生物多样性 ›› 2014, Vol. 22 ›› Issue (2): 129-140. DOI: 10.3724/SP.J.1003.2014.13150
收稿日期:
2013-07-02
接受日期:
2013-09-21
出版日期:
2014-03-20
发布日期:
2014-04-03
通讯作者:
臧润国
基金资助:
Junyan Zhang1, Kewu Cheng2, Runguo Zang1,*()
Received:
2013-07-02
Accepted:
2013-09-21
Online:
2014-03-20
Published:
2014-04-03
Contact:
Zang Runguo
摘要:
天然针叶林在热带地区虽较为少见, 但其对维持热带地区的生物多样性和生境异质性具有特殊意义。在我国热带天然针叶林集中分布面积最大的海南霸王岭林区, 作者选择伴生阔叶树种优势度不同的两种典型南亚松(Pinus latteri)天然林(简称纯林和混交林), 采用点格局法分析了其林冠层、亚林层和林下层主要树种的空间分布格局及其关联性。结果表明: (1)纯林中林冠层的南亚松主要为聚集分布, 混交林中在较小尺度上为聚集分布, 在较大尺度上为随机分布。(2)纯林中亚林层树种在较小尺度上为聚集分布, 在较大尺度上为随机分布, 在混交林中主要为聚集分布。(3)纯林中林下层树种主要呈现为随机分布, 而在混交林中主要为聚集分布。(4)随着尺度的增加, 林冠层与其他两个层次的树种, 在纯林中表现出从空间无关联到正关联的变化趋势, 而在混交林中则表现出从空间无关联到负关联的变化趋势。(5)亚林层与林下层树种在各个尺度上都表现为空间正关联。由此可见, 热带天然针叶林中优势种南亚松对伴生阔叶树种的分布格局具有重要影响。
张俊艳, 成克武, 臧润国 (2014) 海南岛热带天然针叶林主要树种的空间格局及关联性. 生物多样性, 22, 129-140. DOI: 10.3724/SP.J.1003.2014.13150.
Junyan Zhang,Kewu Cheng,Runguo Zang (2014) The spatial distribution patterns and associations of the principal trees and shrubs in a natural tropical coniferous forest on Hainan Island, China. Biodiversity Science, 22, 129-140. DOI: 10.3724/SP.J.1003.2014.13150.
物种 Species | 个体数 Abundance | 胸高断面积 Basal area (m2/ha) | 胸径(平均值/最大值) DBH Mean/Max. (cm) | 高度(平均值/最大值) Height (Mean/max.) (m) | 重要值 Importance value |
---|---|---|---|---|---|
COG1 | |||||
南亚松 Pinus latteri | 365 | 20.01 | 24.14/84 | 15/25 | 91.58 |
银柴 Aporusa dioica | 806 | 2.40 | 4.80/27 | 4.4/15 | 33.69 |
野漆 Toxicodendron succedaneum | 421 | 0.58 | 3.08/17 | 4.0/15 | 14.95 |
黄樟 Cinnamomum porrectum | 289 | 0.76 | 4.48/22 | 4.4/15 | 11.74 |
毛菍 Melastoma sanguineum | 418 | 0.12 | 1.83/8 | 2.8/6 | 11.41 |
子楝树 Decaspermum gracilentum | 300 | 0.16 | 2.34/7.8 | 3.6/7 | 9.29 |
海南杨桐 Adinandra hainanensis | 221 | 0.38 | 3.5/14.3 | 4.0/14 | 8.03 |
细基丸 Polyalthia cerasoides | 173 | 0.56 | 4.7/24.9 | 4.7/16 | 7.57 |
越南山矾 Symplocos cochinchinensis | 193 | 0.47 | 4.4/16 | 3.9/11 | 7.40 |
山柑算盘子 Glochidion sphaerogynum | 200 | 0.28 | 3.3/14 | 4.2/13 | 7.16 |
COG2 | |||||
海南杨桐 Adinandra hainanensis | 564 | 4.65 | 8.75/28 | 7.0/15 | 32.30 |
南亚松 Pinus latteri | 88 | 9.97 | 33.67/90 | 17.0/25 | 31.22 |
胡颓子叶柯 Lithocarpus elaeagnifolius | 722 | 2.82 | 5.47/47 | 6.0/18 | 30.63 |
九节 Psychotria rubra | 1080 | 0.37 | 1.85/10 | 3.0/7 | 25.68 |
木荷 Schima superba | 293 | 4.88 | 10.82/63 | 8.9/18 | 24.40 |
黄杞 Engelhardia roxburghiana | 388 | 3.55 | 6.96/44 | 6.0/20 | 21.66 |
台湾椎 Castanopsis formosana | 173 | 1.94 | 7.45/50 | 6.9/20 | 11.00 |
密脉蒲桃 Syzygium chunianum | 379 | 0.34 | 2.55/30 | 3.6/15 | 10.52 |
毛柿 Diospyros strigosa | 308 | 0.34 | 3/15 | 4.6/13 | 9.65 |
银柴 Aporusa dioica | 227 | 0.73 | 5.4/17 | 5.4/14 | 8.79 |
表1 海南岛热带天然南亚松纯林和混交林样地中优势树种
Table 1 Principal tree species in a pure Pinus latteri forest plot (COG1) and a mixed P. latteri forest plot (COG2)
物种 Species | 个体数 Abundance | 胸高断面积 Basal area (m2/ha) | 胸径(平均值/最大值) DBH Mean/Max. (cm) | 高度(平均值/最大值) Height (Mean/max.) (m) | 重要值 Importance value |
---|---|---|---|---|---|
COG1 | |||||
南亚松 Pinus latteri | 365 | 20.01 | 24.14/84 | 15/25 | 91.58 |
银柴 Aporusa dioica | 806 | 2.40 | 4.80/27 | 4.4/15 | 33.69 |
野漆 Toxicodendron succedaneum | 421 | 0.58 | 3.08/17 | 4.0/15 | 14.95 |
黄樟 Cinnamomum porrectum | 289 | 0.76 | 4.48/22 | 4.4/15 | 11.74 |
毛菍 Melastoma sanguineum | 418 | 0.12 | 1.83/8 | 2.8/6 | 11.41 |
子楝树 Decaspermum gracilentum | 300 | 0.16 | 2.34/7.8 | 3.6/7 | 9.29 |
海南杨桐 Adinandra hainanensis | 221 | 0.38 | 3.5/14.3 | 4.0/14 | 8.03 |
细基丸 Polyalthia cerasoides | 173 | 0.56 | 4.7/24.9 | 4.7/16 | 7.57 |
越南山矾 Symplocos cochinchinensis | 193 | 0.47 | 4.4/16 | 3.9/11 | 7.40 |
山柑算盘子 Glochidion sphaerogynum | 200 | 0.28 | 3.3/14 | 4.2/13 | 7.16 |
COG2 | |||||
海南杨桐 Adinandra hainanensis | 564 | 4.65 | 8.75/28 | 7.0/15 | 32.30 |
南亚松 Pinus latteri | 88 | 9.97 | 33.67/90 | 17.0/25 | 31.22 |
胡颓子叶柯 Lithocarpus elaeagnifolius | 722 | 2.82 | 5.47/47 | 6.0/18 | 30.63 |
九节 Psychotria rubra | 1080 | 0.37 | 1.85/10 | 3.0/7 | 25.68 |
木荷 Schima superba | 293 | 4.88 | 10.82/63 | 8.9/18 | 24.40 |
黄杞 Engelhardia roxburghiana | 388 | 3.55 | 6.96/44 | 6.0/20 | 21.66 |
台湾椎 Castanopsis formosana | 173 | 1.94 | 7.45/50 | 6.9/20 | 11.00 |
密脉蒲桃 Syzygium chunianum | 379 | 0.34 | 2.55/30 | 3.6/15 | 10.52 |
毛柿 Diospyros strigosa | 308 | 0.34 | 3/15 | 4.6/13 | 9.65 |
银柴 Aporusa dioica | 227 | 0.73 | 5.4/17 | 5.4/14 | 8.79 |
多度 Abundance | 总丰富度 Richness | 丰富度 Richness | |||
---|---|---|---|---|---|
亚林层 Subcanopy | 林下层 Understory | 亚林层 Subcanopy | 林下层 Understory | ||
COG1 | |||||
全部个体 All individuals | 3,640 | 2,054 | 138 | 47 | 90 |
≥ 10株的个体 ≥ 10 individuals | 3,567 | 1,854 | 55 | 30 | 24 |
比例 % | 98 | 90.30 | 39.41 | 63.80 | 26.70 |
COG2 | |||||
全部个体 All individuals | 4,862 | 1,593 | 132 | 60 | 71 |
≥ 10株的个体 ≥ 10 individuals | 4,747 | 1,463 | 49 | 33 | 15 |
比例 % | 97.60 | 91.80 | 36.40 | 55 | 21.10 |
表2 海南岛热带天然南亚松纯林和混交林亚林层和林下层阔叶树种的分布
Table 2 Distributions of tree species in different vertical layers in a pure Pinus latteri forest plot (COG1) and a mixed P. latteri forest plot (COG2)
多度 Abundance | 总丰富度 Richness | 丰富度 Richness | |||
---|---|---|---|---|---|
亚林层 Subcanopy | 林下层 Understory | 亚林层 Subcanopy | 林下层 Understory | ||
COG1 | |||||
全部个体 All individuals | 3,640 | 2,054 | 138 | 47 | 90 |
≥ 10株的个体 ≥ 10 individuals | 3,567 | 1,854 | 55 | 30 | 24 |
比例 % | 98 | 90.30 | 39.41 | 63.80 | 26.70 |
COG2 | |||||
全部个体 All individuals | 4,862 | 1,593 | 132 | 60 | 71 |
≥ 10株的个体 ≥ 10 individuals | 4,747 | 1,463 | 49 | 33 | 15 |
比例 % | 97.60 | 91.80 | 36.40 | 55 | 21.10 |
图1 海南岛热带天然南亚松纯林和混交林不同林层树种分布图。灰色实心点代表林冠层树种, 灰色空心点代表亚林层树种, 黑色点代表林下层树种。
Fig. 1 Spatial distributions of all species in different vertical layers for COG1 and COG2. The gray solid points, the gray hollow points, and the black points indicate the canopy, subcanopy, and understory species, respectively.
图2 海南岛热带天然南亚松纯林(COG1)和混交林(COG2)中南亚松的径级结构图
Fig. 2 DBH class of Pinus latteri for a pure P. latteri forest plot (COG1, left) and a mixed P. latteri forest plot (COG2, right)
图3 海南岛热带天然南亚松纯林和混交林不同林层树种空间分布格局。采用单变量Ripley’s K函数L(r)和单变量PCF函数g(r)。
Fig. 3 Point pattern analysis of species’ spatial distribution patterns in different vertical layers for a pure Pinus latteri forest plot (COG1) and a mixed P. latteri forest plot (COG2) based on univariate K-function and univariate PCF-function.
图4 海南岛热带天然南亚松纯林和混交林不同林层主要阔叶树种的分布格局统计。采用单变量Ripley’s K函数K(r)。
Fig. 4 Statistical tendency of point pattern analysis of the principal species in different vertical layers for a pure Pinus latteri forest plot (COG1) and a mixed P. latteri forest plot (COG2) based on univariate K-function.
图5 海南岛热带天然南亚松纯林(COG1)和混交林(COG2)不同林层树种之间的整体关联性分析。其中, a, b, c为COG1样地, d, e, f为COG2样地。采用双变量Ripley’s K函数。
Fig. 5 Spatial associations among different vertical layers based on bivariate K-function. a, b, c for a pure Pinus latteri forest plot (COG1), and d, e, f for a mixed P. latteri forest plot (COG2).
图6 海南岛热带天然南亚松纯林和混交林林冠层与亚林层、林冠层与林下层树种的关联性分析。采用双变量Ripley’s K函数。
Fig. 6 Statistical tendency of spatial associations between Pinus latteri and other principal broadleaved species among different vertical layers based on bivariate K-function.
[1] | Allouche O, Kalyuzhny M, Moreno-Rueda G, Pizarro M, Kadmon R (2012) Area-heterogeneity tradeoff and the diversity of ecological communities. Proceedings of the National Academy of Sciences, USA, 109, 17495–17500. |
[2] | Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Killeen TJ, Laurance SG, Laurance WF (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10, 545–562. |
[3] | Besag J, Diggle PJ (1977) Simple Monte Carlo tests for spatial pattern. Applied Statistics, 39, 327–333. |
[4] | Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351–366. |
[5] | Chazdon RL (2008) Chance and determinism in tropical forest succession in tropical forest succession. In: Tropical Forest Community Ecology (eds Carson WP, Schnitzer SA), pp. 384–408. Wiley-Blackwell, Chichester, UK. |
[6] | Chen J, Bradshaw GA (1999) Forest structure in space: a case study of an old growth spruce-fir forest in Changbaishan Nature Reserve, PR China. Forest Ecology and Manage- ment, 120, 219–233. |
[7] | Chesson P (2000) General theory of competitive coexistence in spatially-varying environments. Theoretical Population Biology, 58, 211–237. |
[8] | Condit R, Ashton P, Bunyavejchewin S, Dattaraja H, Davies S, Esufali S, Ewango C, Foster R, Gunatilleke I, Gunatilleke C (2006) The importance of demographic niches to tree diversity. Science, 313, 98–101. |
[9] | Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, LaFrankie JV (2000) Spatial patterns in the distribution of tropical tree species. Science, 288, 1414–1418. |
[10] | Dent DH, DeWalt SJ, Denslow JS (2013) Secondary forests of central Panama increase in similarity to old-growth forest over time in shade tolerance but not species composition. Journal of Vegetation Science, 24, 530–542. |
[11] | Diggle PJ (2003) Statistical Analysis of Spatial Point Patterns. Arnodl Press, London. |
[12] | Edwards RD, Crisp MD, Cook LG (2012) Niche differentiation and spatial partitioning in the evolution of two Australian monsoon tropical tree species. Journal of Biogeography, 40, 559–569. |
[13] | Getzin S, Dean C, He F, A Trofymow J, Wiegand K, Wiegand T (2006) Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography, 29, 671–682. |
[14] | Getzin S, Wiegand T, Wiegand K, He F (2008) Heterogeneity influences spatial patterns and demographics in forest stands. Journal of Ecology, 96, 807–820. |
[15] | Guan WB (关文彬), Chen T (陈铁), Dong YJ (董亚杰), Zhou YL (周以良) (1997) Vegetation diversity in northeastern China. I. Diversity of vertical vegetation composition in cold temperate coniferous forest region. Chinese Journal of Applied Ecology(应用生态学报), 8, 465–470. (in Chinese with English abstract) |
[16] | Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management, 148, 185–206. |
[17] | Hardy OJ, Sonké B (2004) Spatial pattern analysis of tree species distribution in a tropical rain forest of Cameroon: assessing the role of limited dispersal and niche differentiation. Forest Ecology and Management, 197, 191–202. |
[18] | Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947–959. |
[19] | He F, Duncan RP (2000) Density-dependent effects on tree survival in an old-growth Douglas fir forest. Journal of Ecology, 88, 676–688. |
[20] | He F, Legendre P, LaFrankie JV (1997) Distribution patterns of tree species in a Malaysian tropical rain forest. Journal of Vegetation Science, 8, 105–114. |
[21] | Huang YF (黄运峰), Yang XB (杨小波), Dang JL (党金玲), Wu QS (吴庆书), Li DH (李东海), Yue P (岳平) (2009) The popoulation structures and distribution patterns of Pinus latteri in Bawangling, Hainan Island. Journal of Fujian Forestry Science and Technique(福建林业科技), 36, 1–4, 22. (in Chinese with English abstract) |
[22] | Hubbell SP (1979) Tree dispersion, abundance, and diversity in a tropical dry forest. Science, 203, 1299–1309. |
[23] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
[24] | Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, West Sussex. |
[25] | Jiang XQ (蒋雪琴), Liu YH (刘艳红), Zhao BY (赵本元) (2002) Structure characteristics and spatial distribution of Abies fargesii population in Shennongjia National Nature Reserve, China. Aata Ecologica Sinica(生态学报), 29, 2211–2218. (in Chinese with English abstract) |
[26] | Jiang YX (蒋有绪), Wang BS (王伯荪), Zang RG (臧润国), Jin JH (金建华), Liao WB (廖文波) (2002) Biodiversity and Its Mechanism of Tropical Forests of the Hainan Island, China (海南岛热带林生物多样性及其形成机制). Science Press, Beijing. (in Chinese) |
[27] | John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M (2007) Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences,USA, 104, 864–869. |
[28] | Lan G, Getzin S, Wiegand T, Hu Y, Xie G, Zhu H, Cao M (2012) Spatial distribution and interspecific associations of tree species in a tropical seasonal rain forest of China. PLoS ONE, 7, e46074. |
[29] | Lieberman M, Lieberman D (2007) Nearest-neighbor tree species combinations in tropical forest: the role of chance, and some consequences of high diversity. Oikos, 116, 377–386. |
[30] | Lin YC, Chang LW, Yang KC, Wang HH, Sun IF (2011) Point patterns of tree distribution determined by habitat heterogeneity and dispersal limitation. Oecologia, 165, 175–184. |
[31] | Lingua E, Cherubini P, Motta R, Nola P (2009) Spatial structure along an altitudinal gradient in the Italian central Alps suggests competition and facilitation among coniferous species. Journal of Vegetation Science, 19, 425–436. |
[32] | Ma KP (马克平) (2008) Large scale permanent plots: important platform for long term research on biodiversity in forest ecosystem. Chinese Journal of Plant Ecology(植物生态学报), 32, 237. (in Chinese with English abstract) |
[33] | Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR (2009) Global patterns in plant height. Journal of Ecology, 97, 923–932. |
[34] | Murphy SJ, McCarthy BC (2012) Evidence for topographic control of tree spatial patterning in an old-growth, mixed mesophytic forest in southeastern Ohio, USA. The Journal of the Torrey Botanical Society, 139, 181–193. |
[35] | Murrell DJ (2009) On the emergent spatial structure of size-structured populations: when does self-thinning lead to a reduction in clustering?Journal of Ecology, 97, 256–266. |
[36] | Newton P, Peres CA, Desmoulière SJ, Watkinson AR (2012) Cross-scale variation in the density and spatial distribution of an Amazonian non-timber forest resource. Forest Ecology and Management, 276, 41–51. |
[37] | Norden N, Chazdon RL, Chao A, Jiang YH, Vílchez-Alvarado B (2009) Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecology Letters, 12, 385–394. |
[38] | Perry GLW, Enright NJ, Miller BP, Lamont BB (2009) Nearest-neighbour interactions in species-rich shrublands: the roles of abundance, spatial patterns and resources. Oikos, 118, 161–174. |
[39] | Plotkin JB, Potts MD, Leslie N, Manokaran N, LaFrankie J, Ashton PS (2000) Species–area curves, spatial aggregation, and habitat specialization in tropical forests. Journal of Theoretical Biology, 207, 81–99. |
[40] | R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL. |
[41] | Raventós J, Wiegand T, Luis MD (2010) Evidence for the spatial segregation hypothesis: a test with nine-year survivorship data in a Mediterranean shrubland. Ecology, 91, 2110–2120. |
[42] | Ripley BD (1976) The second-order analysis of stationary point processes. Journal of Applied Probability, 13, 255–266. |
[43] | Sterner RW, Ribic CA, Schatz GE (1986) Testing for life historical changes in spatial patterns of four tropical tree species. Journal of Ecology, 74, 621–633. |
[44] | Stoyan D, Penttinen A (2000) Recent applications of point process methods in forestry statistics. Statistical Science, 15, 61–78. |
[45] | Swenson NG, Weiser MD (2010) Plant geography upon the basis of functional traits: an example from eastern North American trees. Ecology, 91, 2234–2241. |
[46] | Wang X, Ye J, Li B, Zhang J, Lin F, Hao Z (2010) Spatial distributions of species in an old-growth temperate forest, northeastern China. Canadian Journal of Forest Research, 40, 1011–1019. |
[47] | Wang XT (王鑫厅), Hou YL (侯亚丽), Liang CZ (梁存柱), Wang W (王炜), Liu F (刘芳) (2012) Point pattern analysis based on different null models for detecting spatial patterns. Biodiversity Science(生物多样性), 20, 151–158. (in Chinese with English abstract) |
[48] | Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends in Ecology and Evolution, 21, 261–268. |
[49] | Wiegand T, Gunatilleke S, Gunatilleke N, Okuda T (2007) Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology, 88, 3088–3102. |
[50] | Wiegand T, Huth A, Getzin S, Wang X, Hao Z, Gunatilleke CSV, Gunatilleke IAUN (2012) Testing the independent species’ arrangement assertion made by theories of stochastic geometry of biodiversity. Proceedings of The Royal Society B: Biological Sciences, 279, 3312–3320. |
[51] | Wiegand T, Moloney KA (2004) Rings, circles, and null-models for point pattern analysis in ecology. Oikos, 104, 209–229. |
[52] | Wright JS (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130, 1–14. |
[53] | Zang RG (臧润国), Ding Y (丁易), Zhang ZD (张志东), Deng FY (邓福英), Mao PL (毛培利) (2010) Ecological Basis of Conservation and Restoration for Major Functional Groups in Tropical Natural Forests on Hainan Island (海南岛热带天然林主要功能群保护与恢复的生态学基础). Science Press, Beijing. (in Chinese) |
[54] | Zang RG (臧润国), Yang YC (杨彦承), Jiang YX (蒋有绪) (2001) Community structure and tree species diversity characteristics in a tropical montane rain forest in Bawangling Nature Reserve, Hainan Island. Chinese Journal of Plant Ecology(植物生态学报), 25, 270–275. (in Chinese with English abstract) |
[55] | Zhang J (张健), Hao ZQ (郝占庆), Song B (宋波), Ye J (叶吉), Li BH (李步杭), Yao XL (姚晓琳) (2007) Spatial distribution patterns and associations of Pinus koraiensis and Tilia amurensis in broad-leaved Korean pine mixed forest in Changbai Mountains. Chinese Journal of Applied Ecology(应用生态学报), 18, 1681–1687. (in Chinese with English abstract) |
[56] | Zhang JT (张金屯) (1998) Analysis of spatial point pattern for plant species. Acta Phytoecologica Sinica(植物生态学报) , 22, 344–349. (in Chinese with English abstract) |
[57] | Zhou XY (周先叶), Wang BS (王伯荪), Li MG (李鸣光), Zan QJ (昝启杰) (2000) An analysis of interspecific associations in secondary succession forest communities in Heishiding Natural Reserve, Guangdong Province. Acta Phytoecologica Sinica(植物生态学报), 24, 332–339. (in Chinese with English abstract) |
[1] | 王明慧, 陈昭铨, 李帅锋, 黄小波, 郎学东, 胡子涵, 尚瑞广, 刘万德. 云南普洱季风常绿阔叶林不同种子扩散方式的优势种空间点格局分析[J]. 生物多样性, 2023, 31(9): 23147-. |
[2] | 鲁梦珍, 曾馥平, 宋同清, 彭晚霞, 张浩, 苏樑, 刘坤平, 谭卫宁, 杜虎. 喀斯特常绿落叶阔叶林死亡个体空间分布格局及生境关联[J]. 生物多样性, 2022, 30(4): 21340-. |
[3] | 赵琦, 蒋际宝, 张曾鲁, 金清, 李佳丽, 邱江平. 海南岛蚯蚓物种组成及其系统发育分析[J]. 生物多样性, 2022, 30(12): 22224-. |
[4] | 郝希阳, 贺姹, 楚克林, 申志新, 赵强, 高伟, 潘达, 孙红英. 海南岛淡水蟹类分布格局与多样性保护[J]. 生物多样性, 2021, 29(5): 605-616. |
[5] | 黄小,朱江,姚兰,艾训儒,王进,吴漫玲,朱强,陈绍林. 水杉原生种群结构及空间分布格局[J]. 生物多样性, 2020, 28(4): 463-473. |
[6] | 王鑫厅, 柴静, 姜超, 邰阳, 迟延艳, 张维华, 刘芳, 李素英. 典型草原大针茅种群空间格局及对长期过度放牧的响应[J]. 生物多样性, 2020, 28(2): 128-134. |
[7] | 胡宜峰,余文华,岳阳,黄正澜懿,李玉春,吴毅. 海南岛翼手目物种多样性现状与分布预测[J]. 生物多样性, 2019, 27(4): 400-408. |
[8] | 马维, 王瑁, 王文卿, 刘毅, 罗柳青, 唐朝艺. 海南岛西海岸红树林软体动物多样性[J]. 生物多样性, 2018, 26(7): 707-716. |
[9] | 王世彤, 吴浩, 刘梦婷, 张佳鑫, 刘检明, 孟红杰, 徐耀粘, 乔秀娟, 魏新增, 卢志军, 江明喜. 极小种群野生植物黄梅秤锤树群落结构与动态[J]. 生物多样性, 2018, 26(7): 749-759. |
[10] | 倪娟平, 程赛赛, 高梅香, 卢廷玉, 金光泽. 丰林典型阔叶红松林地表鞘翅目成虫空间异质性及其与环境因子的空间关联性[J]. 生物多样性, 2018, 26(1): 14-26. |
[11] | 朱华. 探讨海南岛生物地理起源上有意义的一些种子植物科和属[J]. 生物多样性, 2017, 25(8): 816-822. |
[12] | 黄丰明, 吴秋婷, 韩博平, 林秋奇. 海南岛腔轮科种类组成与区系分布[J]. 生物多样性, 2017, 25(4): 430-436. |
[13] | 叶俊伟, 袁永革, 蔡荔, 王晓娟. 中国东北温带针阔混交林植物物种的谱系地理研究进展[J]. 生物多样性, 2017, 25(12): 1339-1349. |
[14] | 卢志军, 刘福玲, 吴浩, 江明喜. 八大公山常绿落叶阔叶混交林枯立木物种组成、大小级与分布格局[J]. 生物多样性, 2015, 23(2): 167-173. |
[15] | 许涵, 李意德, 林明献, 吴建辉, 骆土寿, 周璋, 陈德祥, 杨怀, 李广建, 刘世荣. 海南尖峰岭热带山地雨林60 ha动态监测样地群落结构特征[J]. 生物多样性, 2015, 23(2): 192-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn