生物多样性 ›› 2018, Vol. 26 ›› Issue (8): 838-849.DOI: 10.17520/biods.2018067

• • 上一篇    下一篇

基于多源遥感的红树林监测

王乐1,3,*(), 时晨1, 田金炎1,2, 宋晓楠1, 贾明明4, 李小娟1,2, 刘晓萌1, 钟若飞1,2, 殷大萌3, 杨杉杉1, 郭先仙1   

  1. 1 首都师范大学资源环境与旅游学院, 北京 100048
    2 首都师范大学北京成像技术高精尖创新中心, 北京 100048
    3 Department of Geography, University at Buffalo, The State University of New York, 105 Wilkeson Quad, Buffalo, NY 14261, USA
    4 中国科学院东北地理与农业生态研究所, 长春 130102
  • 收稿日期:2018-03-02 接受日期:2018-08-05 出版日期:2018-08-20 发布日期:2018-09-27
  • 通讯作者: 王乐
  • 作者简介:# 共同第一作者
  • 基金资助:
    科技创新服务能力建设——基本科研业务费(025185305000/199;025185305000/211)和国家自然科学基金(41601363)

Researches on mangrove forest monitoring methods based on multi-source remote sensing

Le Wang1,3,*(), Chen Shi1, Jinyan Tian1,2, Xiaonan Song1, Mingming Jia4, Xiaojuan Li1,2, Xiaomeng Liu1, Ruofei Zhong1,2, Dameng Yin3, Shanshan Yang1, Xianxian Guo1   

  1. 1 College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
    2 Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048, China
    3 Department of Geography, University at Buffalo, The State University of New York, 105 Wilkeson Quad, Buffalo, NY 14261, USA
    4 Laboratory for Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
  • Received:2018-03-02 Accepted:2018-08-05 Online:2018-08-20 Published:2018-09-27
  • Contact: Wang Le
  • About author:# Co-first authors

摘要:

红树林是生长在热带以及亚热带海岸潮间带上的生态群落, 其生产力高, 固碳能力强, 对保持海岸带生物多样性具有十分重要的价值。本文介绍了利用多源遥感数据监测红树林的一些主要研究内容, 分为3个方面: (1)在时空模式研究方面, 利用高空间分辨率影像像素和对象结合的方法对红树林树种进行分类以及利用Landsat影像对红树林进行动态变化监测并分析其驱动因素; (2)在结构参数研究方面, 利用无人机多光谱数据及地面激光雷达数据对红树林叶面积指数进行反演; (3)在生理生化参数研究方面, 探讨了红树林叶绿素含量对淹没状况的响应、互花米草(Spartina alterniflora)入侵是否影响红树林光能利用率, 以及光化学反射指数(photochemical reflectance index, PRI)与光能利用率(light use efficiency, LUE)的关系。上述系列研究为提取红树林相关信息要素时如何选择合适的分析方法提供了有力的参考, 强调了遥感在研究红树林时空模式, 提取结构参数和生物生化参数监测的有效性, 从而更好地促进红树林生态系统的生物多样性保育工作。

关键词: 红树林, 生物多样性, 多源遥感, 树种分类, 入侵物种

Abstract

Mangrove forests are ecological communities growing in the intertidal zone of tropical and subtropical coastlines. Due to their high productivity, mangrove forests are essential to persistence of biodiversity along coastlines and have high carbon sequestration ability. In this article we review aspects of monitoring mangrove forests using recent multi-source remote sensing data. First, we reviewed studies on monitoring mangrove dynamics. By integrating object-based and pixel-based classification, high spatial resolution images were used to classify different mangrove species. Landsat images were then used to monitor the dynamics of mangrove forests and analyze factors driving them. Second, we reviewed studies measuring structural parameters of mangroves. Specifically, unmanned aerial vehicle multispectral data and ground-based Light Detection and Ranging (LiDAR) data were used to compute leaf area index of mangrove forests. Finally, we reviewed studies examining physiology and biochemistry parameters. These studies explored adaption of chlorophyll content in mangrove forests under different submergence conditions, whether the invasive species Spartina alterniflora affects the light use efficiency and changed the response of photochemical reflectance index (PRI) to LUE. Our review provides a useful reference for selecting appropriate analytical methods when extracting information of mangroves from remotely sensed data. We emphasize the effectiveness of remote sensing in studying mangrove spatiotemporal patterns, extracting structural parameters, monitoring biochemical parameters, thus aiding efforts to conserve mangrove ecosystems.

Key words: mangrove, biodiversity, multi-source remote sensing, species classification, invasive species