生物多样性 ›› 2020, Vol. 28 ›› Issue (2): 166-175. DOI: 10.17520/biods.2019319
李共国1,*(), 李平1, 徐杭英2, 于海燕2, 俞建2
收稿日期:
2019-10-13
接受日期:
2020-01-18
出版日期:
2020-02-20
发布日期:
2020-03-08
通讯作者:
李共国
基金资助:
Gongguo Li1,*(), Ping Li1, Hangying Xu2, Haiyan Yu2, Jian Yu2
Received:
2019-10-13
Accepted:
2020-01-18
Online:
2020-02-20
Published:
2020-03-08
Contact:
Gongguo Li
摘要:
为探明水源地河流浮游动物多样性及与水环境因子的关系, 利用浮游动物多样性参数监测水质, 2010-2014年间, 我们于每年的冬季(1月)、春季(4月)、夏季(7月)和秋季(10月), 对浙江2个水源地河流采样站(H1站和H2站)展开浮游动物种类组成、丰度和多样性指数的季节性调查, 同时测定水环境因子。结果表明, H1站和H2站浮游动物平均丰度分别为1,387.4 ind./L和873.0 ind./L, 小型浮游动物(轮虫 + 桡足类无节幼体)丰度分别占92.8% (H1站)和91.5% (H2站)。两采样站轮虫、枝角类和桡足类的优势种均为针簇多肢轮虫(Polyarthra trigla)、短尾秀体溞(Diaphanosoma brachyurum)和温剑水蚤(Thermocyclops sp.)。多元逐步回归与通径分析结果表明: 冬季氮磷比是轮虫类Shannon-Wiener多样性指数(H′)波动的限制因子, 主要通过总磷含量对轮虫类H′指数产生较大的间接正向作用; 春季氮磷比是轮虫类H′指数发展的决策因子; 秋季氮磷比可通过总氮含量对轮虫类H′指数产生较大的间接正向作用。冬季氨氮、总氮含量分别是甲壳动物体积多样性指数(Hs)的决策因子和限制因子。夏季溶解氧含量是总浮游动物物种丰富度(d)波动的限制因子, 主要通过pH值对d指数产生较大的间接正向作用, 作用机制表现为轮虫类H′指数随着夏季溶解氧含量的升高呈极显著上升(P < 0.01), 而甲壳动物Hs指数则显著下降(P < 0.05)。水源地河流环境因子与浮游动物多样性之间的相互关系为浙江水源地生态学监测提供了可能性。
李共国, 李平, 徐杭英, 于海燕, 俞建 (2020) 浙江水源地河流浮游动物多样性与环境因子的通径分析. 生物多样性, 28, 166-175. DOI: 10.17520/biods.2019319.
Gongguo Li, Ping Li, Hangying Xu, Haiyan Yu, Jian Yu (2020) Path analysis of zooplankton diversity and environmental factors in the water sources rivers, Zhejiang Province. Biodiversity Science, 28, 166-175. DOI: 10.17520/biods.2019319.
月份 Month | 采样站 Station | pH | 溶解氧 Dissolved oxygen (mg/L) | 总氮 Total nitrogen (mg/L) | 总磷 Total phosphorus (mg/L) | 氨氮 NH4+-N (mg/L) | 氮磷比 N∶P | 藻类密度 Algal density (× 104 ind./L) | 种类数 No. of species | 丰度 Abundance (ind./L) |
---|---|---|---|---|---|---|---|---|---|---|
1 | H1 | 7.43 ± 0.11 | 4.92 ± 1.62b | 6.29 ± 1.13a | 0.235 ± 0.084b | 2.35 ± 0.81a | 30.0 ± 11.5a | 21.2 ± 20.6b | 19.4 ± 3.4 | 684 ± 548ab |
H2 | 7.50 ± 0.23 | 6.66 ± 2.47a | 4.57 ± 1.78abc | 0.280 ± 0.157b | 1.94 ± 1.19ab | 17.9 ± 4.7bc | 54.9 ± 70.1ab | 14.0 ± 4.8 | 293 ± 533b | |
4 | H1 | 7.41 ± 0.23 | 4.06 ± 1.38b | 5.50 ± 1.43ab | 0.262 ± 0.097b | 2.44 ± 0.98a | 25.1 ± 14.4ab | 66.6 ± 60.8ab | 15.4 ± 2.7 | 1,693 ± 1,192ab |
H2 | 7.50 ± 0.16 | 6.58 ± 0.70a | 5.33 ± 1.38ab | 0.276 ± 0.119b | 1.19 ± 0.88bc | 22.0 ± 8.8ab | 115.1 ± 126.2a | 16.2 ± 3.3 | 942 ± 846ab | |
7 | H1 | 7.33 ± 0.11 | 2.84 ± 1.69b | 3.96 ± 1.48bc | 0.449 ± 0.088a | 1.88 ± 0.97ab | 8.8 ± 2.4c | 44.0 ± 67.9ab | 22.0 ± 5.1 | 2,419 ± 2,681a |
H2 | 7.46 ± 0.19 | 6.96 ± 2.61a | 3.84 ± 1.57bc | 0.433 ± 0.084a | 0.66 ± 0.47c | 9.0 ± 3.2c | 32.8 ± 21.3b | 21.0 ± 7.7 | 1,762 ± 2,132ab | |
10 | H1 | 7.30 ± 0.13 | 3.45 ± 1.15b | 3.39 ± 1.59c | 0.201 ± 0.047b | 0.96 ± 0.61bc | 16.3 ± 4.8bc | 26.9 ± 23.0b | 22.8 ± 6.6 | 508 ± 395b |
H2 | 7.44 ± 0.21 | 6.18 ± 1.53a | 2.97 ± 1.52c | 0.170 ± 0.066b | 0.26 ± 0.13c | 18.6 ± 9.9bc | 37.9 ± 19.6ab | 13.6 ± 4.0 | 407 ± 421b |
表1 2010-2014年浙江水源地河流环境因子、浮游动物种类数和丰度(平均值 ± 标准差)
Table 1 Environmental factors, species and abundance of zooplankton in water sources rivers of Zhejiang from 2010 to 2014 (mean ± SD)
月份 Month | 采样站 Station | pH | 溶解氧 Dissolved oxygen (mg/L) | 总氮 Total nitrogen (mg/L) | 总磷 Total phosphorus (mg/L) | 氨氮 NH4+-N (mg/L) | 氮磷比 N∶P | 藻类密度 Algal density (× 104 ind./L) | 种类数 No. of species | 丰度 Abundance (ind./L) |
---|---|---|---|---|---|---|---|---|---|---|
1 | H1 | 7.43 ± 0.11 | 4.92 ± 1.62b | 6.29 ± 1.13a | 0.235 ± 0.084b | 2.35 ± 0.81a | 30.0 ± 11.5a | 21.2 ± 20.6b | 19.4 ± 3.4 | 684 ± 548ab |
H2 | 7.50 ± 0.23 | 6.66 ± 2.47a | 4.57 ± 1.78abc | 0.280 ± 0.157b | 1.94 ± 1.19ab | 17.9 ± 4.7bc | 54.9 ± 70.1ab | 14.0 ± 4.8 | 293 ± 533b | |
4 | H1 | 7.41 ± 0.23 | 4.06 ± 1.38b | 5.50 ± 1.43ab | 0.262 ± 0.097b | 2.44 ± 0.98a | 25.1 ± 14.4ab | 66.6 ± 60.8ab | 15.4 ± 2.7 | 1,693 ± 1,192ab |
H2 | 7.50 ± 0.16 | 6.58 ± 0.70a | 5.33 ± 1.38ab | 0.276 ± 0.119b | 1.19 ± 0.88bc | 22.0 ± 8.8ab | 115.1 ± 126.2a | 16.2 ± 3.3 | 942 ± 846ab | |
7 | H1 | 7.33 ± 0.11 | 2.84 ± 1.69b | 3.96 ± 1.48bc | 0.449 ± 0.088a | 1.88 ± 0.97ab | 8.8 ± 2.4c | 44.0 ± 67.9ab | 22.0 ± 5.1 | 2,419 ± 2,681a |
H2 | 7.46 ± 0.19 | 6.96 ± 2.61a | 3.84 ± 1.57bc | 0.433 ± 0.084a | 0.66 ± 0.47c | 9.0 ± 3.2c | 32.8 ± 21.3b | 21.0 ± 7.7 | 1,762 ± 2,132ab | |
10 | H1 | 7.30 ± 0.13 | 3.45 ± 1.15b | 3.39 ± 1.59c | 0.201 ± 0.047b | 0.96 ± 0.61bc | 16.3 ± 4.8bc | 26.9 ± 23.0b | 22.8 ± 6.6 | 508 ± 395b |
H2 | 7.44 ± 0.21 | 6.18 ± 1.53a | 2.97 ± 1.52c | 0.170 ± 0.066b | 0.26 ± 0.13c | 18.6 ± 9.9bc | 37.9 ± 19.6ab | 13.6 ± 4.0 | 407 ± 421b |
图3 2010-2014年浙江水源地河流浮游动物多样性指数
Fig. 3 Species richness of zooplankton, Shannon-Wiener diversity index of rotifers and size diversity index of crustaceans in the water sources rivers of Zhejiang from 2010 to 2014
季节 Season | 项目 Items | 样本数 n | 多元回归方程 Multiple regression equation | 重要因子 Important factor | R | P | |
---|---|---|---|---|---|---|---|
决策因子 Deciding factor | 限制因子 Limiting factor | ||||||
冬季 Winter | d | 10 | - | ||||
H′ | 10 | H′ = 4.67 + 0.71TN - 13.45TP - 0.13N∶P | NH4+-N (0.532) | N∶P (-4.569) | 0.903 | 0.0130 | |
Hs | 10 | Hs = 1.89 - 0.21TN + 0.38NH4+-N + 0.04N∶P -0.01PD | TN (-1.342) | 0.987 | 0.0005 | ||
春季 Spring | d | 10 | - | ||||
H′ | 10 | H′ = 1.75 + 0.26TN - 0.13NH4+-N - 0.02N∶P | N∶P (0.388) | 0.868 | 0.0295 | ||
Hs | 10 | - | |||||
夏季 Summer | d | 10 | d = -57.11 + 8.70pH - 0.38DO - 4.39TP - 0.01PD | DO (-1.351) | 0.898 | 0.0493 | |
H′ | 10 | H′ = 0.28 + 0.13DO + 2.92TP + 0.002PD | DO (0.706) | 0.968 | 0.0006 | ||
Hs | 10 | Hs = 2.96 - 0.12DO | 0.680 | 0.0307 | |||
秋季 Autumn | d | 10 | - | ||||
H′ | 10 | H′ = 2.21 + 0.65TN - 0.07N∶P - 0.03PD | PD (0.109) | 0.863 | 0.0326 | ||
Hs | 10 | - |
表2 河流浮游动物多样性指数(d, H′, Hs)与水环境因子的多元逐步回归方程
Table 2 Multiple stepwise regression equations between diversity indices (d, H′, Hs) of zooplankton and water environmental factors in the rivers
季节 Season | 项目 Items | 样本数 n | 多元回归方程 Multiple regression equation | 重要因子 Important factor | R | P | |
---|---|---|---|---|---|---|---|
决策因子 Deciding factor | 限制因子 Limiting factor | ||||||
冬季 Winter | d | 10 | - | ||||
H′ | 10 | H′ = 4.67 + 0.71TN - 13.45TP - 0.13N∶P | NH4+-N (0.532) | N∶P (-4.569) | 0.903 | 0.0130 | |
Hs | 10 | Hs = 1.89 - 0.21TN + 0.38NH4+-N + 0.04N∶P -0.01PD | TN (-1.342) | 0.987 | 0.0005 | ||
春季 Spring | d | 10 | - | ||||
H′ | 10 | H′ = 1.75 + 0.26TN - 0.13NH4+-N - 0.02N∶P | N∶P (0.388) | 0.868 | 0.0295 | ||
Hs | 10 | - | |||||
夏季 Summer | d | 10 | d = -57.11 + 8.70pH - 0.38DO - 4.39TP - 0.01PD | DO (-1.351) | 0.898 | 0.0493 | |
H′ | 10 | H′ = 0.28 + 0.13DO + 2.92TP + 0.002PD | DO (0.706) | 0.968 | 0.0006 | ||
Hs | 10 | Hs = 2.96 - 0.12DO | 0.680 | 0.0307 | |||
秋季 Autumn | d | 10 | - | ||||
H′ | 10 | H′ = 2.21 + 0.65TN - 0.07N∶P - 0.03PD | PD (0.109) | 0.863 | 0.0326 | ||
Hs | 10 | - |
因子 Factor | 相关系数 Correlative coefficient | 直接作用系数 Direct path coefficient | 间接作用系数之和 Total of indirect path coefficient | 间接作用系数 Indirect path coefficient | |||
---|---|---|---|---|---|---|---|
→Total nitrogen | →Total phosphorus | →NH4+-N | →N∶P | ||||
Total nitrogen | 0.093 (0.565) | 1.683 (0.784) | -1.590 (-0.219) | -0.845 | (-0.226) | -0.745 (0.007) | |
Total phosphorus | -0.467 | -2.322 | 1.856 | 0.612 | 1.244 | ||
NH4+-N | (0.267) | (-0.325) | (0.592) | (0.544) | (0.047) | ||
N∶P | 0.222 (-0.623) | -1.927 (-0.638) | 2.149 (0.015) | 0.651 (-0.009) | 1.498 | (0.024) |
表3 冬(春)季河流轮虫H′指数与主要环境因子通径分析结果
Table 3 Results of correlation and path analysis between Shannon-Wiener diversity index (H′) of rotifers and main environmental factors in winter (spring)
因子 Factor | 相关系数 Correlative coefficient | 直接作用系数 Direct path coefficient | 间接作用系数之和 Total of indirect path coefficient | 间接作用系数 Indirect path coefficient | |||
---|---|---|---|---|---|---|---|
→Total nitrogen | →Total phosphorus | →NH4+-N | →N∶P | ||||
Total nitrogen | 0.093 (0.565) | 1.683 (0.784) | -1.590 (-0.219) | -0.845 | (-0.226) | -0.745 (0.007) | |
Total phosphorus | -0.467 | -2.322 | 1.856 | 0.612 | 1.244 | ||
NH4+-N | (0.267) | (-0.325) | (0.592) | (0.544) | (0.047) | ||
N∶P | 0.222 (-0.623) | -1.927 (-0.638) | 2.149 (0.015) | 0.651 (-0.009) | 1.498 | (0.024) |
因子 Factor | 相关系数 Correlative coefficient | 直接作用系数 Direct path coefficient | 间接作用系数之和 Total of indirect path coefficient | 间接作用系数 Indirect path coefficient | |||
---|---|---|---|---|---|---|---|
→Total nitrogen | →NH4+-N | →N∶P | →PD | ||||
Total nitrogen | 0.763 | -0.624 | 1.387 | 0.376 | 0.311 | 0.699 | |
NH4+-N | 0.732 | 0.674 | 0.058 | -0.348 | -0.097 | 0.503 | |
N∶P | 0.352 | 0.806 | -0.454 | -0.241 | -0.081 | -0.132 | |
PD | -0.719 | -0.937 | 0.218 | 0.466 | -0.362 | 0.113 |
表4 冬季河流甲壳动物Hs指数与主要环境因子通径分析结果
Table 4 Results of correlation and path analysis between size diversity index (Hs) of crustaceans and main environmental factors in winter
因子 Factor | 相关系数 Correlative coefficient | 直接作用系数 Direct path coefficient | 间接作用系数之和 Total of indirect path coefficient | 间接作用系数 Indirect path coefficient | |||
---|---|---|---|---|---|---|---|
→Total nitrogen | →NH4+-N | →N∶P | →PD | ||||
Total nitrogen | 0.763 | -0.624 | 1.387 | 0.376 | 0.311 | 0.699 | |
NH4+-N | 0.732 | 0.674 | 0.058 | -0.348 | -0.097 | 0.503 | |
N∶P | 0.352 | 0.806 | -0.454 | -0.241 | -0.081 | -0.132 | |
PD | -0.719 | -0.937 | 0.218 | 0.466 | -0.362 | 0.113 |
因子 Factor | 相关系数 Correlative coefficient | 直接作用系数 Direct path coefficient | 间接作用系数之和 Total of indirect path coefficient | 间接作用系数 Indirect path coefficient | |||
---|---|---|---|---|---|---|---|
→pH | →Dissolved oxygen | →Total phosphorus | →PD | ||||
pH | 0.401 | 1.473 | -1.072 | -1.004 | 0.069 | -0.137 | |
Dissolved oxygen | -0.034 (0.840) | -1.197 (0.842) | 1.163 (-0.002) | 1.235 | 0.047 (-0.066) | -0.119 (0.064) | |
Total phosphorus | -0.351 (0.331) | -0.370 (0.513) | 0.019 (-0.182) | -0.273 | 0.153 (-0.108) | 0.139 (-0.074) | |
PD | -0.115 (0.285) | -0.395 (0.211) | 0.280 (-0.074) | 0.511 | -0.361 (0.254) | 0.130 (-0.180) |
表5 夏季河流浮游动物物种丰富度d指数(轮虫H′指数)与主要环境因子的通径分析结果
Table 5 Results of correlation and path analysis between species richness of zooplankton (H′ indexes of rotifers) and main environmental factors in summer
因子 Factor | 相关系数 Correlative coefficient | 直接作用系数 Direct path coefficient | 间接作用系数之和 Total of indirect path coefficient | 间接作用系数 Indirect path coefficient | |||
---|---|---|---|---|---|---|---|
→pH | →Dissolved oxygen | →Total phosphorus | →PD | ||||
pH | 0.401 | 1.473 | -1.072 | -1.004 | 0.069 | -0.137 | |
Dissolved oxygen | -0.034 (0.840) | -1.197 (0.842) | 1.163 (-0.002) | 1.235 | 0.047 (-0.066) | -0.119 (0.064) | |
Total phosphorus | -0.351 (0.331) | -0.370 (0.513) | 0.019 (-0.182) | -0.273 | 0.153 (-0.108) | 0.139 (-0.074) | |
PD | -0.115 (0.285) | -0.395 (0.211) | 0.280 (-0.074) | 0.511 | -0.361 (0.254) | 0.130 (-0.180) |
因子 Factor | 相关系数 Correlative coefficient | 直接作用 Direct path coefficient | 间接作用之和 Total of indirect path coefficient | 间接作用 Indirect path coefficient | ||
---|---|---|---|---|---|---|
→Total nitrogen | →N∶P | →PD | ||||
Total nitrogen | 0.455 | 1.088 | -0.633 | -0.352 | -0.281 | |
N∶P | 0.179 | -0.468 | 0.647 | 0.818 | -0.170 | |
PD | -0.447 | -0.748 | 0.301 | 0.408 | -0.106 |
表6 秋季河流轮虫H′指数与主要环境因子通径分析结果
Table 6 Results of correlation and path analysis between Shannon-Wiener diversity index (H′) of rotifers and main environmental factors in autumn
因子 Factor | 相关系数 Correlative coefficient | 直接作用 Direct path coefficient | 间接作用之和 Total of indirect path coefficient | 间接作用 Indirect path coefficient | ||
---|---|---|---|---|---|---|
→Total nitrogen | →N∶P | →PD | ||||
Total nitrogen | 0.455 | 1.088 | -0.633 | -0.352 | -0.281 | |
N∶P | 0.179 | -0.468 | 0.647 | 0.818 | -0.170 | |
PD | -0.447 | -0.748 | 0.301 | 0.408 | -0.106 |
[1] |
Chen P, Ye H, Liu JH (2006) Population dynamics of Bactrocera dorsalis (Diptera: Tephritidae) along with analysis on the factors influencing the population in Ruili, Yunnan Province. Acta Ecologica Sinica, 26, 2801-2809. (in Chinese with English abstract)
DOI URL |
[ 陈鹏, 叶辉, 刘建宏 (2006) 云南瑞丽桔小实蝇成虫种群数量变动及其影响因子分析. 生态学报, 26, 2801-2809.] | |
[2] | Feng MW, Wu YH, Feng SX, Wu YY (2008) Effect of different N/P ratios on algal growth. Ecology and Environment, 17, 1759-1763. (in Chinese with English abstract) |
[ 丰茂武, 吴云海, 冯仕训, 吴云影 (2008) 不同氮磷比对藻类生长的影响. 生态环境, 17, 1759-1763.] | |
[3] | Jiang XZ, Du NS (1979) Fauna Sinica: Freshwater Cladocera. Science Press, Beijing. (in Chinese) |
[ 蒋燮治, 堵南山 (1979) 中国动物志(淡水枝角类). 科学出版社, 北京.] | |
[4] |
Lazareva VI, Kopylov AI (2011) Zooplankton productivity at the peak of eutrophication of a plain reservoir ecosystem: The role of invertebrate predators. Biology Bulletin Reviews, 1, 542-551.
DOI URL |
[5] | Li ZB, Song C, Ji L, Barry K, Chen JZ (2015) Path analysis of effects of environmental factors on Chlorophyll-a in tilapia aquaculture ponds. Environmental Science & Technology, 38(12), 110-116. (in Chinese with English abstract) |
[ 李志波, 宋超, 季丽, Barry K, 陈家长 (2015) 罗非鱼池塘环境因子对叶绿素a影响的通径分析. 环境科学与技术, 38(12), 110-116.] | |
[6] | Margalef DR (1958) Information theory in ecology. General Systems, 3, 36-71. |
[7] |
Mouchet MA, Villéger S, Mason NW, Mouillot D (2010) Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867-876.
DOI URL |
[8] |
Ning JJ, Liu H, Gu BH, Liu ZW (2012) Carbon and nitrogen stable isotope characteristics of particulate organic matter and zooplankton in Liuxihe Reservoir. Acta Ecologica Sinica, 32, 1502-1509. (in Chinese with English abstract)
DOI URL |
[ 宁加佳, 刘辉, 古滨河, 刘正文 (2012) 流溪河水库颗粒有机物及浮游动物碳、氮稳定同位素特征. 生态学报, 32, 1502-1509.] | |
[9] |
Petchey OL, Gaston KJ (2006) Functional diversity: Back to basics and looking forward. Ecology Letters, 9, 741-758.
DOI URL PMID |
[10] |
Quintana XD, Arim M, Badosa A, Blanco JM, Boix D, Brucet S, Compte J, Egozcue JJ, Eyto E, Gaedke U, Gascón S, Solá LG, Irvine K, Jeppesen E, Lauridsen TL (2015) Predation and competition effects on the size diversity of aquatic communities. Aquatic Sciences, 77, 45-57.
DOI URL |
[11] | Redfield AC (1958) The biological control of chemical factors in the environment. American Scientist, 46, 205-221. |
[12] |
Reissig M, Trochine C, Queimaliños C, Balseiro E, Modenutti B (2006) Impact of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biological Conservation, 132, 437-447.
DOI URL |
[13] |
Roman MR, Pierson JJ, Kimmel DG, Boicourt WC, Zhang X (2012) Impacts of hypoxia on zooplankton spatial distributions in the northern gulf of Mexico. Estuaries and Coasts, 35, 1261-1269.
DOI URL |
[14] | Shen JR (1979) Fauna Sinica: Freshwater Copepoda. Science Press, Beijing. (in Chinese) |
[ 沈嘉瑞 (1979) 中国动物志(淡水桡足类). 科学出版社, 北京.] | |
[15] |
Symons CC, Arnott SE, Sweetman JN (2012) Grazing rates of crustacean zooplankton communities on intact phytoplankton communities in Canadian Subarctic lakes and ponds. Hydrobiologia, 694, 131-141.
DOI URL |
[16] | Tang QY, Feng MG (2002) DPS Data Processing System: Experimental Design, Statistical Analysis and Data Mining. Science Press, Beijing. (in Chinese) |
[ 唐启义, 冯明光 (2002) DPS数据处理系统: 实验设计、统计分析及数据挖掘. 科学出版社, 北京.] | |
[17] |
Thakur RK, Jindal R, Singh UB, Ahluwalia AS (2013) Plankton diversity and water quality assessment of three freshwater lakes of Mandi (Himachal Pradesh) with special reference to planktonic indicators. Environmental Monitoring and Assessment, 185, 8355-8373.
DOI URL |
[18] | United States Environmental Protection Agency (2016) Standard Operating Procedure for Zooplankton Analysis. LG403. |
[19] |
Villéger S, Mason NW, Mouillot D (2008) New multidimensional functional diversity indexes for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301.
DOI URL PMID |
[20] |
Wang J, Jiao Y, Ren YP, Xue Y, Ji YP, Xu BD (2015) Comparative study on two computing methods for estimating Shannon-Wiener diversity index. Journal of Fisheries of China, 39, 1257-1263. (in Chinese with English abstract)
DOI URL |
[ 王晶, 焦燕, 任一平, 薛莹, 纪毓鹏, 徐宾铎 (2015) Shannon-Wiener多样性指数两种计算方法的比较研究. 水产学报, 39, 1257-1263.] | |
[21] | Wang JJ (1961) Freshwater Rotifera of China. Science Press, Beijing. (in Chinese) |
[ 王家楫 (1961) 中国淡水轮虫志. 科学出版社, 北京.] | |
[22] | Wu SK, Wang SB, Zhou Q (2005) Changes of inorganic nitrogen and TN/TP in shallow lakes in the middle and lower reaches of the Yangtze River and their biological regulation mechanisms. Chinese Science (D): Earth Sciences, 35(Suppl.), 111-120. (in Chinese) |
[ 吴世凯, 王松波, 周琼 (2005) 长江中下游地区浅水湖泊群中无机氮和TN/TP变化的模式及生物调控机制. 中国科学(D辑): 地球科学, 35(增刊), 111-120.] | |
[23] | Xie P (2005) Biological driving mechanism of seasonal variation of endogenous phosphorus load in shallow lakes. Chinese Science (D): Earth Sciences, 35(Suppl.), 11-23. (in Chinese) |
[ 谢平 (2005) 浅水湖泊内源磷负荷季节变化的生物驱动机制. 中国科学(D辑): 地球科学, 35(增刊), 11-23.] | |
[24] | Xu HY, Yu HY, Yu J, Han MC, Xu ZH, Li GG, Huang Y (2017) A preliminary study on size diversity of zooplankton and their association with trophic level in the drinking water sources, Zhejiang Province. Acta Hydrobiologica Sinica, 41, 407-413. (in Chinese with English abstract) |
[ 徐杭英, 于海燕, 俞建, 韩明春, 徐智焕, 李共国, 黄艺 (2017) 浙江饮用水源地浮游动物体积多样性及水质响应. 水生生物学报, 41, 407-413.] | |
[25] |
Ye L, Chang CY, Carmen GC, Gong GC, Hsieh CH (2013) Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. Journal of Animal Ecology, 82, 1052-1061.
DOI URL PMID |
[26] | Yin Y, Wu ZX, Liu ML, He JB, Yu ZM (2014) Dynamic distributions of dissolved oxygen in lake Qiandaohu and its environmental influence factors. Environmental Science, 35, 2539-2546. (in Chinese with English abstract) |
[ 殷燕, 吴志旭, 刘明亮, 何剑波, 虞左明 (2014) 千岛湖溶解氧的动态分布特征及其影响因素分析. 环境科学, 35, 2539-2546.] | |
[27] | Yuan ZF, Zhou JY, Guo MC, Lei XQ, Xie XL (2001) Decision coefficient: The decision index of path analysis. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 29(5), 131-133. (in Chinese with English abstract) |
[ 袁志发, 周静芋, 郭满才, 雷雪芹, 解小莉 (2001) 决策系数——通径分析中的决策指标. 西北农林科技大学学报, 29(5), 131-133.] | |
[28] | Yu J, Li HM, Wang J, Lin G, Fu ZH (2013) The current environmental status of urban centralized drinking water sources, Zhejiang Province and the protection countermeasures. Environmental Pollution & Control, 35(7), 105-109. (in Chinese with English abstract) |
[ 俞洁, 李华明, 王静, 林广, 傅智慧 (2013) 浙江省城镇集中式饮用水水源地环境现状及保护对策研究. 环境污染与防治, 35(7), 105-109.] | |
[29] | Zhang H, Liu DF, Zhang JL, Yan GH, Ye HS (2017) Algae growth curve under two different ratios of nitrogen to phosphorus. Journal of Hubei University of Technology, 32(4), 75-79. (in Chinese with English abstract) |
[ 张欢, 刘德富, 张佳磊, 严广寒, 叶海松 (2017) 两种不同氮磷比下的藻类生长曲线. 湖北工业大学学报, 32(4), 75-79.] | |
[30] | Zhang ZS, Huang XF (1991) Methods for Study on Freshwater Plankton. Science Press, Beijing. (in Chinese) |
[ 章宗涉, 黄祥飞 (1991) 淡水浮游生物研究方法. 科学出版社, 北京.] |
[1] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[2] | 梁伟诺, 张旭, 胡亮. 广东东海岛与硇洲岛潮间带蟹类(十足目: 短尾下目)物种多样性及其地理分布[J]. 生物多样性, 2023, 31(9): 23086-. |
[3] | 冯尔辉, 梁伟诺, 胡亮, 张旭. 海南东寨港国家级自然保护区潮间带蟹类(十足目: 短尾下目)物种多样性[J]. 生物多样性, 2023, 31(9): 23030-. |
[4] | 王安伦, 何萍, 龙心远. 长江干流鱼类功能群空间分异[J]. 生物多样性, 2023, 31(10): 23095-. |
[5] | 沈梅, 郭宁宁, 罗遵兰, 郭晓晨, 孙光, 肖能文. 基于eDNA metabarcoding探究北京市主要河流鱼类分布及影响因素[J]. 生物多样性, 2022, 30(7): 22240-. |
[6] | 杨科, 丁城志, 陈小勇, 丁刘勇, 黄敏睿, 陈晋南, 陶捐. 怒江流域鱼类多样性及空间分布格局[J]. 生物多样性, 2022, 30(7): 21334-. |
[7] | 王寅, 王健铭, 曲梦君, 李景文. 干旱内陆河流域植物群落构建过程及其关键驱动因素[J]. 生物多样性, 2022, 30(2): 21419-. |
[8] | 贺佳云, 张东, 储玲, 严云志. 人为干扰对溪流鱼类功能多样性及其纵向梯度格局的影响[J]. 生物多样性, 2021, 29(7): 927-937. |
[9] | 卜向丽, 王静, 吴佳忆, 孙太福, 向荣伟, 鲁庆斌, 郝映红, 崔绍朋, 盛岩, 孟秀祥. 太行山东北部哺乳动物区系及多样性[J]. 生物多样性, 2021, 29(3): 331-339. |
[10] | 李雪健, 唐文乔, 赵亚辉. 南水北调中线工程对海河流域鱼类入侵风险分析[J]. 生物多样性, 2021, 29(10): 1336-1347. |
[11] | 王东, 万雅琼, 汪世钊, 陈佳萍, 吴彤, 李佳琦, 连新明. 基于红外相机技术调查长江正源沱沱河流域鸟兽多样性[J]. 生物多样性, 2020, 28(9): 1132-1140. |
[12] | 尚素琴, 吴兴波, 王召龙, 彭鹤年, 周惠丽, 张红勇, 白映禄. 兴隆山国家级自然保护区不同生境的蝴蝶群落结构与种-多度分布[J]. 生物多样性, 2020, 28(8): 983-992. |
[13] | 李雪健,贾佩尧,牛诚祎,邢迎春,李浩林,刘海波,唐文乔,赵亚辉. 新疆阿勒泰地区额尔齐斯河和乌伦古河流域鱼类多样性演变和流域健康评价[J]. 生物多样性, 2020, 28(4): 422-434. |
[14] | 孙工棋, 张明祥, 雷光春. 黄河流域湿地水鸟多样性保护对策[J]. 生物多样性, 2020, 28(12): 1469-1482. |
[15] | 孙远, 胡维刚, 姚树冉, 孙颖, 邓建明. 黄河流域被子植物和陆栖脊椎动物丰富度格局及其影响因子[J]. 生物多样性, 2020, 28(12): 1523-1532. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn