生物多样性 ›› 2008, Vol. 16 ›› Issue (3): 236-244. DOI: 10.3724/SP.J.1003.2008.07326 cstr: 32101.14.SP.J.1003.2008.07326
曾雪琴1,2,3, 陈鹭真1,3,4,*(), 谭凤仪3,5, 黄建辉1, 徐华林6, 林光辉1,4
收稿日期:
2007-10-31
接受日期:
2008-04-22
出版日期:
2008-05-20
发布日期:
2008-05-20
通讯作者:
陈鹭真
作者简介:
*E-mail:luzhenchen@xmu.edu.cn基金资助:
Xueqin Zeng1,2,3, Luzhen Chen1,3,4,*(), Nora FungYee Tam3,5, Jianhui Huang1, Hualin Xu6, Guanghui Lin1,4
Received:
2007-10-31
Accepted:
2008-04-22
Online:
2008-05-20
Published:
2008-05-20
Contact:
Luzhen Chen
摘要:
海桑(Sonneratia caseolaris)是我国华南沿海主要红树林造林树种, 在深圳湾引种造林15年后, 在天然红树林和光滩中出现了大面积的扩散。为了研究深圳湾红树植物海桑的幼苗扩散及其与生态因子的关系, 作者采用样线和样方调查法于2006年9月至2007年9月对深圳福田红树林内天然扩散的海桑幼苗的密度、高度和盖度及其相关生态因子(包括种间竞争、群落类型、光照、扩散距离与滩面高程)进行了6次调查。天然红树林和人工海桑林林下海桑幼苗密度在调查初期分别为24.7棵/m2和19.7棵/m2, 到2007年9月林下的一年生海桑幼苗全部死亡, 说明林下的弱光生境显著抑制了海桑幼苗的早期生长和自然更新。不同林型下(包括天然白骨壤林和秋茄林、人工海桑林)的海桑幼苗的密度、高度、盖度差异不显著(P>0.05); 而林中空地各指标显著高于林下(P<0.05)。虽然深圳福田红树林滩面高程介于1.12-2.10 m(黄海平均海平面)之间, 海桑幼苗自然扩散分布的最适滩面高程是1.40-1.60 m, 属于深圳湾红树林的中高潮滩, 但幼苗密度与滩面高程之间相关性较小。海桑具有一定的长距离扩散能力, 天然白骨壤林和秋茄林下海桑幼苗密度与其扩散距离(距最近母树的距离)之间呈显著负相关。天然白骨壤林和秋茄林下海桑幼苗密度与光照强度相关性不显著(P>0.05),而人工海桑林林下的海桑幼苗密度与光照强度呈显著正相关, 且相关系数逐次增大, 说明海桑幼苗的早期生长受到光照强度的影响极为显著。因此, 深圳湾引种海桑的繁殖体在天然白骨壤林和秋茄林下的扩散主要受与母树距离的影响, 但在海桑人工林下光照强度是影响幼苗分布的最重要生态因子。
曾雪琴, 陈鹭真, 谭凤仪, 黄建辉, 徐华林, 林光辉 (2008) 深圳湾引种红树植物海桑的幼苗发生和扩散格局的生态响应. 生物多样性, 16, 236-244. DOI: 10.3724/SP.J.1003.2008.07326.
Xueqin Zeng, Luzhen Chen, Nora FungYee Tam, Jianhui Huang, Hualin Xu, Guanghui Lin (2008) Seedling emergence and dispersal pattern of the introduced Sonneratia caseolaris in Shenzhen Bay, China. Biodiversity Science, 16, 236-244. DOI: 10.3724/SP.J.1003.2008.07326.
图1 调查区域示意图。调查区域为从A点到B点。天然红树林向陆一侧为秋茄林, 向海一侧为白骨壤林。
Fig. 1 Location of the study site. The survey area is from A to B. The landward side of natural mangroves is occupied by Kandelia candel forest, and the seaward side is by Avicennia marina forest.
图2 深圳市月均温(2006年8月至2007年9月)与历史同期均温(1971-2000年)(来自深圳市气象局 http://www.121.com.cn)
Fig. 2 Average monthly temperatures during the study period from Aug. 2006 to Sep. 2007 and average monthly temperatures of the same months from 1971-2000 in Shenzhen (data from Shenzhen Meteorological Bureau. http://www.121. com.cn)
变异来源 Sources of variation | 自由度 df | F | P |
---|---|---|---|
时间 Time | 4 | 15.828 | 0.000 |
林型 Forest type | 3 | 26.642 | 0.000 |
时间×林型 Time×Forest type | 12 | 3.455 | 0.000 |
表1 不同群落类型中海桑幼苗密度的重复测量方差分析结果
Table 1 Repeated measures ANOVA for the seedling density of Sonneratia caseolaris in different mangrove communities
变异来源 Sources of variation | 自由度 df | F | P |
---|---|---|---|
时间 Time | 4 | 15.828 | 0.000 |
林型 Forest type | 3 | 26.642 | 0.000 |
时间×林型 Time×Forest type | 12 | 3.455 | 0.000 |
图3 不同群落类型中海桑幼苗的密度、高度和盖度(平均值±标准误)。Scc—海桑林; Amc—白骨壤林; Kcc—秋茄林; Gap—海桑林中空地。不同小写字母代表差异显著(P<0.05 )。
Fig. 3 Seedling density, height and coverage of Sonneratia caseolaris in different mangrove communities (Means±SE). Scc,Sonneratia caseolaris community; Amc, Avicennia marina community; Kcc, Kandelia candel community; Gap, Forest gap. Different letters indicate significant difference at 0.05 level.
图4 海桑幼苗与其他红树幼苗在不同调查时间的密度、高度和盖度(平均值±标准误)。 Sc—海桑; Kc—秋茄; Am—白骨壤; Ac—桐花树; Ai—老鼠勒。不同小写字母代表差异显著(P<0.05 )。
Fig. 4 Seedling density, height and coverage of different mangrove species during the first four surveys (Means±SE). Sc,Sonneratia caseolaris; Kc, Kandelia candel; Am, Avicennia marina; Ac, Aegiceras coniculatum; Ai, Acanthus ilicifolius. Different letters indicate significant difference from each other species at 0.05 level.
步数 Step | 偏回归系数 Partial regression coefficient | 截距 Intercept | R2 | P > / F / | ||||
---|---|---|---|---|---|---|---|---|
Ac | Kc | Ac | Kc | 截距 Intercept | 模型 Model | |||
Step 1 | -4.568 | 29.214 | 0.028 | 0.035 | 0.000 | 0.035 | ||
Step 2 | -5.051 | 2.362 | 25.974 | 0.054 | 0.019 | 0.040 | 0.000 | 0.013 |
表2 海桑幼苗密度与其他红树幼苗密度的逐步回归结果(2006年9月)
Table 2 Stepwise regressions between seedling densities of Sonneratia caseolaris and other mangrove species (Sep., 2006)
步数 Step | 偏回归系数 Partial regression coefficient | 截距 Intercept | R2 | P > / F / | ||||
---|---|---|---|---|---|---|---|---|
Ac | Kc | Ac | Kc | 截距 Intercept | 模型 Model | |||
Step 1 | -4.568 | 29.214 | 0.028 | 0.035 | 0.000 | 0.035 | ||
Step 2 | -5.051 | 2.362 | 25.974 | 0.054 | 0.019 | 0.040 | 0.000 | 0.013 |
林型 Forest type | 测定时间 Measurement time | 相关方程 Correlation equation | R2 | P |
---|---|---|---|---|
天然林(白骨壤林+秋茄林) Natural forest | 2006.09.12 | y =-18.79x+25.43 | 0.001 | 0.730 |
2006.10.30 | y= 9.60x+3.30 | 0.002 | 0.635 | |
2006.12.13 | y = 6.28x+1.80 | 0.003 | 0.601 | |
2007.01.28 | y = 4.06x+0.39 | 0.005 | 0.480 | |
人工海桑林 Introduced S. caseolaris forest | 2006.09.12 | y = 78.08x+2.94 | 0.160 | 0.002 |
2006.10.30 | y = 71.41x-6.33 | 0.267 | 0.000 | |
2006.12.13 | y = 75.62x-10.50 | 0.369 | 0.000 | |
2007.01.28 | y = 46.56x-7.59 | 0.364 | 0.000 |
表3 海桑幼苗密度与相对光照强度的相关分析结果
Table 3 Corelation analysis between the seedlings density of Sonneratia caseolaris and relative light intensity
林型 Forest type | 测定时间 Measurement time | 相关方程 Correlation equation | R2 | P |
---|---|---|---|---|
天然林(白骨壤林+秋茄林) Natural forest | 2006.09.12 | y =-18.79x+25.43 | 0.001 | 0.730 |
2006.10.30 | y= 9.60x+3.30 | 0.002 | 0.635 | |
2006.12.13 | y = 6.28x+1.80 | 0.003 | 0.601 | |
2007.01.28 | y = 4.06x+0.39 | 0.005 | 0.480 | |
人工海桑林 Introduced S. caseolaris forest | 2006.09.12 | y = 78.08x+2.94 | 0.160 | 0.002 |
2006.10.30 | y = 71.41x-6.33 | 0.267 | 0.000 | |
2006.12.13 | y = 75.62x-10.50 | 0.369 | 0.000 | |
2007.01.28 | y = 46.56x-7.59 | 0.364 | 0.000 |
林型 Forest type | 测定时间 Measurement time | 变量 Variables | 偏回归系数 Partial regression coefficient | 偏相关系数 Partial correlations | t | P |
---|---|---|---|---|---|---|
天然林 Natural forest | 2006.09.12 | 扩散距离 Dispersal distance | -37.931 | -0.544 | -6.518 | 0.000 |
常数 Constant | 104.802 | 8.200 | 0.000 | |||
2006.10.30 | 滩面高程 Tidal elevation | -19.785 | -0.274 | -2.858 | 0.005 | |
扩散距离 Dispersal distance | -5.370 | -0.214 | -2.201 | 0.030 | ||
常数 Constant | 49.093 | 4.345 | 0.000 | |||
2006.12.13 | 扩散距离 Dispersal distance | -3.939 | -0.258 | -2.689 | 0.008 | |
滩面高程 Tidal elevation | -8.248 | -0.194 | -1.984 | 0.050 | ||
常数 Constant | 24.633 | 3.631 | 0.000 | |||
2007.01.28 | 扩散距离 Dispersal distance | -2.005 | -0.280 | -2.943 | 0.004 | |
常数 Constant | 4.904 | 3.267 | 0.001 | |||
人工海桑林 Introduced S. caseolaris forest | 2006.09.12 | 光照强度 Light intensity | 0.430 | 0.460 | 3.805 | 0.000 |
常数 Constant | -0.731 | -0.090 | 0.929 | |||
2006.10.30 | 光照强度 Light intensity | 0.038 | 0.587 | 5.324 | 0.000 | |
常数 Constant | -9.113 | -1.757 | 0.085 | |||
2006.12.13 | 光照强度 Light intensity | 0.039 | 0.654 | 6.357 | 0.000 | |
常数 Constant | -12.502 | -2.801 | 0.007 | |||
2007.01.28 | 光照强度 Light intensity | 0.024 | 0.671 | 0.655 | 0.000 | |
常数 Constant | -8.983 | -3.408 | 0.001 |
表4 海桑人工林、天然林下海桑幼苗密度与主要生态因子的回归分析结果
Table 4 Multiple regressions between the seedlings densities of Sonneratia caseolaris and key ecological factors under introduced Sonneratia caseolaris forest and natural forest
林型 Forest type | 测定时间 Measurement time | 变量 Variables | 偏回归系数 Partial regression coefficient | 偏相关系数 Partial correlations | t | P |
---|---|---|---|---|---|---|
天然林 Natural forest | 2006.09.12 | 扩散距离 Dispersal distance | -37.931 | -0.544 | -6.518 | 0.000 |
常数 Constant | 104.802 | 8.200 | 0.000 | |||
2006.10.30 | 滩面高程 Tidal elevation | -19.785 | -0.274 | -2.858 | 0.005 | |
扩散距离 Dispersal distance | -5.370 | -0.214 | -2.201 | 0.030 | ||
常数 Constant | 49.093 | 4.345 | 0.000 | |||
2006.12.13 | 扩散距离 Dispersal distance | -3.939 | -0.258 | -2.689 | 0.008 | |
滩面高程 Tidal elevation | -8.248 | -0.194 | -1.984 | 0.050 | ||
常数 Constant | 24.633 | 3.631 | 0.000 | |||
2007.01.28 | 扩散距离 Dispersal distance | -2.005 | -0.280 | -2.943 | 0.004 | |
常数 Constant | 4.904 | 3.267 | 0.001 | |||
人工海桑林 Introduced S. caseolaris forest | 2006.09.12 | 光照强度 Light intensity | 0.430 | 0.460 | 3.805 | 0.000 |
常数 Constant | -0.731 | -0.090 | 0.929 | |||
2006.10.30 | 光照强度 Light intensity | 0.038 | 0.587 | 5.324 | 0.000 | |
常数 Constant | -9.113 | -1.757 | 0.085 | |||
2006.12.13 | 光照强度 Light intensity | 0.039 | 0.654 | 6.357 | 0.000 | |
常数 Constant | -12.502 | -2.801 | 0.007 | |||
2007.01.28 | 光照强度 Light intensity | 0.024 | 0.671 | 0.655 | 0.000 | |
常数 Constant | -8.983 | -3.408 | 0.001 |
[1] | Begon M, Harper JL, Townsend CR (1986) Ecology: Individuals, Populations and Communities. Blackwell Scientific Publications, Oxford, UK. |
[2] | Chen LZ (陈鹭真) (2005) Studies on the Mechanisms of Mangrove Seedlings in Response to Duration of Tidal Immersion (红树植物幼苗的潮汐淹水胁迫响应机制的研究). PhD dissertation, Xiamen University, Xiamen. (in Chinese with English abstract) |
[3] | Chen LZ (陈鹭真), Lin P (林鹏), Wang WQ (王文卿) (2006) Mechanisms of mangroves waterlogging resistance. Acta Ecologica Sinica (生态学报), 26,586-593. (in Chinese with English abstract) |
[4] | Clark JS, Macklin E, Wood L (1998) Stages and spatial scales of recruitment limitation in southern Appalachian forests. Ecological Monographs, 68,213-235. |
[5] | Gough L, Goldberg DE, Hershock C, Pauliukonis N, Petru M (2002) Investigating the community consequences of competition among clonal plants. Evolutionary Ecology, 15,547-563. |
[6] | Herrera CM, Jordano P, Lopez-Soria L, Amat JA (1994) Recruitment of a mast-fruiting, bird dispersed tree: bridging frugivore activity and seedling establishment. Ecological Monographs, 64,315-344. |
[7] | Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13,201-228. |
[8] | Huang JH (黄建辉), Han XG (韩兴国), Yang QE (杨亲二), Bai YF (白永飞) (2003) Fundamentals of invasive species biology and ecology. Biodiversity Science (生物多样性), 11,240-247. (in Chinese with English abstract) |
[9] | Lin P (林鹏) (1997) Mangrove Ecosystem in China (中国红树林生态系). Science Press, Beijing. (in Chinese) |
[10] | Peng SJ (彭闪江), Huang ZL (黄忠良), Peng SL (彭少麟), Xu GL (徐国良) (2003) The processes and mechanisms of the dispersal of fleshy-fruited plants at different spatial scales. Acta Ecologica Sinica (生态学报), 23,777-786. (in Chinese with English abstract) |
[11] | Rabinowitz D (1978) Early growth of mangrove seedlings in Panamá, and hypothesis concerning the relationship of dispersal and zonation. Journal of Biogeography, 5,113-133. |
[12] | Rey PJ, Alcántara JM (2000) Recruitment dynamics of a fleshy-fruited plant (Oleaeuropaea): connecting patterns of seed dispersal to seedling establishment. Journal of Eco- logy, 88,622-633. |
[13] | Sherman RE, Fahey TJ, Battles JJ (2000) Small-scale disturbance and regeneration dynamics in a neotropical mangrove forest. Journal of Ecology, 88,165-178. |
[14] | Smith TJ, Robblee MB, Wanless HR, Doyle TW (1994) Mangroves, hurricanes, and lightning strikes. BioScience, 44,256-262. |
[15] | Wang BS (王伯荪), Liao BW (廖宝文), Wang YJ (王勇军), Zan QJ (昝启杰) (2002) Mangrove Forest Ecosystem and Its Sustainable Development in Shenzhen Bay (深圳湾红树林生态系统及其持续发展). Science Press, Beijing. (in Chinese) |
[16] | Wu ZH, Yu D (2004) The effects of competition on growth and biomass allocation in Nymphoides peltata (Gmel.) O. Kuntze growing in microcosm . Hydrobiologia, 527,241-250. |
[17] | Zan QJ, Wang BS, Wang YJ, Li MG (2003) Ecological assessment on the introduced Sonneratia caseolaris and Sonneratia apetala at the mangrove forest of Shenzhen Bay, China . Acta Botanica Sinica (植物学报), 45,544-555. |
[18] | Zheng DZ (郑德璋), Li Y (李云), Liao BW (廖宝文) (1999) The studies on compatible temperature condition for mangrove species. In:The Studies on Afforestation and Management Techniques for Main Mangrove Species (红树林主要树种造林与经营技术研究) (eds Zheng DZ (郑德璋), Liao BW (廖宝文), Zheng SF (郑松发)), pp.221-228. Science Press, Beijing. (in Chinese) |
[1] | 李华亮, 张明军, 张熙斌, 谭荣, 李诗川, 冯尔辉, 林雪云, 陈珉, 颜文博, 曾治高. 海南东寨港国家级自然保护区两栖类群落组成及影响因素[J]. 生物多样性, 2025, 33(2): 24350-. |
[2] | 孙智闲, 田晨, 王鑫, 方雨田, 李博, 赵亚辉. 热带沿海城市土著鱼类面临的威胁: 以海南省三亚市为例[J]. 生物多样性, 2024, 32(8): 24165-. |
[3] | 吕晓波, 李东海, 杨小波, 张孟文. 红树林群落通过淹水时间及海水盐度的生态位分化实现物种共存[J]. 生物多样性, 2024, 32(3): 23302-. |
[4] | 王乐, 时晨, 田金炎, 宋晓楠, 贾明明, 李小娟, 刘晓萌, 钟若飞, 殷大萌, 杨杉杉, 郭先仙. 基于多源遥感的红树林监测[J]. 生物多样性, 2018, 26(8): 838-849. |
[5] | 马维, 王瑁, 王文卿, 刘毅, 罗柳青, 唐朝艺. 海南岛西海岸红树林软体动物多样性[J]. 生物多样性, 2018, 26(7): 707-716. |
[6] | 高宇, 林光辉. 典型红树林生态系统藻类多样性及其在生态过程中的作用[J]. 生物多样性, 2018, 26(11): 1223-1235. |
[7] | 林俊辉, 何雪宝, 王建军, 林和山, 黄雅琴, 刘坤, 牟剑锋, 张舒怡, 江锦祥. 福建洛阳江口红树林湿地大型底栖动物多样性及季节变化[J]. 生物多样性, 2016, 24(7): 791-801. |
[8] | 张紫妍, 张致杰, 潘晓云. 喜旱莲子草对遮荫的可塑性反应:入侵地与原产地种群的比较[J]. 生物多样性, 2015, 23(1): 18-22. |
[9] | 周细平, 蔡立哲, 傅素晶, 王雯. 福建同安湾潮间带红树林生境与非红树林生境大型底栖动物群落比较[J]. 生物多样性, 2010, 18(1): 60-66. |
[10] | 林秀春, 蔡立哲, 马丽, 高阳, 杨丽, 刘炜明. 厦门凤林红树林湿地大型底栖动物群落[J]. 生物多样性, 2006, 14(2): 128-135. |
[11] | 何斌源, 范航清. 广西英罗港红树林潮沟鱼类多样性季节动态研究[J]. 生物多样性, 2002, 10(2): 175-180. |
[12] | 邹发生, 宋晓军, 陈康, 梁勇, 许达宏. 海南清澜港红树林湿地鸟类初步研究[J]. 生物多样性, 2000, 08(3): 307-311. |
[13] | 邹发生, 宋晓军, 陈伟, 郑馨仁, 陈建海. 海南东寨港红树林滩涂大型底栖动物多样性的初步研究[J]. 生物多样性, 1999, 07(3): 175-180. |
[14] | 陈桂珠, 王勇军, 黄乔兰. 深圳福田红树林鸟类自然保护区生物多样性及其保护研究*[J]. 生物多样性, 1997, 05(2): 104-111. |
[15] | 范航清, 何斌源, 韦受庆. 传统渔业活动对广西英罗港红树林区渔业资源的影响与管理对策[J]. 生物多样性, 1996, 04(3): 167-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn