生物多样性 ›› 2021, Vol. 29 ›› Issue (6): 697-711. DOI: 10.17520/biods.2020482
• 研究报告: 植物多样性 • 下一篇
周润1,2, 慈秀芹1,3, 肖建华1,2, 曹关龙1,2, 李捷1,3,*()
收稿日期:
2020-12-28
接受日期:
2021-03-18
出版日期:
2021-06-20
发布日期:
2021-04-22
通讯作者:
李捷
作者简介:
* E-mail: jieli@xtbg.ac.cn基金资助:
Run Zhou1,2, Xiuqin Ci1,3, Jianhua Xiao1,2, Guanlong Cao1,2, Jie Li1,3,*()
Received:
2020-12-28
Accepted:
2021-03-18
Online:
2021-06-20
Published:
2021-04-22
Contact:
Jie Li
摘要:
常绿阔叶林的优势类群由于其个体数量多、盖度大、生物量高、生存能力强, 对维持相应生态系统的稳定起着主导作用。樟属(Cinnamomum)植物为亚热带常绿阔叶林的优势类群, 通过对其过去、当前和未来潜在分布区的研究可以了解该类群的变迁历史, 为理解亚热带常绿阔叶林动态变化提供帮助, 有助于亚热带常绿阔叶林保育策略的制定。本研究利用最大熵(MaxEnt)模型模拟了我国樟属47种植物在5个时期(末次间冰期、末次盛冰期、全新世中期、当前和未来)的潜在分布区及物种丰富度热点区域。此外, 根据樟属植物的物种丰富度热点区域与自然保护区相叠加, 对当前自然保护区的保护状态进行了评估, 尤其是为保护亚热带常绿阔叶林而设立的自然保护区。结果表明: 樟属物种的潜在分布区在5个时期变化均不大, 仅在亚热带-温带交界处的各大山脉和平原之间出现局部收缩和扩张; 值得注意的是, 物种丰富度热点区域在5个时期变化明显, 末次盛冰期面积最大, 相较于末次间冰期、全新世中期和当前分别多96%、88%和37%; 未来(~2080年)两种不同温室气体排放典型浓度途径(representative concentration pathways, RCP) (RCP2.6和RCP8.5)下, 樟属物种丰富度热点区域面积将分别比当前收缩8.4%和10.0%, 并且随着温室气体排放的增加, 物种热点区域收缩趋势会更加明显。此外, 本研究发现樟属物种丰富度热点区域主要位于我国四川东南部、贵州南部、广西和广东, 然而仅7.5%位于现有自然保护区内, 未来自然保护区、国家公园等自然保护地的扩建、选址和规划应优先考虑四川东南部和华南地区。
周润, 慈秀芹, 肖建华, 曹关龙, 李捷 (2021) 气候变化对亚热带常绿阔叶林优势类群樟属植物的影响及保护评估. 生物多样性, 29, 697-711. DOI: 10.17520/biods.2020482.
Run Zhou, Xiuqin Ci, Jianhua Xiao, Guanlong Cao, Jie Li (2021) Effects and conservation assessment of climate change on the dominant group—The genusCinnamomum of subtropical evergreen broad-leaved forests. Biodiversity Science, 29, 697-711. DOI: 10.17520/biods.2020482.
图1 中国樟属植物物种丰富度分布图。A-F依次为末次间冰期(LIG)、末次盛冰期(LGM)、全新世中期(MH)、当前(Current)以及未来2060-2080年RCP2.6和RCP8.5情景下樟属植物物种丰富度。
Fig. 1 Distribution of species richness of Cinnamomum in China. A-F shows the species richness of Cinnamomum under the scenarios of the Last Interglacial (LIG), Last Glacial Maximum (LGM), Mid-Holocene (MH), current, RCP2.6 and RCP8.5 in future 2060-2080, respectively.
图2 中国樟属物种丰富度热点区域的保护现状。中国自然保护区的数据引自Zhang等(2015)。
Fig. 2 Conservation status of species richness hotspots of Cinnamomum in China. The data of Chinese nature conservation reserve are from Zhang et al,(2015).
[1] | Allen SK, Plattner GK, Nauels A, Xia Y, Stocker TF (2007) Climate Change 2013: The physical science basis. An overview of the Working Group 1 contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Computational Geometry, 18,95-123. |
[2] |
Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology, 93,1527-1539.
DOI URL |
[3] |
Brummitt N, Lughadha EN (2003) Biodiversity: Where's hot and where's not. Conservation Biology, 17,1442-1448.
DOI URL |
[4] |
Cai HY, Lyu LS, Shrestha N, Tang ZY, Su XY, Xu XT, Dimitrov D, Wang ZH (2021) Geographical patterns in phylogenetic diversity of Chinese woody plants and its application for conservation planning. Diversity and Distributions, 27,179-194.
DOI URL |
[5] |
Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science, 320,1456-1457.
DOI URL |
[6] |
Cantón Y, Del Barrio G, Solé-Benet A, Lázaro R (2004) Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain. CATENA, 55,341-365.
DOI URL |
[7] |
Cattell RB (1966) The scree test for the number of factors. Multivariate Behavioral Research, 1,245-276.
DOI URL |
[8] | Chen LZ, Sun H, Guo K (2015) Floristic and Vegetational Geography of China. Science Press, Beijing. (in Chinese) |
陈灵芝, 孙航, 郭珂 (2015) 中国植物区系与植被地理. 科学出版社, 北京.] | |
[9] | Chen X, Peng J, Liu YX, Yang Y, Li GC (2017) Constructing ecological security patterns in Yunfu City based on the framework of importance-sensitivity-connectivity. Geographical Research, 36,471-484. (in Chinese with English abstract) |
陈昕, 彭建, 刘焱序, 杨旸, 李贵才 (2017) 基于“重要性-敏感性-连通性”框架的云浮市生态安全格局构建. 地理研究, 36,471-484.]
DOI |
|
[10] |
Chen YH, Tang ZY, Fang JY (2009) Distribution of nature reserves and status of biodiversity protection in China. Biodiversity Science, 17,664-674. (in Chinese with English abstract)
DOI URL |
陈雅涵, 唐志尧, 方精云 (2009) 中国自然保护区分布现状及合理布局的探讨. 生物多样性, 17,664-674.]
DOI |
|
[11] |
Dai EF, Wu Z, Ge QS, Xi WM, Wang XF (2016) Predicting the responses of forest distribution and aboveground biomass to climate change under RCP scenarios in Southern China. Global Change Biology, 22,3642-3661.
DOI URL |
[12] |
D'Amen M, Azzurro E (2020) Lessepsian fish invasion in Mediterranean marine protected areas: A risk assessment under climate change scenarios. ICES Journal of Marine Science, 77,388-397.
DOI URL |
[13] |
Dao KQ, Chen JL, Jin PH, Dong C, Yang Y, Xu XH, Wu JY, Xie SP, Lin ZC, Sun BN (2013) A new material of Lindera (Lauraceae) of the Late Pliocene from Tengchong, Yunnan and the genus' biogeography significance . Acta Geologica Sinica, 87,690-706.
DOI URL |
[14] |
Denk T, Grimm GW (2009) The biogeographic history of beech trees. Review of Palaeobotany and Palynology, 158,83-100.
DOI URL |
[15] |
Di Marco M, Santini L (2015) Human pressures predict species' geographic range size better than biological traits. Global Change Biology, 21,2169-2178.
DOI URL |
[16] |
Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Townsend Peterson A, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29,129-151.
DOI URL |
[17] |
Fang JY, Guo ZD, Hu HF, Kato T, Muraoka H, Son Y (2014) Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Global Change Biology, 20,2019-2030.
DOI URL |
[18] |
Feng B, Li DQ, Zhang YG, Xue YD (2020) Evaluation on nature reserve management effectiveness of mitigation and adaptation on climate change: A case study of 12 typical nature reserves in Guangxi. Biodiversity Science, 28,1026-1035. (in Chinese with English abstract)
DOI URL |
冯斌, 李迪强, 张于光, 薛亚东 (2020) 自然保护区减缓和适应气候变化的管理有效性评估: 以广西12个典型自然保护区为例. 生物多样性, 28,1026-1035.] | |
[19] |
Gallagher RV (2016) Correlates of range size variation in the Australian seed-plant flora. Journal of Biogeography, 43,1287-1298.
DOI URL |
[20] | GBIF. org GBIF Occurrence Download https://doi.org/10.15468/dl.3ka7mv. (accessed on 2019-12-24) |
[21] |
Gebrekirstos A, Mitlöhner R, Teketay D, Worbes M (2008) Climate-growth relationships of the dominant tree species from semi-arid savanna woodland in Ethiopia. Trees, 22,631-641.
DOI URL |
[22] |
Gong W, Liu WZ, Gu L, Kaneko S, Koch MA, Zhang DX (2016) From glacial refugia to wide distribution range: Demographic expansion of Loropetalum chinense (Hamamelidaceae) in Chinese subtropical evergreen broadleaved forest . Organisms Diversity and Evolution, 16,23-38.
DOI URL |
[23] |
Han YH, Dong SK, Wu XY, Liu SL, Su XK, Zhang Y, Zhao HD, Zhang XL, Swift D (2019) Integrated modeling to identify priority areas for the conservation of the endangered plant species in headwater areas of Asia. Ecological Indicators, 105,47-56.
DOI URL |
[24] |
Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature, 405,907-913.
PMID |
[25] | Hu WQ, Wen NL, Xiao Y, Zhong RZ, Ru ZZ (2017) Geographic distribution and potential distribution estimation of Machilus breviflora . Guangdong Agricultural Sciences, 44(2),82-85. (in Chinese with English abstract) |
胡文强, 温暖玲, 肖玉, 钟任资, 茹正忠 (2017) 短序润楠的地理分布及潜在分布区估计. 广东农业科学, 44(2),82-85.] | |
[26] | Hu ZJ, Zhang YL, Liu LS, Yu HB (2013) Refugia and their identification methods: A review. Chinese Journal of Ecology, 32,3397-3406. (in Chinese with English abstract) |
胡忠俊, 张镱锂, 刘林山, 于海彬 (2013) 生物避难所及其识别方法评述. 生态学杂志, 32,3397-3406.] | |
[27] |
Huang JF, Li L, van der Werff H, Li HW, Rohwer JG, Crayn DM, Meng HH, van der Merwe M, Conran JG, Li J(2016) Origins and evolution of cinnamon and camphor: A phylogenetic and historical biogeographical analysis of the Cinnamomum group (Lauraceae). Molecular Phylogenetics and Evolution, 96,33-44.
DOI URL |
[28] | Huang XH, Chen YL, Huang DM (2018) NDVI simulation of vegetation in Hechi based on climate information. Journal of Meteorological Research and Application, 39(4),42-45, 107. (in Chinese with English abstract) |
黄肖寒, 陈燕丽, 黄冬梅 (2018) 基于气候信息的河池市植被NDVI模拟. 气象研究与应用, 39(4),42-45, 107.] | |
[29] | Huang XY, Wen ZP, Du YD, Xu YL (2008) Scenario analyses on the changes of future surface air temperature and precipitation in South China. Journal of Tropical Meteorology, 24,245-258. (in Chinese with English abstract) |
黄晓莹, 温之平, 杜尧东, 许吟隆 (2008) 华南地区未来地面温度和降水变化的情景分析. 热带气象学报, 24,245-258.] | |
[30] |
Huang ZD, Bai Y, Alatalo JM, Yang ZQ (2020) Mapping biodiversity conservation priorities for protected areas: A case study in Xishuangbanna Tropical Area, China. Biological Conservation, 249,108741.
DOI URL |
[31] | Jenkins CN, Pimm SL, Joppa LN (2013) Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences, USA, 110,E2602-E2610. |
[32] | Jiang XL, Deng M, Li Y (2016) Evolutionary history of subtropical evergreen broad-leaved forest in Yunnan Plateau and adjacent areas: An insight from Quercus schottkyana (Fagaceae). Tree Genetics & Genomes, 12,1-12. |
[33] | Jiang ZH, Zhang X, Wang J (2008) Projection of climate change in China in the 21st century by IPCC-AR4 Models. Geographical Research, 27,787-799. (in Chinese with English abstract) |
江志红, 张霞, 王冀 (2008) IPCC-AR4模式对中国21世纪气候变化的情景预估. 地理研究, 27,787-799.] | |
[34] | John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences, USA, 104,864-869. |
[35] | Li J, Li XW (2004) Advances in Lauraceae systematic research on the world scale. Acta Botanica Yunnanica, 26,1-11. (in Chinese with English abstract) |
李捷, 李锡文 (2004) 世界樟科植物系统学研究进展. 云南植物研究, 26,1-11.] | |
[36] |
Li LP, He SY, Jiang YM, Wang T, Zhao HH, Cui WH, Zheng YM, Hai Y, Wan HW (2019) Species range size patterns and their significance on biodiversity conservation. Scientia Sinica Vitae, 49,929-937. (in Chinese with English abstract)
DOI URL |
李利平, 何思源, 蒋样明, 王拓, 赵辉辉, 崔伟宏, 郑姚闽, 海鹰, 万华伟 (2019) 物种分布区特征及其对生物多样性保育的意义. 中国科学: 生命科学, 49,929-937.] | |
[37] | Li XW (1982) Flora of China (Vol. 31), Science Press, Beijing. (in Chinese) |
李锡文 (1982) 中国植物志(第31卷), 科学出版社, 北京.] | |
[38] | Li XW, Li J, Huang PH, Wei FN, CuiHB, Van der WerffH (2008) Lauraceae. In: Flora of China, Vol. 7. (eds Wu CY, Raven HP, Hong DY), pp. 102-254. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis. |
[39] | Li XY (2011) Conservation Value Evaluation and Reasonable Distribution of National Nature Reserve for Forest. PhD dissertation, Beijing Forestry University, Beijing, (in Chinese with English abstract) |
李霄宇 (2011) 国家级森林类型自然保护区保护价值评价及合理布局研究. 博士学位论文, 北京林业大学, 北京.] | |
[40] |
Lim CH, Yoo S, Choi Y, Jeon S, Son Y, Lee WK (2018) Assessing climate change impact on forest habitat suitability and diversity in the Korean Peninsula. Forests, 9,259.
DOI URL |
[41] |
Lu LM, Mao LF, Yang T, Ye JF, Liu B, Li HL, Sun M, Miller JT, Mathews S, Hu HH, Niu YT, Peng DX, Chen YH, Smith SA, Chen M, Xiang KL, Le CT, Dang VC, Lu AM, Soltis PS, Soltis DE, Li JH, Chen ZD (2018) Evolutionary history of the angiosperm flora of China. Nature, 554,234-238.
DOI |
[42] | Luo LQ (2005) Study on conservation and construction of biodiversity (plants) in Leshan City. Journal of Leshan Teachers College, 20(5),62-65. (in Chinese) |
罗利群 (2005) 乐山市生物多样性(植物)保护与建设的研究. 乐山师范学院学报, 20(5),62-65.] | |
[43] | Luo LQ (1991) Survey of Wuyou Mountain evergreen broad-leaved forest. Journal of Sichuan Normal University, 12(Suppl.),48-53. (in Chinese) |
罗利群 (1991) 乌尤山常绿阔叶林概况. 四川师范学院学报, 12(增刊),48-53.] | |
[44] |
Luo X, Hu QJ, Zhou PP, Zhang D, Wang Q, Abbott RJ, Liu JQ (2017) Chasing ghosts: Allopolyploid origin of Oxyria sinensis (Polygonaceae) from its only diploid congener and an unknown ancestor . Molecular Ecology, 26,3037-3049.
DOI URL |
[45] | Lü JJ, Wu JG (2009) Advances in the effects of climate change on the distribution of plant species and vegetation in China. Environmental Science & Technology, 32(6),85-95. (in Chinese with English abstract) |
吕佳佳, 吴建国 (2009) 气候变化对植物及植被分布的影响研究进展. 环境科学与术, 32(6),85-95.] | |
[46] | Ma KP (2001) Hotspots assessment and conservation priorities identification of biodiversity in China should be emphasized. Acta Phytoecologica Sinica, 25,124-125. (in Chinese) |
马克平 (2001) 中国生物多样性热点地区(hotspot)评估与优先保护重点的确定应该重视. 植物生态学报, 25,124-125.] | |
[47] | Ma Q, Du YJ, Chen N, Zhang LY, Li JH, Fu CX (2015) Phylogeography of Davidia involucrata (Davidiaceae) inferred from cpDNA haplotypes and nSSR data . Systematic Botany, 40,769-810. |
[48] |
Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter. Ecography, 36,1058-1069.
DOI URL |
[49] | Miao QL, Ding YY, Wang Y (2009) Impact of climate warming on the northern boundary of sub-tropical zone of China. Geographical Research, 28,634-642. (in Chinese with English abstract) |
缪启龙, 丁园圆, 王勇 (2009) 气候变暖对中国亚热带北界位置的影响. 地理研究, 28,634-642.] | |
[50] |
Muñoz MA, Faz A, Acosta JA, Martínez-Martínez S, Zornoza R (2015) Effect of South American grazing camelids on soil fertility and vegetation at the Bolivian Andean grasslands. Agriculture, Ecosystems & Environment, 207,203-210.
DOI URL |
[51] |
Myers N (1990) The biodiversity challenge: Expanded hot-spots analysis. Environmentalist, 10,243-256.
PMID |
[52] |
Myers N, Mittermeier RA, Mittermeier CGda Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403,853-858.
PMID |
[53] | Ni J, Song YC (1997) The water-temperature distributional groups of dominants and companions of subtropical evergreen broadleaved forest in China. Acta Phytoecologica Sinica, 21,349-359. (in Chinese with English abstract) |
倪健, 宋永昌 (1997) 中国亚热带常绿阔叶林优势种及常见种的水热分布类群. 植物生态学报, 21,349-359.] | |
[54] |
Ni J, Sykes MT, Prentice IC, Cramer W (2000) Modelling the vegetation of China using the process-based equilibrium terrestrial biosphere model BIOME3. Global Ecology and Biogeography, 9,463-479.
DOI URL |
[55] |
Ni J, Yu G, Harrison SP, Prentice IC (2010) Palaeovegetation in China during the late Quaternary: Biome reconstructions based on a global scheme of plant functional types. Palaeogeography, Palaeoclimatology, Palaeoecology, 289,44-61.
DOI URL |
[56] |
Noss RF (2001) Beyond Kyoto: Forest management in a time of rapid climate change. Conservation Biology, 15,578-590.
DOI URL |
[57] |
Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421,37-42.
PMID |
[58] |
Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34,102-117.
DOI URL |
[59] |
Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190,231-259.
DOI URL |
[60] | Pimm SL, Jenkins CN, Li BV(2018) How to protect half of Earth to ensure it protects sufficient biodiversity. Science Advances, 4,eaat2616. |
[61] |
Pinot S, Ramstein G, Harrison SP, Prentice IC, Guiot J, Stute M, Joussaume S (1999) Tropical paleoclimates at the Last Glacial Maximum: Comparison of Paleoclimate Modeling Intercomparison Project (PMIP) simulations and paleodata. Climate Dynamics, 15,857-874.
DOI URL |
[62] |
Pouzols FM, Moilanen A (2014) A method for building corridors in spatial conservation prioritization. Landscape Ecology, 29,789-801.
DOI URL |
[63] |
Prieto-Torres DA, Navarro-Siguenza AG, Santiago-Alarcon D, Rojas-Soto OR (2016) Response of the endangered tropical dry forests to climate change and the role of Mexican Protected Areas for their conservation. Global Change Biology, 22,364-379.
DOI PMID |
[64] |
Qiu YX, Fu CX, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora. Molecular Phylogenetics and Evolution, 59,225-244.
DOI URL |
[65] |
Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography, 41,629-643.
DOI URL |
[66] |
Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109,33-57.
DOI URL |
[67] |
Shi MM, Michalski SG, Welk E, Chen XY, Durka W (2014) Phylogeography of a widespread Asian subtropical tree: Genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia. Journal of Biogeography, 41,1710-1720.
DOI URL |
[68] | Song YC (2013) Evergreen Broad-leaved Forest in China. Science Press, Beijing. (in Chinese) |
宋永昌 (2013) 中国常绿阔叶林. 科学出版社, 北京.] | |
[69] |
Tang CQ (2015) Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China, as compared with those of the eastern Chinese subtropical regions. Collectanea Botanica, 34,1-19.
DOI URL |
[70] |
Tang ZY, Wang ZH, Zheng CY, Fang JY (2006) Biodiversity in China's mountains. Frontiers in Ecology and the Environment, 4,347-352.
DOI URL |
[71] |
Tarabon S, Dutoit T, Isselin-Nondedeu F (2021) Pooling biodiversity offsets to improve habitat connectivity and species conservation. Journal of Environmental Management, 277,111425.
DOI URL |
[72] | Tiffney BH, Manchester SR (2001) The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. International Journal of Plant Sciences, 162,S3-S17. |
[73] | Tzedakis PC, Lawson IT, Frogley MR, Hewitt GM, Preece RC (2002) Buffered tree population changes in a quaternary refugium: Evolutionary implications. Science, 297, 2044- 2047. |
[74] | van Vuuren DP, Stehfest E, den Elzen MGJ, Kram T, van Vliet J, Deetman S, Isaac M, Klein Goldewijk K, Hof A, Mendoza Beltran A, Oostenrijk R, van Ruijven B (2011) RCP2.6: Exploring the possibility to keep global mean temperature increase below 2℃. Climatic Change, 109,95-116. |
[75] | Wang C, Zhang YX (2020) Implementation pathway and policy system of carbon neutrality vision. Chinese Journal of Environmental Management, 12,58-64. (in Chinese with English abstract) |
王灿, 张雅欣 (2020) 碳中和愿景的实现路径与政策体系. 中国环境管理, 12,58-64.] | |
[76] | Wang CJ (2017) Geographical Distribution Pattern and Spatial Conservation Prioritization for Wild Plants in China under Climate Change. Beijing Forestry University, Beijing, (in Chinese with English abstract) |
王春晶 (2017) 气候变化背景下中国野生植物地理分布格局及优先保护. 博士学位论文, 北京林业大学, 北京.] | |
[77] | Wang P, Chen GQ, Ding ZQ (2012) Introduction and cultivation techniques of silverwood. Science & Technology of Landscape Architecture, (3),12-13. (in Chinese) |
王朴, 陈桂桥, 丁昭全 (2012) 银木的引种及栽培技术. 园林科技, (3),12-13.] | |
[78] | Wang XH (2006) Phytogeography and Species Diversity of Typical Evergreen Broad-leaved in China. PhD dissertation, East China Normal University, Shanghai. (in Chinese with English abstract) |
王希华 (2006) 中国常绿阔叶林植物地理与物种多样性研究. 博士学位论文, 华东师范大学, 上海.] | |
[79] | Wang XZ (2019) China's forest coverage rate is 22.96%. Green China, (12),54-57. (in Chinese) |
王兮之 (2019) 中国森林覆盖率22.96%. 绿色中国, (12),54-57.] | |
[80] | Wen HQ, Qin MF, Lu YX, Liang JY, Wei YG (1992) A preliminary study on the vegetation in Longtan and Dule parks in Liuzhou City. Guihaia, 12,364-371. (in Chinese) |
文和群, 覃民府, 陆益新, 梁健英, 韦毅刚 (1992) 柳州市龙潭、都乐公园植被的初步研究. 广西植物, 12,364-371.] | |
[81] | Wu XK, Nan CH, Tang GG, Li Y, Mao LJ, Zhang ZC (2016) Impact of climate change on potential distribution range and spatial pattern of Phoebe chekiangensis . Journal of Nanjing Forestry University (Natural Sciences Edition), 40(6),85-91. (in Chinese with English abstract) |
吴显坤, 南程慧, 汤庚国, 李垚, 毛丽君, 张志成 (2016) 气候变化对浙江楠潜在分布范围及空间格局的影响. 南京林业大学学报(自然科学版), 40(6),85-91.] | |
[82] | Wu ZY (1980) Vegetation of China, Science Press, Beijing. (in Chinese) |
吴征镒 (1980) 中国植被, 科学出版社, 北京.] | |
[83] |
Xiang XG, Mi XC, Zhou HL, Li JW, Chung SW, Li DZ, Huang WC, Jin WT, Li ZY, Huang LQ, Jin XH (2016) Biogeographical diversification of mainland Asian Dendrobium (Orchidaceae) and its implications for the historical dynamics of evergreen broad-leaved forests . Journal of Biogeography, 43,1310-1323.
DOI URL |
[84] |
Xu Y, Shen ZH, Ying LX, Wang ZH, Huang JH, Zang RG, Jiang YX (2017) Hotspot analyses indicate significant conservation gaps for evergreen broadleaved woody plants in China. Scientific Reports, 7,1859.
DOI URL |
[85] |
Ye JW, Li DZ, Hampe A (2019) Differential Quaternary dynamics of evergreen broadleaved forests in subtropical China revealed by phylogeography of Lindera aggregata (Lauraceae). Journal of Biogeography, 46,1112-1123.
DOI URL |
[86] |
Yin YH, Ma DY, Wu SH (2018) Climate change risk to forests in China associated with warming. Scientific Reports, 8,493.
DOI URL |
[87] | Ying TS (2001) Species diversity and distribution pattern of seed plants in China. Chinese Biodiversity, 9,393-398. (in Chinese with English abstract) |
应俊生 (2001) 中国种子植物物种多样性及其分布格局. 生物多样性, 9,393-398.] | |
[88] |
Yu FY, Groen TA, Wang TJ, Skidmore AK, Huang JH, Ma KP (2017a) Climatic niche breadth can explain variation in geographical range size of alpine and subalpine plants. International Journal of Geographical Information Science, 31,190-212.
DOI URL |
[89] |
Yu FY, Skidmore AK, Wang TJ, Huang JH, Ma KP, Groen TA (2017b) Rhododendron diversity patterns and priority conservation areas in China . Diversity and Distributions, 23,1143-1156.
DOI URL |
[90] | Zha FS, He LX, Yang F, Yang W, Yang J, Feng JM (2008) Spatial patterns of species diversity of Lauraceae plants in Yunnan, China. Journal of Chuxiong Normal University, 23(9),90-94. (in Chinese with English abstract) |
查凤书, 何丽香, 杨飞, 杨惟, 杨杰, 冯建孟 (2008) 云南樟科植物多样性的空间分布格局. 楚雄师范学院学报, 23(9),90-94.] | |
[91] | Zhao ZC, Luo Y, Jiang Y, Xu Y (2008) Assessment and prediction of precipitation and droughts/floods changes over the world and in China. Science & Technology Review, 26(6),28-33. (in Chinese with English abstract) |
赵宗慈, 罗勇, 江滢, 徐影 (2008) 全球和中国降水、旱涝变化的检测评估. 科技导报, 26(6),28-33.] | |
[92] | Zhang GF, He SY (2014) Ornamental tree species resources of Lauraceae and their application in gardens. Modern Horticulture, (4),26-28. (in Chinese) |
张规富, 何帅艳 (2014) 樟科植物观赏树种资源及其在园林中的应用. 现代园艺, (4),26-28.] | |
[93] | Zhang MH, Zhang HQ, Liu ED (2011) Camphortree and the morphological characteristics of cold north correlation. Northern Horticulture, (13),94-97. (in Chinese with English abstract) |
张旻桓, 张汉卿, 刘二冬 (2011) 樟树北移耐寒性与形态特征的相关性研究. 北方园艺, (13),94-97.] | |
[94] |
Zhang ZJ, He JS, Li JS, Tang ZY (2015) Distribution and conservation of threatened plants in China. Biological Conservation, 192,454-460.
DOI URL |
[95] | Zheng WY, Zeng WH, Tang YS, Shi W, Cao KF (2018) Species diversity and biogeographical patterns of Lauraceae and Fagaceae in northern tropical and subtropical regions of China. Acta Ecologica Sinica, 38,8676-8687. (in Chinese with English abstract) |
郑维艳, 曾文豪, 唐一思, 石慰, 曹坤芳 (2018) 中国大陆北热带及亚热带地区樟科、壳斗科物种多样性及其生物地理格局分析. 生态学报, 38,8676-8687.] | |
[96] | Zheng WY, Cao KF (2020) Impact of future climate change on potential geographical distribution of four Litsea species in China . Guihaia, 40,1584-1594. (in Chinese with English abstract) |
郑维艳, 曹坤芳 (2020) 未来气候变化对四种木姜子地理分布的影响. 广西植物, 40,1584-1594.] | |
[97] |
Zhu SS, Comes HP, Tamaki I, Cao YN, Sakaguchi S, Yap ZY, Ding YQ, Qiu YX (2020) Patterns of genotype variation and demographic history in Lindera glauca (Lauraceae), an apomict-containing dioecious forest tree . Journal of Biogeography, 47,2002-2016.
DOI URL |
[1] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[2] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[3] | 冯莉. 国际法视野下生物多样性和气候变化的协同治理[J]. 生物多样性, 2023, 31(7): 23110-. |
[4] | 陈声文, 任海保, 童光蓉, 王宁宁, 蓝文超, 薛建华, 米湘成. 钱江源国家公园木本植物物种多样性空间分布格局[J]. 生物多样性, 2023, 31(7): 22587-. |
[5] | 姚雪, 陈星, 戴尊, 宋坤, 邢诗晨, 曹宏彧, 邹璐, 王健. 采集策略对叶附生苔类植物发现概率及物种多样性的重要性[J]. 生物多样性, 2023, 31(4): 22685-. |
[6] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[7] | 张琼悦, 邓卓迪, 胡学斌, 丁志锋, 肖荣波, 修晨, 吴政浩, 汪光, 韩东晖, 张语克, 梁健超, 胡慧建. 粤港澳大湾区城市化进程对区域内鸟类分布及栖息地连通性的影响[J]. 生物多样性, 2023, 31(3): 22161-. |
[8] | 桑佳文, 宋创业, 贾宁霞, 贾元, 刘长成, 乔鲜果, 张琳, 袁伟影, 吴冬秀, 李凌浩, 郭柯. 青藏高原植被调查与制图评估[J]. 生物多样性, 2023, 31(3): 22430-. |
[9] | 王金洲, 徐靖. “基于自然的解决方案”应对生物多样性丧失和气候变化: 进展、挑战和建议[J]. 生物多样性, 2023, 31(2): 22496-. |
[10] | 徐维启, 李玥, 李海蛟, 刘冬梅, 杨宁, 张琦, 何双辉. 北京市大型真菌物种多样性调查与资源评价[J]. 生物多样性, 2023, 31(10): 23196-. |
[11] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[12] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[13] | 祖奎玲, 王志恒. 山地物种海拔分布对气候变化响应的研究进展[J]. 生物多样性, 2022, 30(5): 21451-. |
[14] | 井新, 蒋胜竞, 刘慧颖, 李昱, 贺金生. 气候变化与生物多样性之间的复杂关系和反馈机制[J]. 生物多样性, 2022, 30(10): 22462-. |
[15] | 乔慧捷, 胡军华. 利用数值模拟重构物种多样性格局的形成过程[J]. 生物多样性, 2022, 30(10): 22456-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn