生物多样性 ›› 2015, Vol. 23 ›› Issue (2): 167-173. DOI: 10.17520/biods.2014139
• 研究报告: 热带亚热带森林大样地群落结构与格局 • 上一篇 下一篇
收稿日期:
2014-07-02
接受日期:
2015-01-15
出版日期:
2015-03-20
发布日期:
2015-04-09
通讯作者:
江明喜
基金资助:
Zhijun Lu1, Fuling Liu2, Hao Wu1,3, Mingxi Jiang1,*()
Received:
2014-07-02
Accepted:
2015-01-15
Online:
2015-03-20
Published:
2015-04-09
Contact:
Jiang Mingxi
摘要:
枯立木是森林生态系统的重要组成部分, 对其数量特征(如物种组成和大小级)与分布格局的研究是认识这个特殊类群的起点。本文以湖南八大公山25 ha森林动态监测样地常绿落叶阔叶混交林为研究对象, 以该样地第一次木本植物(DBH ≥ 1 cm)调查数据为基础, 分析了枯立木的物种组成、径级结构、分布格局以及生境关联。结果表明, 样地内共有枯立木(DBH ≥ 1 cm, 高度≥ 130 cm, 完全死亡)8,947株。其中, 1 cm≤ DBH <5 cm枯立木4,258株(47.59%), 5 cm ≤ DBH <10 cm枯立木2,132株(23.84%), 10 cm ≤ DBH <30 cm枯立木2,377株(26.57%), DBH ≥ 30 cm枯立木180株(2%); 平均DBH为8.0 cm, 最大DBH为83.5 cm。从分布格局来看, 0-50 m的尺度上, 样地内枯立木主要呈现聚集分布, 但在接近40 m的尺度上, 逐渐变为随机分布。利用多元回归树(multivariate regression tree, MRT)将样地生境分为3类, 运用Torus转换比较某类生境中枯立木密度与物种零分布模型中的期望密度, 结果显示枯立木在山谷中分布较少, 山脊较多, 而在山坡生境则呈现随机分布。鉴定到种的枯立木有724株(8.1%), 隶属于26科84种; 其中, 杜鹃花科、壳斗科和樟科枯立木最多。在物种水平上, 多脉青冈(Cyclobalanopsis multinervis)、长蕊杜鹃(Rhododendron stamineum)和黄丹木姜子(Litsea elongata)枯立木最多; 而优势树种亮叶水青冈(Fagus lucida)的枯立木并不多见。
卢志军, 刘福玲, 吴浩, 江明喜 (2015) 八大公山常绿落叶阔叶混交林枯立木物种组成、大小级与分布格局. 生物多样性, 23, 167-173. DOI: 10.17520/biods.2014139.
Zhijun Lu, Fuling Liu, Hao Wu, Mingxi Jiang (2015) Species composition, size class, and spatial patterns of snags in the Badagongshan (BDGS) mixed evergreen and deciduous broad-leaved forest in central China. Biodiversity Science, 23, 167-173. DOI: 10.17520/biods.2014139.
图1 八大公山25 ha样地内枯立木常见科(个体数≥ 25)和常见物种(个体数≥ 25)
Fig. 1 Common families and species (with ≥ 25 individuals) of snags in the 25 ha Badagongshan (BDGS) plot
图3 八大公山25 ha样地枯立木空间分布点格局分析。A: 样地内所有胸径≥1 cm的枯立木的散点图; B到F: 样地内枯立木单变量g(r)点格局分析。B: DBH ≥ 1 cm; C: 1 cm ≤ DBH < 5 cm; D: 5 cm ≤ DBH < 10 cm; E: 10 cm ≤ DBH < 30 cm; F: DBH ≥ 30 cm.
Fig. 3 Point pattern analysis of snags spatial distribution in the 25 ha Badagongshan (BDGS) plot. A, Scatterplot of snags with DBH (diameter at breast height) ≥ 1 cm; B to F, Univariate spatial distribution point pattern analysis (g(r)) of snags. B, DBH ≥ 1 cm; C, 1 cm ≤ DBH < 5 cm; D, 5 cm ≤ DBH < 10 cm; E, 10 cm ≤ DBH < 30 cm; F, DBH ≥ 30 cm.
图4 八大公山25 ha样地生境分类(多元回归树方法, MRT)。浅灰: 山谷; 灰色: 山坡; 黑色: 山脊。
Fig. 4 Habitat categorization of the 25 ha Badagongshan (BDGS) plot based on a MRT (multivariate regression tree) analysis. light gray, valley; gray, slop; black, ridge.
科 Family | 生境类型 Habitat type | P | 关联类型 Association type |
---|---|---|---|
杜鹃花科 Ericaceae | 山谷 Valley | 0.002 | 显著负关联 Significant negative correlation |
山坡 Slope | 0.34 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.88 | 随机分布 Stochastic distribution | |
壳斗科 Fagaceae | 山谷 Valley | 0.04 | 随机分布 Stochastic distribution |
山坡 Slope | 0.44 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.78 | 随机分布 Stochastic distribution | |
樟科 Lauraceae | 山谷 Valley | 0.31 | 随机分布 Stochastic distribution |
山坡 Slope | 0.28 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.73 | 随机分布 Stochastic distribution | |
山矾科 Symplocaceae | 山谷 Valley | 0.76 | 随机分布 Stochastic distribution |
山坡 Slope | 0.60 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.25 | 随机分布 Stochastic distribution | |
山茶科 Theaceae | 山谷 Valley | 0.46 | 随机分布 Stochastic distribution |
山坡 Slope | 0.52 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.45 | 随机分布 Stochastic distribution |
表1 八大公山25 ha样地枯立木科水平(个体数≥ 25)生境关联分析
Table 1 Habitat associations of snags for families with ≥ 25 individuals in the 25 ha Badagongshan (BDGS) plot
科 Family | 生境类型 Habitat type | P | 关联类型 Association type |
---|---|---|---|
杜鹃花科 Ericaceae | 山谷 Valley | 0.002 | 显著负关联 Significant negative correlation |
山坡 Slope | 0.34 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.88 | 随机分布 Stochastic distribution | |
壳斗科 Fagaceae | 山谷 Valley | 0.04 | 随机分布 Stochastic distribution |
山坡 Slope | 0.44 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.78 | 随机分布 Stochastic distribution | |
樟科 Lauraceae | 山谷 Valley | 0.31 | 随机分布 Stochastic distribution |
山坡 Slope | 0.28 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.73 | 随机分布 Stochastic distribution | |
山矾科 Symplocaceae | 山谷 Valley | 0.76 | 随机分布 Stochastic distribution |
山坡 Slope | 0.60 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.25 | 随机分布 Stochastic distribution | |
山茶科 Theaceae | 山谷 Valley | 0.46 | 随机分布 Stochastic distribution |
山坡 Slope | 0.52 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.45 | 随机分布 Stochastic distribution |
物种 Species | 生境类型 Habitat type | P | 关联类型 Association type |
---|---|---|---|
多脉青冈 Cyclobalanopsis multinervis | 山谷 Valley | 0.10 | 随机分布 Stochastic distribution |
山坡 Slope | 0.52 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.67 | 随机分布 Stochastic distribution | |
长蕊杜鹃 Rhododendron stamineum | 山谷 Valley | 0.004 | 显著负关联 Significant negative correlation |
山坡 Slope | 0.37 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.88 | 随机分布 Stochastic distribution | |
黄丹木姜子 Litsea elongata | 山谷 Valley | 0.76 | 随机分布 Stochastic distribution |
山坡 Slope | 0.12 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.70 | 随机分布 Stochastic distribution | |
小果南烛 Lyonia ovalifolia | 山谷 Valley | 0.02 | 显著负关联 Significant negative correlation |
山坡 Slope | 0.61 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.68 | 随机分布 Stochastic distribution | |
大叶山矾 Symplocos macrophylla | 山谷 Valley | 0.75 | 随机分布 Stochastic distribution |
山坡 Slope | 0.56 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.27 | 随机分布 Stochastic distribution | |
短柱柃 Eurya brevistyla | 山谷 Valley | 0.51 | 随机分布 Stochastic distribution |
山坡 Slope | 0.55 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.25 | 随机分布 Stochastic distribution | |
小花木荷 Schima parviflora | 山谷 Valley | 0.19 | 随机分布 Stochastic distribution |
山坡 Slope | 0.49 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.62 | 随机分布 Stochastic distribution | |
满山红 Rhododendron mariesii | 山谷 Valley | 0.08 | 随机分布 Stochastic distribution |
山坡 Slope | 0.37 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.79 | 随机分布 Stochastic distribution |
表2 八大公山25 ha样地枯立木物种水平(个体数≥25)生境关联分析
Table 2 Habitat associations of snags for species with ≥25 individuals in the 25 ha Badagongshan (BDGS) plot
物种 Species | 生境类型 Habitat type | P | 关联类型 Association type |
---|---|---|---|
多脉青冈 Cyclobalanopsis multinervis | 山谷 Valley | 0.10 | 随机分布 Stochastic distribution |
山坡 Slope | 0.52 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.67 | 随机分布 Stochastic distribution | |
长蕊杜鹃 Rhododendron stamineum | 山谷 Valley | 0.004 | 显著负关联 Significant negative correlation |
山坡 Slope | 0.37 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.88 | 随机分布 Stochastic distribution | |
黄丹木姜子 Litsea elongata | 山谷 Valley | 0.76 | 随机分布 Stochastic distribution |
山坡 Slope | 0.12 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.70 | 随机分布 Stochastic distribution | |
小果南烛 Lyonia ovalifolia | 山谷 Valley | 0.02 | 显著负关联 Significant negative correlation |
山坡 Slope | 0.61 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.68 | 随机分布 Stochastic distribution | |
大叶山矾 Symplocos macrophylla | 山谷 Valley | 0.75 | 随机分布 Stochastic distribution |
山坡 Slope | 0.56 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.27 | 随机分布 Stochastic distribution | |
短柱柃 Eurya brevistyla | 山谷 Valley | 0.51 | 随机分布 Stochastic distribution |
山坡 Slope | 0.55 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.25 | 随机分布 Stochastic distribution | |
小花木荷 Schima parviflora | 山谷 Valley | 0.19 | 随机分布 Stochastic distribution |
山坡 Slope | 0.49 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.62 | 随机分布 Stochastic distribution | |
满山红 Rhododendron mariesii | 山谷 Valley | 0.08 | 随机分布 Stochastic distribution |
山坡 Slope | 0.37 | 随机分布 Stochastic distribution | |
山脊 Ridge | 0.79 | 随机分布 Stochastic distribution |
1 | An Y (安云), Ding GD (丁国栋), Gao GL (高广磊), Liang WJ (梁文俊), He Y (贺宇), Wei B (魏宝), Bao B (鲍彪) (2012) Quantity characteristics and distribution pattern of standing dead trees in natural secondary forests of rocky mountain area in northern China.Bulletin of Soil and Water Conservation(水土保持通报), 32, 246-250. (in Chinese with English abstract) |
2 | Baddeley A (2008) Analysing Spatial Point Patterns in 'R'. p. 94. CSIRO, Canberra. |
3 | Baddeley A, Gregori P, Mateu J, Stoica R, Stoyan D (2006) Case studies in spatial point process modelling. In: Lecture Notes in Statistics (eds Bickel P, Diggle P, Fienberg S, Gather U, Olkin I, Zeger S), p. 40. Springer, New York. |
4 | Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valencia R, Navarrete H, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Supardi MNN, Davies SJ, Hubbell SP, Chuyong GB, Kenfack D, Thomas DW, Dalling JW (2013) Habitat filtering across tree life stages in tropical forest communities.Proceedings of the Royal Society B: Biological Sciences, 280, 20130548. |
5 | Bin Y, Lian J, Wang Z, Ye W, Cao H (2011) Tree mortality and recruitment in a subtropical broadleaved monsoon forest in South China.Journal of Tropical Forest Science, 23, 57-66. |
6 | Bohlman SA, Laurance WF, Laurance SG, Nascimento HE, Fearnside PM, Andrade A (2008) Importance of soils, topography and geographic distance in structuring central Amazonian tree communities.Journal of Vegetation Science, 19, 863-874. |
7 | Bond-Lamberty B, Rocha AV, Calvin K, Holmes B, Wang C, Goulden ML (2014) Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest.Global Change Biology, 20, 216-227. |
8 | Condit R, Hubbell SP, Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought.Ecological Monographs, 65, 419-439. |
9 | De’ath G (2002) Multivariate regression trees: a new technique for modeling species-environment relationships.Ecology, 83, 1105-1117. |
10 | Escandón AB, Paula S, Rojas R, Corcuera LJ, Coopman RE (2013) Sprouting extends the regeneration niche in temperate rain forests: the case of the long-lived tree Eucryphia cordifolia.Forest Ecology and Management, 310, 321-326. |
11 | Flanagan PT, Morgan P, Everett RL (1998) Snag recruitment in subalpine forests.Northwest Science, 72, 303-309. |
12 | Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological process.BioScience, 37, 550-556. |
13 | Fraver S, Jonsson BG, Jönsson M, Esseen PA (2008) Demographics and disturbance history of a boreal old-growth Picea abies forest.Journal of Vegetation Science, 19, 789-798. |
14 | Ganey JL (1999) Snag density and composition of snag populations on two National Forests in northern Arizona.Forest Ecology and Management, 117, 169-178. |
15 | Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot.Journal of Ecology, 89, 947-959. |
16 | Harper KA, Bergeron Y, Drapeau P, Gauthier S, de Grandpré L (2006) Changes in spatial pattern of trees and snags during structural development in Picea mariana boreal forests.Journal of Vegetation Science, 17, 625-636. |
17 | Hilger AB, Shaw CH, Metsaranta JM, Kurz WA (2012) Estimation of snag carbon transfer rates by ecozone and lead species for forests in Canada.Ecological Applications, 22, 2078-2090. |
18 | Iida Y, Poorter L, Sterck F, Kassim AR, Potts MD, Kubo T, Kohyama TS (2014) Linking size-dependent growth and mortality with architectural traits across 145 co-occurring tropical tree species.Ecology, 95, 353-363. |
19 | Iida Y, Kohyama TS, Kubo T, Kassim AR, Poorter L, Sterck F, Potts MD (2011) Tree architecture and life-history strategies across 200 co-occurring tropical tree species.Functional Ecology, 25, 1260-1268. |
20 | Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and Modelling of Spatial Point Patterns. Wiley, London. |
21 | Keitt TH, Ottar N, Bjørnstad ON, Dixon PM, Citron-Pousty S (2002) Accounting for spatial pattern when modeling organism-environment interactions.Ecography, 25, 616-625. |
22 | Lai JS, Mi XC, Ren HB, Ma KP (2009) Species-habitat associations change in a subtropical forest of China.Journal of Vegetation Science, 20, 415-423. |
23 | Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis.Vegetatio, 80, 107-138. |
24 | Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun I-F, He F (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China.Ecology, 90, 663-674. |
25 | Lin SW (林淑伟), Chai WY (柴文毅), Chen BR (陈炳容), Fan HL (范海兰), Song P (宋萍), Cai BL (蔡冰玲), Liu LX (刘丽香) (2008) On spatial characters of the dead wood in Wuyi Mountain forest ecosystem.Journal of Beihua University (Natural Science)(北华大学学报(自然科学版)), 9, 356-361. (in Chinese with English abstract) |
26 | Liu JJ, Tan YH, Slik JWF (2014) Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest.Forest Ecology and Management, 330, 75-81. |
27 | Lu ZJ (卢志军), Bao DC (鲍大川), Guo YL (郭屹立), Lu JM (路俊盟), Wang QG (王庆刚), He D (何东), Zhang KH (张奎汉), Xu YZ (徐耀粘), Liu HB (刘海波), Meng HJ (孟红杰), Huang HD (黄汉东), Wei XZ (魏新增), Liao JX (廖建雄), Qiao XJ (乔秀娟), Jiang MX (江明喜), Gu ZR (谷志容), Liao CL (廖春林) (2013) Community composition and structure of Badagongshan (BDGS) Forest Dynamic Plot in a mid-subtropical mountain evergreen and deciduous broad-leaved mixed forest, central China.Plant Science Journal(植物科学学报), 31, 336-344. (in Chinese with English abstract) |
28 | Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks.Nature, 455, 213-215. |
29 | McComb W, Lindenmayer D(1999) Dying, dead and down trees. In: Maintaining Biodiversity in Forests Ecosystems (ed. Hunter ML Jr), pp. 335-372. Cambridge University Press, Cambridge. |
30 | Phillips OL, Vargas PN, Monteagudo AL, Cruz AP, Zans MEC, Sánchez WG, Yli-Halla M, Rose S (2003) Habitat association among Amazonian tree species: a landscape-scale approach.Journal of Ecology, 91, 757-775. |
31 | R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.(2014-12-1) |
32 | Wang XG, Comita LS, Hao ZQ, Davies SJ, Ye J, Lin F, Yuan ZQ (2012) Local-scale drivers of tree survival in a temperate forest.PLoS ONE, 7, e29469. |
33 | Webb CO, Peart DR (2000) Habitat associations of trees and seedlings in a Bornean rain forest.Journal of Ecology, 88, 464-478. |
34 | Wiegand T, Moloney KA (2004) Rings, circles, and null-models for point pattern analysis in ecology.Oikos, 104, 209-229. |
35 | Woodall WC, Liknes GC (2008) Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States.Carbon Balance and Management, 3, 5. |
36 | Yamada T, Tomita A, Itoh A, Yamakura T, Ohkubo T, Kanzaki M, Tan S, Ashton P (2006) Habitat associations of Sterculiaceae trees in a Bornean rain forest plot.Journal of Vegetation Science, 17, 559-566. |
37 | Zhang J, Hao ZQ, Sun IF, Song B, Ye J, Li BH, Wang XG (2009) Density dependence on tree survival in an old-growth temperate forest in northeastern China.Annals of Forest Science, 66, 1-9. |
38 | Zhu Y, Mi XC, Ren HB, Ma KP (2010) Density dependence is prevalent in a heterogeneous subtropical forest.Oikos, 119, 109-119. |
[1] | 李正飞, 蒋小明, 王军, 孟星亮, 张君倩, 谢志才. 雅鲁藏布江中下游底栖动物物种多样性及其影响因素[J]. 生物多样性, 2022, 30(6): 21431-. |
[2] | 鲁梦珍, 曾馥平, 宋同清, 彭晚霞, 张浩, 苏樑, 刘坤平, 谭卫宁, 杜虎. 喀斯特常绿落叶阔叶林死亡个体空间分布格局及生境关联[J]. 生物多样性, 2022, 30(4): 21340-. |
[3] | 赵琦, 蒋际宝, 张曾鲁, 金清, 李佳丽, 邱江平. 海南岛蚯蚓物种组成及其系统发育分析[J]. 生物多样性, 2022, 30(12): 22224-. |
[4] | 李世雄, 王彦龙, 王玉琴, 尹亚丽. 土壤细菌群落特征对高寒草甸退化的响应[J]. 生物多样性, 2021, 29(1): 53-64. |
[5] | 黄敦元, 黄世贵, 王建皓, 李红英, 窦飞越, 张可, 朱祥龙, 马方舟. 齐云山国家级自然保护区蝴蝶群落多样性[J]. 生物多样性, 2020, 28(8): 958-964. |
[6] | 黄小,朱江,姚兰,艾训儒,王进,吴漫玲,朱强,陈绍林. 水杉原生种群结构及空间分布格局[J]. 生物多样性, 2020, 28(4): 463-473. |
[7] | 刘丹, 郭忠玲, 崔晓阳, 范春楠. 5种东北红豆杉植物群丛及其物种多样性的比较[J]. 生物多样性, 2020, 28(3): 340-349. |
[8] | 王鑫厅,柴静,姜超,邰阳,迟延艳,张维华,刘芳,李素英. 典型草原大针茅种群空间格局及对长期过度放牧的响应[J]. 生物多样性, 2020, 28(2): 128-134. |
[9] | 李宝泉, 姜少玉, 吕卷章, 陈琳琳, 闫朗, 刘春云, 李晓静, 宋博, 李新正. 黄河三角洲潮间带及近岸浅海大型底栖动物物种组成及长周期变化[J]. 生物多样性, 2020, 28(12): 1511-1522. |
[10] | 邓亨宁, 鞠文彬, 高云东, 张君议, 李诗琦, 高信芬, 徐波. 新建川藏铁路(雅安-昌都段)沿线外来入侵植物种类及分布特征[J]. 生物多样性, 2020, 28(10): 1174-1181. |
[11] | 谢峰淋,周全,史航,舒枭,张克荣,李涛,冯水园,张全发,党海山. 秦岭落叶阔叶林25 ha森林动态监测样地物种组成与群落特征[J]. 生物多样性, 2019, 27(4): 439-448. |
[12] | 张田田,王璇,任海保,余建平,金毅,钱海源,宋小友,马克平,于明坚. 浙江古田山次生与老龄常绿阔叶林群落特征的比较[J]. 生物多样性, 2019, 27(10): 1069-1080. |
[13] | 李通,李俊凝,魏玉莲. 古田山国家级自然保护区木腐真菌物种多样性及分布[J]. 生物多样性, 2019, 27(1): 81-87. |
[14] | 窦丽娜, 张文富, 邓晓保, 曹敏, 唐勇. 西双版纳望天树林种子雨9年动态[J]. 生物多样性, 2018, 26(9): 919-930. |
[15] | 王世彤, 吴浩, 刘梦婷, 张佳鑫, 刘检明, 孟红杰, 徐耀粘, 乔秀娟, 魏新增, 卢志军, 江明喜. 极小种群野生植物黄梅秤锤树群落结构与动态[J]. 生物多样性, 2018, 26(7): 749-759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn