenchorhynchus | PP | 3 | 3.9 | - | 21.1 | - | 16.2 | 0.4 | 4.5 | 0.4 |
剑属 Xiphinema | PP | 5 | 0.3 | - | 0.3 | 1.2 | 1.3 | 2.0 | - | 0.7 |
盘旋属 Rotylenchus | PP | 3 | 3.4 | - | 4.4 | <0.1 | 4.8 | - | 18.9 | - |
针属 Paratylenchus | PP | 2 | - | <0.1 | - | 61.5 | - | 39.9 | - | 34.4 |
细小线虫属 Gracilacus | PP | 2 | - | - | - | 0.2 | - | 0.1 | - | 0.2 |
根结线虫属 Meloidogyne | PP | 3 | - | - | - | - | - | 0.4 | - | - |
细纹垫刃属 Lelenchus | PP | 2 | - | 0.3 | - | - | - | - | - | 0.8 |
新平滑垫刃属 Neopsilenchus | PP | 2 | - | - | - | - | - | 0.2 | - | 0.2 |
伞滑刃属 Bursaphelenchus | PP | 2 | - | - | - | - | - | 0.2 | - | 0.7 |
米卡垫刃属 Miculenchus | PP | 2 | - | - | - | - | - | 0.2 | - | - |
轮线虫属 Criconemoides | PP | 3 | - | - | - | 10.2 | - | 13.6 | - | 4.5 |
大默林属 Amplimerlinius | PP | 3 | - | - | - | 11.0 | - | 0.4 | - | 0.4 |
裸矛属 Psilenchus | PP | 2 | - | - | - | - | - | - | - | 1.2 |
突腔唇属 Ecphyadophora | PP | 2 | - | - | - | 0.1 | - | - | - | - |
叉针属 Boleodorus | PP | 2 | - | 0.6 | - | 0.1 | - | 0.1 | - | 0.4 |
剑尾垫刃属 Malenchus | PP | 2 | - | 0.8 | - | - | - | - | - | - |
巴兹尔属 Basiria | PP | 2 | - | - | - | - | - | - | - | 1.1 |
牙咽属 Dorylaimellus | PP | 5 | - | - | - | - | - | - | - | 0.2 |
垫咽属 Tylencholaimus | FF | 4 | 4.1 | - | 9.6 | 0.2 | 6.3 | 0.5 | 12.7 | 0.4 |
滑刃属 Aphelenchoides | FF | 2 | 0.6 | - | 1.0 | 0.2 | - | 0.4 | - | 0.8 |
真滑刃属 Aphelenchus | FF | 2 | 25.4 | 8.8 | 6.1 | 0.2 | 6.0 | 3.3 | 3.2 | 9.5 |
艾普鲁斯属 Aprutides | FF | 2 | - | - | - | 0.1 | - | - | - | - |
瘤咽属 Tylencholaimellus | FF | 4 | - | 28.0 | - | 0.8 | - | 1.4 | - | 11.2 |
丝尾垫刃属 Filenchus | FF | 2 | - | 1.8 | - | - | - | - | - | - |
孔咽属 Aporcelaimellus | OP | 5 | 2.0 | 0.1 | 1.6 | 0.7 | 3.8 | 1.1 | 2.9 | 4.3 |
前矛线属 Prodorylaimus | OP | 5 | - | - | 0.3 | 0.2 | - | 0.1 | - | - |
Allodorylaimus | OP | 4 | - | 3.4 | - | 0.8 | - | 0.8 | - | 1.5 |
中矛线属 Mesodorylaimus | OP | 5 | - | - | - | 3.3 | - | 9.8 | - | - |
独壁齿属 Campydora | OP | 4 | - | - | - | 4.1 | - | 14.4 | - | 8.3 |
真矛线属 Eudorylaimus | OP | 4 | - | - | - | - | 1.9 | - | 1.0 | - |
高知属 Kochinema | OP | 4 | - | - | 1.9 | - | 1.3 | - | 0.3 | - |
微矛线属 Microdorylaimus | OP | 4 | - | - | - | - | 0.6 | - | - | - |
缢咽属 Paraxonchium | OP | 5 | 1.0 | - | - | - | 0.3 | - | - | - |
索努斯属 Thonus | OP | 4 | 4.7 | - | 3.5 | - | 7.9 | - | 2.2 | - |
盘咽属 Discolaimus | OP | 5 | - | - | 0.3 | 0.4 | 0.3 | 0.8 | 0.3 | 1.6 |
Paractinolaimus | OP | 5 | - | <0.1 | - | - | - | - | - | - |
狭咽属 Discolaimium | OP | 5 | 1.9 | - | 7.6 | 0.4 | 5.4 | 0.8 | 2.2 | 1.6 |
Paravulvus | OP | 5 | 0.3 | - | 6.7 | - | 4.8 | - | 0.3 | - |
属数 Genera number | 21 | 16 | 22 | 23 | 25 | 27 | 19 | 28 |
图2 宁南山区不同植被类型下土壤线虫群落的主成分分析。A: 形态学鉴定法; B: 高通量测序法。
Fig. 2 Principal component analysis of soil nematode communities in the sampling sites under different vegetation types in the mountainous region of southern Ningxia. A, Morphological identification method; B, High-throughput sequencing method.
图3 宁南山区不同植被类型样地中土壤线虫各营养类群的相对多度(平均值 + 标准误)。A: 形态学鉴定法; B: 高通量测序法。BF: 食细菌线虫; FF: 食真菌线虫; PP: 植物寄生线虫; OP: 杂食-捕食线虫。不同小写字母表示样地间差异显著(P < 0.05)。
Fig. 3 Relative abundance (mean + SE) of soil nematode trophic groups in the sampling sites under different vegetation types in the mountainous region of southern Ningxia. A, Morphological identification method; B, High-throughput sequencing method. BF, Bacterial-feeding nematodes; FF, Fungal-feeding nematodes; PP, Plant parasites; OP, Omnivores-Predators. Different lowercase letters indicate significant difference at the 0.05 level.
线虫属 Nematode genus | 营养类群 Trophic group | r | P |
---|---|---|---|
头叶属 Cephalobus | BF | 0.455 | 0.14 |
拟丽突属 Acrobeloides | BF | -0.007 | 0.98 |
茎属 Ditylenchus | PP | 0.061 | 0.85 |
垫刃属 Tylenchus | PP | -0.168 | 0.60 |
螺旋属 Helicotylenchus | PP | -0.305 | 0.34 |
短体属 Pratylenchus | PP | -0.080 | 0.80 |
盘旋属 Rotylenchus | PP | -0.183 | 0.57 |
矮化属 Tylenchorhynchus | PP | -0.062 | 0.85 |
剑属 Xiphinema | PP | 0.202 | 0.53 |
滑刃属 Aphelenchoides | FF | -0.196 | 0.54 |
真滑刃属 Aphelenchus | FF | 0.266 | 0.40 |
垫咽属 Tylencholaimus | FF | -0.144 | 0.66 |
孔咽属 Aporcelaimellus | OP | 0.020 | 0.95 |
前矛线属 Prodorylaimus | OP | 0.291 | 0.36 |
盘咽属 Discolaimus | OP | -0.292 | 0.36 |
表5 形态学鉴定法和高通量测序法下共有线虫属相对多度的相关性分析
Table 5 Pearson correlation analysis between the relative abundance of all nematode genera that were identified by both morphological identification method and high-throughput sequencing method
线虫属 Nematode genus | 营养类群 Trophic group | r | P |
---|---|---|---|
头叶属 Cephalobus | BF | 0.455 | 0.14 |
拟丽突属 Acrobeloides | BF | -0.007 | 0.98 |
茎属 Ditylenchus | PP | 0.061 | 0.85 |
垫刃属 Tylenchus | PP | -0.168 | 0.60 |
螺旋属 Helicotylenchus | PP | -0.305 | 0.34 |
短体属 Pratylenchus | PP | -0.080 | 0.80 |
盘旋属 Rotylenchus | PP | -0.183 | 0.57 |
矮化属 Tylenchorhynchus | PP | -0.062 | 0.85 |
剑属 Xiphinema | PP | 0.202 | 0.53 |
滑刃属 Aphelenchoides | FF | -0.196 | 0.54 |
真滑刃属 Aphelenchus | FF | 0.266 | 0.40 |
垫咽属 Tylencholaimus | FF | -0.144 | 0.66 |
孔咽属 Aporcelaimellus | OP | 0.020 | 0.95 |
前矛线属 Prodorylaimus | OP | 0.291 | 0.36 |
盘咽属 Discolaimus | OP | -0.292 | 0.36 |
H' | λ | J' | SR | MI | PPI | WI | NCR | ||
---|---|---|---|---|---|---|---|---|---|
形态学鉴定法 Morphological identification method | |||||||||
农田 Cropland (CL) | 2.24bc | 0.15ab | 0.81bc | 2.97a | 2.38c | 2.43a | 2.90a | 0.54a | |
自然恢复草地 Natural grassland (NR) | 2.48ab | 0.12b | 0.86ab | 2.53a | 3.10a | 2.75a | 0.98a | 0.57a | |
柠条人工林地 Caragana korshinskii plantation (CK) | 2.68a | 0.09b | 0.90a | 2.81a | 3.07a | 2.80a | 1.33a | 0.66a | |
苜蓿人工草地 Medicago sativa grassland (MS) | 2.05c | 0.19a | 0.76c | 2.20a | 2.73b | 2.51a | 1.53a | 0.69a | |
高通量测序 High-throughput sequencing | |||||||||
农田 Cropland (CL) | 1.54a | 0.28a | 0.60a | 2.21b | 2.76a | 2.00a | 4.58a | 0.49a | |
自然恢复草地 Natural grassland (NR) | 0.95a | 0.46a | 0.30b | 3.67ab | 3.71a | 2.29a | 0.08b | 0.67a | |
柠条人工林地 Caragana korshinskii plantation (CK) | 1.45a | 0.30a | 0.42ab | 5.04a | 3.55a | 2.44a | 0.31b | 0.63a | |
苜蓿人工草地 Medicago sativa grassland (MS) | 1.79a | 0.24a | 0.56ab | 4.62a | 3.39a | 2.27a | 0.90b | 0.34a |
表6 形态鉴定法和高通量测序法下宁南山区不同植被类型样地中土壤线虫生态指数
Table 6 Soil nematode ecological indexes in the sampling sites under different vegetation types in the mountainous region of southern Ningxia determined by morphological identification and high-throughput sequencing methods
H' | λ | J' | SR | MI | PPI | WI | NCR | ||
---|---|---|---|---|---|---|---|---|---|
形态学鉴定法 Morphological identification method | |||||||||
农田 Cropland (CL) | 2.24bc | 0.15ab | 0.81bc | 2.97a | 2.38c | 2.43a | 2.90a | 0.54a | |
自然恢复草地 Natural grassland (NR) | 2.48ab | 0.12b | 0.86ab | 2.53a | 3.10a | 2.75a | 0.98a | 0.57a | |
柠条人工林地 Caragana korshinskii plantation (CK) | 2.68a | 0.09b | 0.90a | 2.81a | 3.07a | 2.80a | 1.33a | 0.66a | |
苜蓿人工草地 Medicago sativa grassland (MS) | 2.05c | 0.19a | 0.76c | 2.20a | 2.73b | 2.51a | 1.53a | 0.69a | |
高通量测序 High-throughput sequencing | |||||||||
农田 Cropland (CL) | 1.54a | 0.28a | 0.60a | 2.21b | 2.76a | 2.00a | 4.58a | 0.49a | |
自然恢复草地 Natural grassland (NR) | 0.95a | 0.46a | 0.30b | 3.67ab | 3.71a | 2.29a | 0.08b | 0.67a | |
柠条人工林地 Caragana korshinskii plantation (CK) | 1.45a | 0.30a | 0.42ab | 5.04a | 3.55a | 2.44a | 0.31b | 0.63a | |
苜蓿人工草地 Medicago sativa grassland (MS) | 1.79a | 0.24a | 0.56ab | 4.62a | 3.39a | 2.27a | 0.90b | 0.34a |
[1] | An SS, Huang YM (2006) Study on the ameliorate benefits of Caragana korshinskii shrubwood to soil properties in loess hilly area. Scientia Silvae Sinicae, 42(1), 70-74. (in Chinese with English abstract) |
[ 安韶山, 黄懿梅 (2006) 黄土丘陵区柠条林改良土壤作用的研究. 林业科学, 42(1), 70-74.] | |
[2] | Bongers T (1988) Nematodes of Netherland. Stichting Uitgeverij Van de Koninklijke Nederlandse Natuurhistorische Vereniging, Utrecht. |
[3] |
Bongers T (1990) The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14-19.
DOI PMID |
[4] |
Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution, 14, 224-228.
DOI URL |
[5] |
Bongers T, van der Meulen H, Korthals G (1997) Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Applied Soil Ecology, 6, 195-199.
DOI URL |
[6] |
Cesarz S, Reich PB, Scheu S, Ruess L, Schaefer M, Eisenhauer N (2015) Nematode functional guilds, not trophic groups, reflect shifts in soil food webs and processes in response to interacting global change factors. Pedobiologia, 58, 23-32.
DOI URL |
[7] | Chang QR, An SS, Liu J, Wang B, Wei YS (1999) Study on benefits of recovering vegetation to prevent land deterioration on Loess Plateau. Journal of Soil Erosion and Soil and Water Conservation, 5, 6-9. (in Chinese with English abstract) |
[ 常庆瑞, 安韶山, 刘京, 王斌, 魏永胜 (1999) 黄土高原恢复植被防止土地退化效益研究. 土壤侵蚀与水土保持学报, 5, 6-9.] | |
[8] | Chen YF, Han XM, Li YF, Hu C (2014) Approach of nematode fauna analysis indicate the structure and function of soil food web. Acta Ecologica Sinica, 34, 1072-1084. (in Chinese with English abstract) |
[ 陈云峰, 韩雪梅, 李钰飞, 胡诚 (2014) 线虫区系分析指示土壤食物网结构和功能研究进展. 生态学报, 34, 1072-1084.] | |
[9] |
Cheng JM, Jing ZB, Jin JW, Gao Y (2014) Restoration and utilization mechanism of degraded grassland in the semi-arid region of Loess Plateau. Scientia Sinica Vitae, 44, 267-279. (in Chinese with English abstract)
DOI URL |
[ 程积民, 井赵斌, 金晶炜, 高阳 (2014) 黄土高原半干旱区退化草地恢复与利用过程研究. 中国科学: 生命科学, 44, 267-279.] | |
[10] |
Darby BJ, Todd TC, Herman MA (2013) High-throughput amplicon sequencing of rRNA genes requires a copy number correction to accurately reflect the effects of management practices on soil nematode community structure. Molecular Ecology, 22, 5456-5471.
DOI PMID |
[11] |
Du XF, Li YB, Han X, Ahmad W, Li Q (2020) Using high-throughput sequencing quantitatively to investigate soil nematode community composition in a steppe-forest ecotone. Applied Soil Ecology, 152, 103562.
DOI URL |
[12] | Du XF, Li YB, Liu F, Su XL, Li Q (2018) Structure and ecological functions of soil micro-food web. Chinese Journal of Applied Ecology, 29, 403-411. (in Chinese with English abstract) |
[ 杜晓芳, 李英滨, 刘芳, 宿晓琳, 李琪 (2018) 土壤微食物网结构与生态功能. 应用生态学报, 29, 403-411.] | |
[13] |
Ferris H, Bongers T, de Goede RGM (2001) A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13-29.
DOI URL |
[14] |
Fitoussi N, Pen-Mouratov S, Steinberger Y (2016) Soil free-living nematodes as bio-indicators for assaying the invasive effect of the alien plant Heterotheca subaxillaris in a coastal dune ecosystem. Applied Soil Ecology, 102, 1-9.
DOI URL |
[15] |
Fu XL, Shao MA, Wei XR, Horton R (2010) Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma, 155, 31-35.
DOI URL |
[16] | Gao DD, Moreira-Grez B, Wang KL, Zhang W, Xiao SS, Wang WL, Chen HS, Zhao J (2021) Effects of ecosystem disturbance on nematode communities in calcareous and red soils: Comparison of taxonomic methods. Soil Biology and Biochemistry, 155, 108162. |
[17] |
Geisen S, Snoek LB ten Hooven FC, Hooven FT, Duyts H, Kostenko O, Bloem J, Martens H, Quist CW, Helder JA, van der Putten WH (2018) Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion. Methods in Ecology and Evolution, 9, 1366-1378.
DOI URL |
[18] | Geng DZ, Huang JH, Huo N, Wang N, Yang PP, Zhao SW (2020) Characteristics of soil microbial and nematode communities under artificial Medicago sativa grasslands with different cultivation years in semi-arid region of Loess Plateau, Northwest China. Chinese Journal of Applied Ecology, 31, 1365-1377. (in Chinese with English abstract) |
[ 耿德洲, 黄菁华, 霍娜, 王楠, 杨盼盼, 赵世伟 (2020) 黄土高原半干旱区不同种植年限紫花苜蓿人工草地土壤微生物和线虫群落特征. 应用生态学报, 31, 1365-1377.] | |
[19] |
Griffiths BS de Groot GA, Laros I, Stone D, Geisen S (2018) The need for standardisation: Exemplified by a description of the diversity, community structure and ecological indices of soil nematodes. Ecological Indicators, 87, 43-46.
DOI URL |
[20] |
Guan PT, Zhang XK, Liang WJ, Jun NN (2015) Variation of soil nematode community composition with increasing sand-fixation year of Caragana microphylla: Bioindication for desertification restoration. Ecological Engineering, 81, 93-101.
DOI URL |
[21] | Hou L, Xue B, Xue HY (2019) Study on soil nematode community of Northern Tibetan alpine meadow under simulated warming condition by high-throughput sequencing method. Acta Agrestia Sinica, 27, 443-451. (in Chinese with English abstract) |
[ 侯磊, 薛蓓, 薛会英 (2019) 利用高通量测序法对模拟增温条件下藏北高寒草甸土壤线虫群落的研究. 草地学报, 27, 443-451.] | |
[22] | Hu CJ, Guo L (2012) Advances in the research of ecological effects of vegetation restoration. Ecology and Environmental Sciences, 21, 1640-1646. (in Chinese with English abstract) |
[ 胡婵娟, 郭雷 (2012) 植被恢复的生态效应研究进展. 生态环境学报, 21, 1640-1646.] | |
[23] | Hu F, Li HX, Xie LQ, Wu SM (1999) Interactions of bacterivorous nematode and bacteria and their effects on mineralization immobilization of nitrogen and phosphorus. Acta Ecologica Sinica, 19, 914-920. (in Chinese with English abstract) |
[ 胡锋, 李辉信, 谢涟琪, 吴珊眉 (1999) 土壤食细菌线虫与细菌的相互作用及其对N、P矿化生物固定的影响及机理. 生态学报, 19, 914-920.] | |
[24] | Huang PP, Zhao F, Xu KD (2017) Assessment of ciliate diversity in marine sediment on the basis of morphology and 18S rDNA and cDNA high-throughput sequencing. Oceanologia et Limnologia Sinica, 48, 285-296. (in Chinese with English abstract) |
[ 黄平平, 赵峰, 徐奎栋 (2017) 基于形态学与核糖体DNA及其cDNA高通量测序的海洋沉积物中纤毛虫多样性比较. 海洋与湖沼, 48, 285-296.] | |
[25] | Huang YF, Wu QL, Wan Q, Shu B (2019) Research progress of arbuscular mycorrhizal fungi. Modern Agriculture, (12), 9-12. (in Chinese) |
[ 黄艳飞, 吴庆丽, 万群, 舒彬 (2019) 丛枝菌根真菌的研究进展. 现代农业, (12), 9-12.] | |
[26] | Jenkins WR (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Reporter, 48, 692. |
[27] |
Kardol P, Bezemer TM, van der Wal A, van der Putten WH (2005) Successional trajectories of soil nematode and plant communities in a chronosequence of ex-arable lands. Biological Conservation, 126, 317-327.
DOI URL |
[28] |
Kerfahi D, Tripathi BM, Porazinska DL, Park J, Go R, Adams JM (2016) Do tropical rain forest soils have greater nematode diversity than High Arctic tundra? A metagenetic comparison of Malaysia and Svalbard. Global Ecology and Biogeography, 25, 716-728.
DOI URL |
[29] |
Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology, 12, 118-123.
DOI URL |
[30] | Li HX, Liu MQ, Hu F, Chen XY, He YQ (2002) Nematode abundance under different vegetations restored on degraded red soil. Acta Ecologica Sinica, 22, 1882-1889. (in Chinese with English abstract) |
[ 李辉信, 刘满强, 胡锋, 陈小云, 何圆球 (2002) 不同植被恢复方式下红壤线虫数量特征. 生态学报, 22, 1882-1889.] | |
[31] |
Li Q, Liang WJ, Jiang Y (2007) Present situation and prospect of soil nematode diversity in farmland ecosystems. Biodiversity Science, 15, 134-141. (in Chinese with English abstract)
DOI URL |
[ 李琪, 梁文举, 姜勇 (2007) 农田土壤线虫多样性研究现状及展望. 生物多样性, 15, 134-141.]
DOI |
|
[32] | Li SZ, Wang SJ, Liu JA, Wu Y, He YH, Li H (2015) Research on soil nematode community structure and diversity of different Cunninghamia lanceolata plantations. Journal of Central South University of Forestry & Technology, 35(10), 101-108. (in Chinese with English abstract) |
[ 李树战, 王圣洁, 刘君昂, 吴毅, 何苑皞, 李河 (2015) 不同杉木人工林土壤线虫群落结构及多样性研究. 中南林业科技大学学报, 35(10), 101-108.] | |
[33] | Li YB, Liu JG, Gu DY (2007) Allelopathic autotoxicity of plants and its application in agriculture. Journal of Agro-Environment Science, 26, 347-350. (in Chinese with English abstract) |
[ 李彦斌, 刘建国, 谷冬艳 (2007) 植物化感自毒作用及其在农业中的应用. 农业环境科学学报, 26, 347-350.] | |
[34] | Liu GB, Shangguan ZP, Yao WY, Yang QK, Zhao MJ, Dang XH, Guo MH, Wang GL, Wang B (2017) Ecological effects of soil conservation in Loess Plateau. Bulletin of Chinese Academy of Sciences, 32, 11-19. (in Chinese with English abstract) |
[ 刘国彬, 上官周平, 姚文艺, 杨勤科, 赵敏娟, 党小虎, 郭明航, 王国梁, 王兵 (2017) 黄土高原生态工程的生态成效. 中国科学院院刊, 32, 11-19.] | |
[35] |
Liu MQ, Chen XY, Qin JT, Wang D, Griffiths B, Hu F (2008) A sequential extraction procedure reveals that water management affects soil nematode communities in paddy fields. Applied Soil Ecology, 40, 250-259.
DOI URL |
[36] | Mao XF, Li HX, Chen XY, Hu F (2004) Extraction efficiency of soil nematodes by different methods. Chinese Journal of Ecology, 23, 149-151. |
[37] | Mo BR, Cai GJ, Zhao TN, Yu HB, Zou TF, Chai CS, Wang ZT (2010) Plant diversity and species composition on the process of vegetation restoration in semiarid loss hilly and gully at Gansu areas. Pratacultural Science, 27, 48-53. (in Chinese with English abstract) |
[ 莫保儒, 蔡国军, 赵廷宁, 于洪波, 邹天福, 柴春山, 王子婷 (2010) 黄土丘陵沟壑区植被恢复过程中物种组成及多样性. 草业科学, 27, 48-53.] | |
[38] |
Moroenyane I, Dong K, Singh D, Chimphango SBM, Adams JM (2016) Deterministic processes dominate nematode community structure in the Fynbos Mediterranean heathland of South Africa. Evolutionary Ecology, 30, 685-701.
DOI URL |
[39] |
Neher DA (2001) Role of nematodes in soil health and their use as indicators. Journal of Nematology, 33, 161-168.
PMID |
[40] |
Neher DA (2010) Ecology of plant and free-living nematodes in natural and agricultural soil. Annual Review of Phytopathology, 48, 371-394.
DOI URL |
[41] | Niles RK, Freckman DW (1998) From the ground up:Nematode ecology in bioassessment and ecosystem health. In: Plant-Nematode Interactions (eds Barker KR, Pederson GA, Windham GL), pp. 65-85. American Society of Agronomy, Madison. |
[42] |
Oliveira CMG, Hübschen J, Brown DJF, Ferraz LCCB, Neilson R (2004) Phylogenetic relationships among Xiphinema and Xiphidorus nematode species from Brazil inferred from 18S rDNA sequences. Journal of Nematology, 36, 153-159.
PMID |
[43] |
Powers TO, Neher DA, Mullin P, Esquivel A, Giblin-Davis RM, Kanzaki N, Stock SP, Mora MM, Uribe-Lorio L (2009) Tropical nematode diversity: Vertical stratification of nematode communities in a Costa Rican humid lowland rainforest. Molecular Ecology, 18, 985-996.
DOI PMID |
[44] | Shannon CE (1951) The mathematical theory of communication. Bell Labs Technical Journal, 3, 31-32. |
[45] |
Shao YH, Fu SL (2007) The diversity and functions of soil nematodes. Biodiversity Science, 15, 116-123. (in Chinese with English abstract)
DOI URL |
[ 邵元虎, 傅声雷 (2007) 试论土壤线虫多样性在生态系统中的作用. 生物多样性, 15, 116-123.]
DOI |
|
[46] | Shao YH, Zhang WX, Liu SJ, Wang XL, Fu SL (2015) Diversity and function of soil fauna. Acta Ecologica Sinica, 35, 6614-6625. (in Chinese with English abstract) |
[ 邵元虎, 张卫信, 刘胜杰, 王晓丽, 傅声雷 (2015) 土壤动物多样性及其生态功能. 生态学报, 35, 6614-6625.] | |
[47] |
Shi H, Shao MA (2000) Soil and water loss from the Loess Plateau in China. Journal of Arid Environments, 45, 9-20.
DOI URL |
[48] |
Simpson EH (1949) Measurement of diversity. Nature, 163, 688.
DOI URL |
[49] |
Sohlenius B, Sohlenius B (1980) Abundance, biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems. Oikos, 34, 186-194.
DOI URL |
[50] | Tian XL, Liu QL, Lang JF, Lu NH (2012) Application of molecular ecological techniques on the study of diversity of soil nematode. Guangdong Agricultural Sciences, 39(8), 145-147, 151. (in Chinese with English abstract) |
[ 田雪亮, 刘起丽, 郎剑锋, 陆宁海 (2012) 分子生态技术在土壤线虫多样性研究中的应用. 广东农业科学, 39(8), 145-147, 151.] | |
[51] |
Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J, Tito RY, De Commer L, Darzi Y, Vermeire S, Falony G, Raes J (2017) Quantitative microbiome profiling links gut community variation to microbial load. Nature, 551, 507-511.
DOI URL |
[52] |
von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews, 21, 213-229.
PMID |
[53] | Wang WT, Xia SW, Xiao HF, Liu SJ, Yang XD (2020) Difference of soil nematode communities between the humus and soil surface layer in the cold temperate coniferous and broadleaved mixed forest of Yulong Snow Mountain Nature Reserve, Yunnan, China. Chinese Journal of Applied Ecology, 31, 761-768. (in Chinese with English abstract) |
[ 王文婷, 夏尚文, 肖海峰, 刘胜杰, 杨效东 (2020) 玉龙雪山自然保护区寒温性针阔混交林腐殖质层和土壤表层线虫群落结构差异. 应用生态学报, 31, 761-768.] | |
[54] | Wang YT, Mei XF, Xie LN, Zhang GG, Li QF, Ma CC (2018) Study on soil nematode community characteristics associated with Caragana microphylla shrubs in desert steppe. Acta Agrestia Sinica, 26, 1305-1312. (in Chinese with English abstract) |
[ 王跃棠, 梅续芳, 解李娜, 张国刚, 李清芳, 马成仓 (2018) 荒漠草原小叶锦鸡儿灌丛土壤线虫群落研究. 草地学报, 26, 1305-1312.] | |
[55] |
Wang YT, Niu KC (2020) Effect of soil environment on functional diversity of soil nematodes in Tibetan alpine meadows. Biodiversity Science, 28, 707-717. (in Chinese with English abstract)
DOI URL |
[ 王宇彤, 牛克昌 (2020) 青藏高原高寒草甸土壤环境对线虫功能多样性的影响. 生物多样性, 28, 707-717.]
DOI |
|
[56] |
Wang ZQ, Guo SL, Sun QQ, Li NN, Jiang JS, Wang R, Zhang YJ, Liu QF, Wu DF, Li RJ, Du LL, Zhao M (2015) Soil organic carbon sequestration potential of artificial and natural vegetation in the hilly regions of Loess Plateau. Ecological Engineering, 82, 547-554.
DOI URL |
[57] | Wasilewska L (1994) The effect of age of meadows on succession and diversity in soil nematode communities. Pedobiologia, 38, 1-11. |
[58] | Wu DH, Yin WY, Yan RQ (2007) Effects of vegetation recovery practices on the characteristics of soil nematode communities on seriously degraded grasslands in Songnen Plain. Chinese Journal of Applied Ecology, 18, 2783-2790. (in Chinese with English abstract) |
[ 吴东辉, 尹文英, 阎日青 (2007) 植被恢复方式对松嫩草原重度退化草地土壤线虫群落特征的影响. 应用生态学报, 18, 2783-2790.] | |
[59] |
Wu JH, Song CY, Chen JK (2007) Effect of microbivorous nematodes on plant growth and soil nutrient cycling: A review. Biodiversity Science, 15, 124-133. (in Chinese with English abstract)
DOI URL |
[ 吴纪华, 宋慈玉, 陈家宽 (2007) 食微线虫对植物生长及土壤养分循环的影响. 生物多样性, 15, 124-133.]
DOI |
|
[60] | Wu P, Shi XJ, Lü XL, Gao Y, Li HT, Zhang JH (2019) Distribution of benthic eukaryote communities in intertidal zone of mangrove in the Beilun Estuary by high-throughput sequencing analysis. Journal of Applied Oceanography, 38, 232-238. (in Chinese with English abstract) |
[ 吴鹏, 时小军, 吕向立, 高阳, 李海涛, 张敬怀 (2019) 高通量测序分析北仑河口红树林潮间带底栖真核生物分布. 应用海洋学学报, 38, 232-238.] | |
[61] |
Wurst S, Wagenaar R, Biere A, van der Putten WH (2010) Microorganisms and nematodes increase levels of secondary metabolites in roots and root exudates of Plantago lanceolata. Plant and Soil, 329, 117-126.
DOI URL |
[62] | Xue B, Hou L, Xue HY (2019) Research on the characteristics of soil nematode communities in alpine meadow in northern Tibet by using high-throughput sequencing. Acta Ecologica Sinica, 39, 4088-4095. (in Chinese with English abstract) |
[ 薛蓓, 侯磊, 薛会英 (2019) 基于高通量测序分析西藏北部高寒草甸不同深度土壤线虫群落分布特征. 生态学报, 39, 4088-4095.] | |
[63] |
Yeates GW (1979) Soil nematodes in terrestrial ecosystems. Journal of Nematology, 11, 213-229.
PMID |
[64] | Yeates GW (1981) Nematode populations in relation to soil environmental factors: A review. Pedobiologia, 22, 312-338. |
[65] |
Yeates GW (2003) Nematodes as soil indicators: Functional and biodiversity aspects. Biology and Fertility of Soils, 37, 199-210.
DOI URL |
[66] | Yeates GW, William GL (1997) Burning in a New Zealand snow-tussock grassland: Effects on vegetation and soil fauna. New Zealand Journal of Ecology, 21, 73-79. |
[67] | Yin WY, Hu SH, Shen YF (1998) Pictorial Keys to Soil Animals of China. Science Press, Beijing. (in Chinese) |
[ 尹文英, 胡圣豪, 沈韫芬 (1998) 中国土壤动物检索图鉴. 科学出版社, 北京.] | |
[68] | Zhai H, Zhang H, Zhang C, Zhou X (2016) Soil microbial functional diversity in different types of stands in the hilly-gully regions of Loess Plateau. Scientia Silvae Sinicae, 52(12), 84-91. (in Chinese with English abstract) |
[ 翟辉, 张海, 张超, 周旭 (2016) 黄土峁状丘陵区不同类型林分土壤微生物功能多样性. 林业科学, 52(12), 84-91.] | |
[69] |
Zhang JT (2005) Succession analysis of plant communities in abandoned croplands in the eastern Loess Plateau of China. Journal of Arid Environments, 63, 458-474.
DOI URL |
[70] |
Zhang SX, Li Q, Lü Y, Zhang XP, Liang WJ (2013) Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems. Soil Biology and Biochemistry, 62, 147-156.
DOI URL |
[71] | Zhang WD, Shang YF, Wang XF (2010) The response of soil nematode community to vegetation restoration in Shimenshan in Dalian. Acta Ecologica Sinica, 30, 878-886. (in Chinese with English abstract) |
[ 张伟东, 尚艳芳, 王雪峰 (2010) 土壤线虫群落对大连石门山森林植被恢复的响应. 生态学报, 30, 878-886.] | |
[72] |
Zhang XK, Liang WJ, Li Q (2018) Recent progress and future directions of soil nematode ecology in China. Biodiversity Science, 26, 1060-1073. (in Chinese with English abstract)
DOI URL |
[ 张晓珂, 梁文举, 李琪 (2018) 我国土壤线虫生态学研究进展和展望. 生物多样性, 26, 1060-1073.]
DOI |
|
[73] | Zhang XP, Yang GH, Wang HZ, Zong J, Yang SJ (2011) Species diversity and community characteristics of different vegetations during restoration in the gully region of Loess Plateau. Journal of Northwest Forestry University, 26, 22-25, 219. (in Chinese with English abstract) |
[ 张笑培, 杨改河, 王和洲, 宗洁, 杨慎骄 (2011) 黄土沟壑区不同植被恢复群落特征及多样性研究. 西北林学院学报, 26, 22-25, 219.] | |
[74] |
Zhu BJ, Xue JR, Xia R, Jin MM, Wu Y, Tian SY, Chen XY, Liu MQ, Hu F (2019) Effect of soil nematode functional guilds on plant growth and aboveground herbivores. Biodiversity Science, 27, 409-418. (in Chinese with English abstract)
DOI URL |
[ 朱柏菁, 薛敬荣, 夏蓉, 靳苗苗, 吴攸, 田善义, 陈小云, 刘满强, 胡锋 (2019) 不同土壤线虫功能团对水稻生长及地上部植食者的影响. 生物多样性, 27, 409-418.]
DOI |
[1] | 姚祝, 魏雪, 马金豪, 任晓, 王玉英, 胡雷, 吴鹏飞. 气候暖湿化对高寒草甸土壤线虫群落的短期影响[J]. 生物多样性, 2024, 32(5): 23483-. |
[2] | 倪艳梅, 陈莉, 董志远, 孙德斌, 李宝泉, 王绪敏, 陈琳琳. 黄河三角洲湿地生态修复区大型底栖动物群落结构与生态健康评价[J]. 生物多样性, 2024, 32(3): 23303-. |
[3] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[4] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[5] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[6] | 杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲. 松嫩平原异质生境对土壤线虫群落特征的影响[J]. 生物多样性, 2024, 32(1): 23295-. |
[7] | 罗正明, 刘晋仙, 张变华, 周妍英, 郝爱华, 杨凯, 柴宝峰. 不同退化阶段亚高山草甸土壤原生生物群落多样性特征及驱动因素[J]. 生物多样性, 2023, 31(8): 23136-. |
[8] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[9] | 刘彩莲, 许庆, 王林龙, 邢衍阔, 宋稼豪, 林柏岸, 康斌, 刘敏. 闽东近海春秋季游泳动物多样性、密度及群落特征[J]. 生物多样性, 2023, 31(7): 22635-. |
[10] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[11] | 毛莹儿, 周秀梅, 王楠, 李秀秀, 尤育克, 白尚斌. 毛竹扩张对杉木林土壤细菌群落的影响[J]. 生物多样性, 2023, 31(6): 22659-. |
[12] | 陈哲涵, 尹进, 叶吉, 刘冬伟, 毛子昆, 房帅, 蔺菲, 王绪高. 增温对东北温带次生林草本群落季节动态的影响[J]. 生物多样性, 2023, 31(5): 23059-. |
[13] | 张鹤露, 赵美红, 孙世春, 刘晓收. 西藏那曲市高原盐湖自由生活线虫群落多样性与结构特征[J]. 生物多样性, 2023, 31(5): 22533-. |
[14] | 魏庐潞, 徐婷婷, 李媛媛, 艾喆, 马飞. 同质园环境和遗传分化影响锦鸡儿属植物根际土壤固氮菌多样性和群落结构[J]. 生物多样性, 2023, 31(4): 22477-. |
[15] | 林魏巍, 田呈明, 熊典广, 刘伟航, 热依汗古丽·斯地克, 梁英梅. 新疆杨树人工林中蜘蛛群落多样性及其影响因素[J]. 生物多样性, 2023, 31(3): 22493-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn