生物多样性 ›› 2023, Vol. 31 ›› Issue (10): 23095. DOI: 10.17520/biods.2023095
王安伦1,2,3, 何萍1,2,3,*(), 龙心远1,2,3
收稿日期:
2023-03-31
接受日期:
2023-06-29
出版日期:
2023-10-20
发布日期:
2023-07-22
通讯作者:
*E-mail: heping@craes.org.cn
基金资助:
Anlun Wang1,2,3, Ping He1,2,3,*(), Xinyuan Long1,2,3
Received:
2023-03-31
Accepted:
2023-06-29
Online:
2023-10-20
Published:
2023-07-22
Contact:
*E-mail: heping@craes.org.cn
摘要:
河流是一个连续而整体的系统, 大型河流中的鱼类物种组成沿河流纵向随环境梯度的分异而变化。本研究采用从长江上游金沙江起点直门达至下游入海口的168种淡水鱼类分布数据, 根据鱼类的体型、形状、食性和生活史策略划分功能群, 利用层次聚类分析和排序分析方法研究了长江干流鱼类功能群分布格局及其对不同尺度的环境因子的适应性。结果显示, 长江干流鱼类功能群的分布存在一级和二级的空间分异: 一级分异以龙开口为分界点; 而二级分异以石鼓、龙开口和白鹤滩坝下为分界点。自上游到下游, 鱼类功能群的变化规律是: 体型从小型过渡到中型和大型, 形状从仅有纺锤形和圆柱形过渡到出现侧扁形, 食性从杂食性过渡到更多样性的食性, 生活史策略从机会策略过渡到周期策略和均衡策略。鱼类功能群的分布格局是适应不同尺度环境因子空间分异的结果: 在大尺度的整条长江干流中, 与气候特征相关的海拔和气温是主导影响因素; 而随着研究的空间尺度缩小, 与地形特征相关的河段坡降的影响显现, 在中尺度的I-1段中作为主导。本研究对认识长江干流的鱼类空间分布规律以及环境适应性特征具有参考意义。
王安伦, 何萍, 龙心远 (2023) 长江干流鱼类功能群空间分异. 生物多样性, 31, 23095. DOI: 10.17520/biods.2023095.
Anlun Wang, Ping He, Xinyuan Long (2023) Spatial differentiation of fish functional groups in the Yangtze River. Biodiversity Science, 31, 23095. DOI: 10.17520/biods.2023095.
图1 长江流域地貌与鱼类采样点分布。样点序号1?63所对应的地点依次为: 1. 直门达; 2. 奔达乡; 3. 洛须镇; 4. 麻呷乡; 5. 卡松渡乡; 6. 岗托; 7. 赠曲河口; 8. 金沙乡; 9. 波罗乡; 10. 叶巴滩; 11. 竹巴龙; 12. 巴塘河口; 13. 苏洼龙; 14. 奔子栏村; 15. 同普乡; 16. 五境乡; 17. 上江乡; 18. 石鼓; 19. 虎跳峡; 20. 大具乡; 21. 三江口村; 22. 下山江村; 23. 黑白水河口; 24. 金安桥坝下; 25. 龙开口; 26. 片角镇; 27. 新田村; 28. 江边村; 29. 雅砻江口; 30. 鱼鲊乡; 31. 江头村; 32. 乌东德坝上; 33. 乌东德坝下; 34. 白鹤滩坝上; 35. 白鹤滩坝下; 36. 溪洛渡坝上; 37. 溪洛渡坝下; 38. 向家坝上; 39. 向家坝下; 40. 宜宾市; 41. 沱江口; 42. 江北段; 43. 江津段; 44. 涪陵段; 45. 万州段; 46. 巫山段; 47. 宜昌葛洲坝; 48. 宜昌清江口; 49. 石首; 50. 监利; 51. 嘉鱼; 52. 武汉段; 53. 黄冈段; 54. 湖口县; 55. 望江县; 56. 安庆市; 57. 池州市; 58. 铜陵市; 59. 芜湖市; 60. 镇江市; 61. 常州市; 62. 南通市; 63. 上海市入海口。
Fig. 1 Landforms of the Yangtze River basin and distribution of fish sampling points. The sites corresponding to the sample points with serial numbers 1?63 are: 1. Zhimenda; 2. Benda Town; 3. Luoxu Town; 4. Maxia Town; 5. Kasongdu Town; 6. Gangtuo; 7. Zengqu River estuary; 8. Jinsha Town; 9. Boluo Town; 10. Yebatan; 11. Zhubalong; 12. Batang River esturary; 13. Suwalong; 14. Benzilan Village; 15. Tongpu Town; 16. Wujing Town; 17. Shangjiang Town; 18. Shigu; 19. Tiger Leaping Gorge; 20. Daju Town; 21. Sanjiangkou Village; 22. Xiashanjiang Village; 23. Heibaishui River estuary; 24. Downstream of Jin’anqiao Dam; 25. Longkaikou; 26. Pianjiao Town; 27. Xintian Village; 28. Jiangbian Village; 29. Yalong River estuary; 30. Yuzuo Town; 31. Jiangtou Village; 32. Upstream of Wudongde Dam; 33. Downstream of Wudongde Dam; 34. Upstream of Baihetan Dam; 35. Downstream of Baihetan Dam; 36. Upstream of Xiluodu Dam; 37. Downstream of Xiluodu Dam; 38. Upstream of Xiangjia Dam; 39. Downstream of Xiangjia Dam; 40. Yibin City; 41. Tuo River estuary; 42. Jiangbei; 43. Jiangjin; 44. Fuling; 45. Wanzhou; 46. Wushan; 47. Gezhou Dam in Yichang City; 48. Qingjiang River estuary in Yichang City; 49. Shishou; 50. Jianli; 51. Jiayu; 52. Wuhan; 53. Huanggang; 54. Hukou County; 55. Wangjiang County; 56. Anqing City; 57. Chizhou City; 58. Tongling City; 59. Wuhu City; 60. Zhenjiang City; 61. Changzhou City; 62. Nantong City; 63. The Yangtze River estuary in Shanghai.
功能性状 Functional traits | 功能群 Functional groups | 依据 Basis | 参考文献 Reference |
---|---|---|---|
体型 Size | 小型 Small | 最大全长小于20 cm Maximum total length less than 20 cm | Garrison & Link, |
中型 Medium | 最大全长在20?50 cm之间 Maximum total length between 20 cm and 50 cm | ||
大型 Large | 最大全长大于50 cm Maximum total length more than 50 cm | ||
形状 Shape | 纺锤形 Fusiform | 体长 > 体高 > 体宽 Body length > body height > body width | 李新辉等, |
圆柱形 Cylindrical | 体长 > 体高 ≈ 体宽 Body length > body height ≈ body width | ||
侧扁形 Compressiform | 体长 ≈ 体高 > 体宽 Body length ≈ body height > body width | ||
食性 Feeding habits | 碎屑食性 Detritivores | 以碎屑、浮游生物和藻类为食 Feeding on plankton, detritus and algae | Iba?ez et al, |
草食性 Herbivores | 以水生高等植物为食 Feeding on aquatic higher plants | ||
无脊椎动物食性 Invertivores | 以甲壳类动物、寡毛类动物、软体动物和昆虫为食 Feeding on crustaceans, oligochaetes, mollusks, and insects | ||
鱼食性 Piscivores | 以鱼类为食 Feeding on fish | ||
杂食性 Omnivorous | 以大量植物和动物为食 Feeding on substantial proportions of both plant and animal material | ||
生活史 Life-history | 机会策略 Opportunistic | 小, 迅速成熟, 寿命较短 Small, rapidly maturing, and short-lived | Winemiller & Rose, |
周期策略 Periodic | 大, 繁殖能力高, 寿命较长 Larger, highly fecund and longer life spans | ||
均衡策略 Equilibrium | 中等大小, 经常表现出亲代照顾, 产生较少但较大的后代 Intermediate size, often exhibit parental care, and produce fewer but larger offspring |
表1 鱼类的功能性状、功能群及其依据
Table 1 Fish functional traits, functional groups and their basis
功能性状 Functional traits | 功能群 Functional groups | 依据 Basis | 参考文献 Reference |
---|---|---|---|
体型 Size | 小型 Small | 最大全长小于20 cm Maximum total length less than 20 cm | Garrison & Link, |
中型 Medium | 最大全长在20?50 cm之间 Maximum total length between 20 cm and 50 cm | ||
大型 Large | 最大全长大于50 cm Maximum total length more than 50 cm | ||
形状 Shape | 纺锤形 Fusiform | 体长 > 体高 > 体宽 Body length > body height > body width | 李新辉等, |
圆柱形 Cylindrical | 体长 > 体高 ≈ 体宽 Body length > body height ≈ body width | ||
侧扁形 Compressiform | 体长 ≈ 体高 > 体宽 Body length ≈ body height > body width | ||
食性 Feeding habits | 碎屑食性 Detritivores | 以碎屑、浮游生物和藻类为食 Feeding on plankton, detritus and algae | Iba?ez et al, |
草食性 Herbivores | 以水生高等植物为食 Feeding on aquatic higher plants | ||
无脊椎动物食性 Invertivores | 以甲壳类动物、寡毛类动物、软体动物和昆虫为食 Feeding on crustaceans, oligochaetes, mollusks, and insects | ||
鱼食性 Piscivores | 以鱼类为食 Feeding on fish | ||
杂食性 Omnivorous | 以大量植物和动物为食 Feeding on substantial proportions of both plant and animal material | ||
生活史 Life-history | 机会策略 Opportunistic | 小, 迅速成熟, 寿命较短 Small, rapidly maturing, and short-lived | Winemiller & Rose, |
周期策略 Periodic | 大, 繁殖能力高, 寿命较长 Larger, highly fecund and longer life spans | ||
均衡策略 Equilibrium | 中等大小, 经常表现出亲代照顾, 产生较少但较大的后代 Intermediate size, often exhibit parental care, and produce fewer but larger offspring |
图2 长江干流中鱼类功能群的Bray-Curtis相似性聚类图。调查样点自上游到下游依次以1?63表示, 详见图1。I-1, I-2, II-1和II-2是参考Bray-Curtis相似性为0.57的条件以及样点的空间关系划分的长江分段。特殊点指聚类分析中被单独归为一类的或者与其他同聚类的样点在空间不连续的样点。
Fig. 2 Diagrams of Bray-Curtis similarity clusters of fish functional groups in the Yangtze River. Sample points from upstream to downstream are indicated by numbers 1?63 in order, see Fig. 1 for details. I-1, I-2, II-1, and II-2 are segments of the Yangtze River with reference to the Bray-Curtis similarity of 0.57 and the spatial relationship of the sampling points. Special points refer to the points that are clustered separately of spatially discontinuous with other points of the same cluster.
图3 长江干流鱼类复合功能群的分布与距上游距离的排序分析结果。RDA1表示二者之间的相关性: RDA1为负值的复合功能群的分布越接近上游; 而正值的复合功能群则接近下游。从FG1到FG59所表示的复合功能群见附录2。
Fig. 3 Ordination analysis of the distribution of fish combined functional groups in the Yangtze River and the distance from upstream. RDA1 indicates the correlation between them: The combined functional groups with negative values of RDA1 is closer to the upstream; while those with positive values are closer to the downstream. The combined functional groups represented from FG1 to FG59 are shown in Appendix 2.
尺度 Scales | 环境因子 Environmental factors | 最小值?最大值 Range | 平均值±标准差 Mean ± SD | 与样点距上游距离的相关性 Relationship with the distance from upstream | |
---|---|---|---|---|---|
R | P | ||||
流域 Basin | 平均气温 Average temperature (℃) | 2.65?21.24 | 15.71 ± 4.62 | 0.539 | ** |
平均气温年较差 Average annual range of temperature (℃) | 107.00?252.00 | 180.32 ± 48.68 | 0.741 | ** | |
海拔 Altitude (m) | 0.00?3530.00 | 1118.51 ± 1140.59 | ?0.877 | ** | |
河段 Reach | 河流宽度 River width (m) | 60.00?6377.00 | 829.43 ± 1253.42 | 0.776 | ** |
河段坡降 Slope gradient | 0.00?0.02 | 4.8×10?3 ± 4.9×10?3 | ?0.633 | ** |
表2 长江干流的环境因子概况及其与距上游距离的相关性
Table 2 Summary statistic for environmental factors of the Yangtze River at the basin scale and reach scale, and their relationships with the distance from upstream
尺度 Scales | 环境因子 Environmental factors | 最小值?最大值 Range | 平均值±标准差 Mean ± SD | 与样点距上游距离的相关性 Relationship with the distance from upstream | |
---|---|---|---|---|---|
R | P | ||||
流域 Basin | 平均气温 Average temperature (℃) | 2.65?21.24 | 15.71 ± 4.62 | 0.539 | ** |
平均气温年较差 Average annual range of temperature (℃) | 107.00?252.00 | 180.32 ± 48.68 | 0.741 | ** | |
海拔 Altitude (m) | 0.00?3530.00 | 1118.51 ± 1140.59 | ?0.877 | ** | |
河段 Reach | 河流宽度 River width (m) | 60.00?6377.00 | 829.43 ± 1253.42 | 0.776 | ** |
河段坡降 Slope gradient | 0.00?0.02 | 4.8×10?3 ± 4.9×10?3 | ?0.633 | ** |
图5 距上游距离与平均气温(A), 平均气温年较差(B), 海拔(C), 河流宽度(D)以及河段坡降(E)的分段线性拟合方程。分段点是长江干流一级分异的分界点龙开口(25号样点)。为了统一量纲, 所有变量全部经过归一化处理。
Fig. 5 Segmented linear fit equations for the distance from upstream versus average temperature (A), average annual range of temperature (B), altitude (C), river width (D) and slope gradient (E). The segment point of the is the dividing point of the primary divergence of the Yangtze River, Longkaikou (Sampling point 25). All variables were normalized for uniformity of magnitudes.
图6 不同空间尺度中5个环境因子对复合功能群分布的个体重要性(individual importance)以及它们的总方差解释率(R2)。A: 长江干流、I段和I-1段尺度; B: 长江干流、II段和II-2段。I-2段和II-1段由于样点数量较少, 在此不进行分析。***说明5个环境因子的总方差解释率极显著(P < 0.001); NS则说明不显著(P > 0.05)。
Fig. 6 Individual importance and total variance explained (R2) of five environmental factors on the distribution of combined functional groups in different spatial scales. A: Whole Yangtze River, segment I and segment I-1 scale; B: Whole Yangtze River, segment II and segment II-2 scale. Segments I-2 and II-1 are not analyzed here due to the small number of sampling points. *** indicates that the total variance explained of the five environmental factors is highly significant (P < 0.001); NS indicates that it is not significant (P > 0.05).
图7 长江历史与本次鱼类调查的物种数量的空间分布。*数据来源于杨海乐等(2023)。
Fig. 7 Spatial patterns of historical and current fish species recording in Yangtze River. * Data from Yang et al (2023).
[1] |
Allen GH, Pavelsky TM (2018) Global extent of rivers and streams. Science, 361, 585-588.
DOI PMID |
[2] | Aranganayagi S, Thangavel K (2007) Clustering categorical data using silhouette coefficient as a relocating measure. International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007), Sivakasi, India. |
[3] |
B-Béres V, Lukács Á, Török P, Kókai Z, Novák Z, T-Krasznai E, Tóthmérész B, Bácsi I (2016) Combined eco-morphological functional groups are reliable indicators of colonisation processes of benthic diatom assemblages in a lowland stream. Ecological Indicators, 64, 31-38.
DOI URL |
[4] | Bem J, Ribolli J, Röpke C, Winemiller KO, Zaniboni-Filho E (2021) A cascade of dams affects fish spatial distributions and functional groups of local assemblages in a subtropical river. Neotropical Ichthyology, 19, e200133. |
[5] | Burgad AA, Clark S, Furr M, Lenard A, Polett M, Robinson C, Sherwood C, Spooner G, Stoughton S, Adams S (2017) Longitudinal patterns in an Arkansas River Valley stream: An application of the river continuum concept. Journal of the Arkansas Academy of Science, 71, 153-164. |
[6] | Chen Y (1955) Jinsha River. Yangtze River, (9), 22-23. (in Chinese) |
[陈寅 (1955) 金沙江. 人民长江, (9), 22-23.] | |
[7] |
Cohen S, Wan T, Islam MT, Syvitski JPM (2018) Global river slope: A new geospatial dataset and global-scale analysis. Journal of Hydrology, 563, 1057-1067.
DOI URL |
[8] | Cui L, Gu HB, Gao F (2022) Analysis and suggestions on hydropower development utilizing the natural river sections of Jinsha River. Water Power, 48(1), 1-4, 129. (in Chinese) |
[崔磊, 顾洪宾, 高繁 (2022) 水电开发利用金沙江自然河段的分析与建议. 水力发电, 48(1), 1-4, 129.] | |
[9] | Ding BQ, Liu HZ (2011) Analysis of the fish feeding guild composition in the Yangtze River. Sichuan Journal of Zoology, 30, 31-35. (in Chinese with English abstract) |
[丁宝清, 刘焕章 (2011) 长江流域鱼类食性同资源集团组成特征分析. 四川动物, 30, 31-35.] | |
[10] | Ding RH (1994) Fishes of Sichuan. Sichuan Publishing House of Science and Technology, Chengdu. (in Chinese) |
[丁瑞华 (1994) 四川鱼类志. 四川科学技术出版社, 成都.] | |
[11] | Dong YH, Wang XL (2017) Method of river segmentation with five subzones and its application to the Changjiang River segmentation. Journal of Yangtze River Scientific Research Institute, 34(6), 1-6. (in Chinese with English abstract) |
[董耀华, 汪秀丽 (2017) 河流5区分段方法与长江干流分段实践. 长江科学院院报, 34(6), 1-6.]
DOI |
|
[12] |
Doretto A, Piano E, Larson CE (2020) The River Continuum Concept: Lessons from the past and perspectives for the future. Canadian Journal of Fisheries and Aquatic Sciences, 77, 1853-1864.
DOI URL |
[13] |
Erkejan H, Jiang HF, Dai AR (2021) Thought on statistics methods of temperature in the hottest and coldest month-long periods. Chinese Journal of Agrometeorology, 42, 693-702. (in Chinese with English abstract)
DOI |
[叶尔克江·霍依哈孜, 姜会飞, 戴安然 (2021) 对最热月和最冷月温度统计方法的思考. 中国农业气象, 42, 693-702.] | |
[14] | Forsberg BR, Melack JM, Dunne T, Barthem RB, Goulding M, Paiva RCD, Sorribas MV, Silva UL Jr, Weisser S (2017) The potential impact of new Andean Dams on Amazon fluvial ecosystems. PLoS ONE, 12, e0182254. |
[15] | Froese R, Pauly D (2014) FishBase. World Wide Web electronic publication. www.fishbase.org. (accessed on 2023-11-18) |
[16] |
Garrison LP, Link JS (2000) Diets of five hake species in the northeast United States continental shelf ecosystem. Marine Ecology Progress Series, 204, 243-255.
DOI URL |
[17] |
Halpern BS, Floeter SR (2008) Functional diversity responses to changing species richness in reef fish communities. Marine Ecology Progress Series, 364, 147-156.
DOI URL |
[18] |
Hattab T, Albouy C, Ben Rais Lasram F, Le Loc’h F, Guilhaumon F, Leprieur F (2015) A biogeographical regionalization of coastal Mediterranean fishes. Journal of Biogeography, 42, 1336-1348.
DOI URL |
[19] |
Hay ME (1994) Species as ‘noise’ in community ecology: Do seaweeds block our view of the kelp forest? Trends in Ecology & Evolution, 9, 414-416.
DOI URL |
[20] |
Hoeinghaus DJ, Winemiller KO, Birnbaum JS (2007) Local and regional determinants of stream fish assemblage structure: Inferences based on taxonomic vs. functional groups. Journal of Biogeography, 34, 324-338.
DOI URL |
[21] |
Ibañez C, Belliard J, Hughes RM, Irz P, Kamdem-Toham A, Lamouroux N, Tedesco PA, Oberdorff T (2009) Convergence of temperate and tropical stream fish assemblages. Ecography, 32, 658-670.
DOI URL |
[22] | Jackson DA, Peres-Neto PR, Olden JD (2001) What controls who is where in freshwater fish communities—The roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 58, 157-170. |
[23] |
Jäger CG, Borchardt D (2018) Longitudinal patterns and response lengths of algae in riverine ecosystems: A model analysis emphasising benthic-pelagic interactions. Journal of Theoretical Biology, 442, 66-78.
DOI PMID |
[24] | Jarvis A, Reuter H, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database. http://srtm.csi.cgiar.org. (accessed on 2023-11-18) |
[25] | Kassambara A, Mundt F (2020) Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. https://CRAN.R-project.org/package=factoextra. (accessed on 2023-11-18) |
[26] |
Kirk MA, Rahel FJ, Laughlin DC (2022) Environmental filters of freshwater fish community assembly along elevation and latitudinal gradients. Global Ecology and Biogeography, 31, 470-485.
DOI URL |
[27] | Fish Research Laboratory, Hubei Institute of Aquatic Biology (1976) Fishes of Yangtze River. Science Press, Beijing. (in Chinese) |
[湖北省水生生物研究所鱼类研究室 (1976) 长江鱼类. 科学出版社, 北京.] | |
[28] |
Lai JS, Zou Y, Zhang JL, Peres-Neto PR (2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 13, 782-788.
DOI URL |
[29] | Leclerc J, DesGranges JL (2005) Exploratory multiscale analysis of the fish assemblages and habitats of the lower St. Lawrence River, Québec, Canada. Biodiversity & Conservation, 14, 1153-1174. |
[30] | Legendre P, Legendre L (2012) Numerical Ecology. Elsevier, Amsterdam. |
[31] | Li MZ (2013) Study on the Life History Strategies of Fishes in the Yangtze River and Its Adaption to Environment during Early Life History Stage. PhD dissertation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. (in Chinese with English abstract) |
[黎明政 (2013) 长江鱼类生活史对策及其早期生活史阶段对环境的适应. 博士学位论文, 中国科学院水生生物研究所, 武汉.] | |
[32] | Li XH, Lai ZN, Yu YM (2022) Fish Morphological Models and Community Studies. Science Press, Beijing. (in Chinese) |
[李新辉, 赖子尼, 余煜棉 (2022) 鱼类形态学模型与群落研究. 科学出版社, 北京.] | |
[33] | Liu F, Lin PC, Li MZ, Gao X, Wang CL, Liu HZ (2019) Situations and conservation strategies of fish resources in the Yangtze River Basin. Acta Hydrobiologica Sinica, 43(S1), 144-156. (in Chinese with English abstract) |
[刘飞, 林鹏程, 黎明政, 高欣, 王春伶, 刘焕章 (2019) 长江流域鱼类资源现状与保护对策. 水生生物学报, 43(S1), 144-156.] | |
[34] | Liu JK, Cao WX (1992) Fish resources of the Yangtze River Basin and the tactics for their conservation. Resources and Environment in the Yangtze Basin, 1, 17-23. (in Chinese with English abstract) |
[刘建康, 曹文宣 (1992) 长江流域的鱼类资源及其保护对策. 长江流域资源与环境, 1, 17-23.] | |
[35] |
McCluney KE, Poff NL, Palmer MA, Thorp JH, Poole GC, Williams BS, Williams MR, Baron JS (2014) Riverine macrosystems ecology: Sensitivity, resistance, and resilience of whole river basins with human alterations. Frontiers in Ecology and the Environment, 12, 48-58.
DOI URL |
[36] |
Mims MC, Olden JD (2012) Life history theory predicts fish assemblage response to hydrologic regimes. Ecology, 93, 35-45.
PMID |
[37] |
Minshall GW, Petersen RC, Cummins KW, Bott TL, Sedell JR, Cushing CE, Vannote RL (1983) Interbiome comparison of stream ecosystem dynamics. Ecological Monographs, 53, 1-25.
DOI URL |
[38] |
Minshall GW, Cummins KW, Petersen RC, Cushing CE, Bruns DA, Sedell JR, Vannote RL (1985) Developments in stream ecosystem theory. Canadian Journal of Fisheries and Aquatic Sciences, 42, 1045-1055.
DOI URL |
[39] |
Norton SF, Luczkovich JJ, Motta PJ (1995) The role of ecomorphological studies in the comparative biology of fishes. Environmental Biology of Fishes, 44, 287-304.
DOI URL |
[40] | Ogbuagu D, Okoli C (2013) What influence does removal of riparian vegetation have on primary productivity of a river. European Journal of Experimental Biology, 2, 5-12. |
[41] | Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: Community Ecology Package. Software. http://CRAN.R-project.org/package=vegan. (accessed on 2023-11-18) |
[42] |
Pease AA, González-Díaz AA, Rodiles-Hernández R, Winemiller KO (2012) Functional diversity and trait- environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology, 57, 1060-1075.
DOI URL |
[43] |
Peng SZ, Ding YX, Liu WZ, Li Z (2019) 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 11, 1931-1946.
DOI URL |
[44] |
Perkin JS, Knorp NE, Boersig TC, Gebhard AE, Hix LA, Johnson TC (2017) Life history theory predicts long-term fish assemblage response to stream impoundment. Canadian Journal of Fisheries and Aquatic Sciences, 74, 228-239.
DOI URL |
[45] |
Poff NL (1997) Landscape filters and species traits: Towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society, 16, 391-409.
DOI URL |
[46] | Revelle W (2015) psych: Procedures for Psychological, Psychometric, and Personality Research. https://CRAN.R-project.org/package=psych. (accessed on 2023-11-18) |
[47] |
Root RB (1967) The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs, 37, 317-350.
DOI URL |
[48] |
Sadyś M, Strzelczak A, Grinn-Gofroń A, Kennedy R (2015) Application of redundancy analysis for aerobiological data. International Journal of Biometeorology, 59, 25-36.
DOI PMID |
[49] |
Schaefer J, Duvernell D, Kreiser B (2011) Shape variability in topminnows (Fundulus notatus species complex) along the river continuum. Biological Journal of the Linnean Society, 103, 612-621.
DOI URL |
[50] | Schlosser I (1987) A conceptual framework for fish communities in small warmwater streams. In: Community, and Evolutionary Ecology of North American Stream Fishes (eds Matthews WJ, Heins DC), pp. 17-24. University of Oklahoma Press, Norman. |
[51] | Smith C, Powell CR (1971) The summer fish communities of Brier Creek, Marshall County, Oklahoma. American Museum Novitates, 2458, 1-30. |
[52] | Tang FJ, Liu W, Wang JL, Li Z, Xie SG (2013) Diet composition and transition of clearhead icefish (Protosalanx hyalocranius) in Lake Xingkai. Zoological Research, 34, 493-498. (in Chinese with English abstract) |
[唐富江, 刘伟, 王继隆, 李哲, 谢松光 (2013) 兴凯湖大银鱼食物组成与食性转化. 动物学研究, 3, 493-498.] | |
[53] |
Thorp JH, Thoms MC, Delong MD (2006) The riverine ecosystem synthesis: Biocomplexity in river networks across space and time. River Research and Applications, 22, 123-147.
DOI URL |
[54] | Thorp J, Thoms M, Delong M (2015) The Riverine Ecosystem Synthesis: Toward Conceptual Cohesiveness in River Science. Elsevier, Amsterdam. |
[55] |
Townsend CR, Hildrew AG (1994) Species traits in relation to a habitat templet for river systems. Freshwater Biology, 31, 265-275.
DOI URL |
[56] | Troia MJ, Gido KB (2014) Towards a mechanistic understanding of fish species niche divergence along a river continuum. Ecosphere, 5, art41. |
[57] |
Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137.
DOI URL |
[58] |
Villéger S, Brosse S, Mouchet M, Mouillot D, Vanni MJ (2017) Functional ecology of fish: Current approaches and future challenges. Aquatic Sciences, 79, 783-801.
DOI URL |
[59] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[60] | Ward JV, Stanford JA (1995) The serial discontinuity concept: Extending the model to floodplain rivers. Regulated Rivers: Research & Management, 10, 159-168. |
[61] |
Winemiller KO, Rose KA (1992) Patterns of life-history diversification in North American fishes: Implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences, 49, 2196-2218.
DOI URL |
[62] |
Woodward FI, Cramer W (1996) Plant functional types and climatic change: Introduction. Journal of Vegetation Science, 7, 306-308.
DOI URL |
[63] | Wu J, Wu MS (1985) An investigation of fish resources about the Jinshajiang from Shigu to Yibin. Journal of the SouthwestTeachers College, (1), 80-87. (in Chinese with English abstract) |
[吴江, 吴明森 (1985) 关于金沙江石鼓到宜宾段鱼类资源的概况及其利用问题. 西南师范学院学报(自然科学版), (1), 80-87.] | |
[64] | Xiong M, Li J, Chen Y (2020) Runoff trend and natural driving force in the upper Jinsha River. Journal of Water Resources Research, 9, 14. (in Chinese with English abstract) |
[熊明, 李珏, 陈雅莉 (2020) 金沙江上游径流演变趋势及自然驱动力. 水资源研究, 9, 14.] | |
[65] | Yang HL, Shen L, He YF, Tian HW, Gao L, Wu JM, Mei ZG, Wei N, Wang L, Zhu TB, Hu FF, Gong JL, Du HC, Duan XB, Deng HT, Wang DQ, Zhu FY, Li YF, Wu F, Ru HJ, Zhang Y, Li JY, Yang JL, Zhou YT, Fang DD, Wang YP, Lin DQ, Yang YP, Li PJ, Liu SL, Yang J, Zhuang P, Wang SK, Zhang T, Yang G, Yang WB, Yuan LL, Cao K, Xu S, Liu HY, Liang ZQ, Wang CR, Li H, Yuan XP, Yang X, Fu YL, Zhang YP, Zhang HX, Tao ZY, Wang S, Gao XP, Jin BS, Li KM, Wang GJ, Jian SL, Li YQ, Xue CJ, Lei CY, Xue SW, Sun Y, Zhu B, Shao K, Hu XK, Xiong MH, Du J, He B, Yan T, Huang YY, Zou YC, Xie BW, Wang YM, Li B, Liu F, Zhang YY, Fan F, Wang ZJ, Huang J, Gu HR, Ge HL, Dan Y, Li Y, Wang SQ, Zhang C, Zhou L, Wang X, Zeng S, Xiang Y, He XG, Qin JH, Xia CX, Hou J, Shi YF, Gao LF, Zhu ZQ, Shen HB, Du Y, Duan XJ, Xiong JW, Yang DG, Liu SP, Ni ZH, Zhang H, Liu K, Zhao F, Li YR, Wang JW, Wei QW (2023) Status of aquatic organisms resources and their environments in the Yangtze River system (2017-2021). Journal of Fisheries of China, 47(2), 3-30. (in Chinese with English abstract) |
[杨海乐, 沈丽, 何勇凤, 田辉伍, 高雷, 吴金明, 梅志刚, 魏念, 王琳, 朱挺兵, 胡飞飞, 龚进玲, 杜红春, 段辛斌, 邓华堂, 王导群, 朱峰跃, 李云峰, 吴凡, 茹辉军, 张燕, 李君轶, 杨俊琳, 周运涛, 方冬冬, 王银平, 蔺丹清, 杨彦平, 李佩杰, 刘思磊, 杨健, 庄平, 王思凯, 张涛, 杨刚, 杨文波, 袁立来, 曹坤, 徐硕, 刘慧媛, 梁志强, 王崇瑞, 李鸿, 袁希平, 杨鑫, 傅义龙, 张燕萍, 章海鑫, 陶志英, 王生, 高小平, 金斌松, 李柯懋, 王国杰, 简生龙, 李英钦, 薛晨江, 雷春云, 薛绍伟, 孙昳, 朱滨, 邵科, 胡兴坤, 熊美华, 杜军, 何斌, 颜涛, 黄颖颖, 邹远超, 谢碧文, 王永明, 李斌, 刘飞, 张瑶瑶, 范飞, 王志坚, 黄静, 辜浩然, 葛海龙, 但言, 李燕, 王恕桥, 张闯, 周路, 王雪, 曾圣, 向燕, 何绪刚, 覃剑晖, 夏成星, 侯杰, 石义付, 高立方, 朱志强, 沈红保, 杜耘, 段学军, 熊嘉武, 杨德国, 刘绍平, 倪朝辉, 张辉, 刘凯, 赵峰, 李应仁, 王剑伟, 危起伟 (2023) 长江水生生物资源与环境本底状况调查(2017-2021). 水产学报, 47(2), 3-30.] | |
[66] | Yi BL (2011) Anthology of YI Bolu. Science Press, Beijing. (in Chinese) |
[易伯鲁 (2011) 易伯鲁文集. 科学出版社, 北京.] | |
[67] | Zhang TL, Li ZJ, Cao WX (2008) Advances in studies on the ecomorphology of fish. Journal of Fisheries of China, 32, 152-160. (in Chinese with English abstract) |
[张堂林, 李钟杰, 曹文宣 (2008) 鱼类生态形态学研究进展. 水产学报, 32, 152-160.] | |
[68] |
Zhang XH, Wang H, Wang SL, Wang RQ, Wang YT, Liu JA (2017) Factors affecting alien and native plant species richness in temperate nature reserves of northern China. Polish Journal of Ecology, 65, 320-333.
DOI URL |
[1] | 熊飞, 刘红艳, 翟东东, 段辛斌, 田辉伍, 陈大庆. 基于基因组重测序的长江上游瓦氏黄颡鱼群体遗传结构[J]. 生物多样性, 2023, 31(4): 22391-. |
[2] | 肖巍峰, 左绿荇, 杨文涛, 李朝奎. 基于地理环境相似度的长江经济带入侵物种虚拟负样本生成方法[J]. 生物多样性, 2023, 31(1): 22094-. |
[3] | 王东, 赛青高娃, 王子涵, 赵宏秀, 连新明. 长江源区同域分布兔狲、藏狐和赤狐的时空重叠度[J]. 生物多样性, 2022, 30(9): 21365-. |
[4] | 贺佳云, 张东, 储玲, 严云志. 人为干扰对溪流鱼类功能多样性及其纵向梯度格局的影响[J]. 生物多样性, 2021, 29(7): 927-937. |
[5] | 赵阳, 牛诚祎, 李雪健, 刘海波, 孙光, 罗遵兰, 赵亚辉. 跨流域调水背景下汉江流域洋县段的鱼类多样性及资源现状[J]. 生物多样性, 2021, 29(3): 361-372. |
[6] | 赵耀, 陈家宽. 长江流域农作物起源及其与生物多样性特征的关联[J]. 生物多样性, 2018, 26(4): 333-345. |
[7] | 宋志平, 陈家宽, 赵耀. 水稻驯化与长江文明[J]. 生物多样性, 2018, 26(4): 346-356. |
[8] | 秦声远, 戎俊, 张文驹, 陈家宽. 油茶栽培历史与长江流域油茶遗传资源[J]. 生物多样性, 2018, 26(4): 384-395. |
[9] | 吴凌云, 黄双全. 虫媒传粉植物荞麦的生物学特性与研究进展[J]. 生物多样性, 2018, 26(4): 396-405. |
[10] | 叶俊伟, 张云飞, 王晓娟, 蔡荔, 陈家宽. 长江流域林木资源的重要性及种质资源保护[J]. 生物多样性, 2018, 26(4): 406-413. |
[11] | 徐勇, 李新正, 王洪法, 张宝琳, 帅莲梅. 长江口邻近海域丰水季大型底栖动物群落特征[J]. 生物多样性, 2016, 24(7): 811-819. |
[12] | 刘晔, 朱鑫鑫, 沈泽昊, 孙航. 中国西南干旱河谷植被的区系地理成分与空间分异[J]. 生物多样性, 2016, 24(4): 367-377. |
[13] | 刘晔, 许玥, 石松林, 彭培好, 沈泽昊. 金沙江干旱河谷植物群落的数量分类及其结构分异的环境解释[J]. 生物多样性, 2016, 24(4): 407-420. |
[14] | 徐勇, 线薇微, 李文龙. 长江口及其邻近海域春季无脊椎动物群落时空变化[J]. 生物多样性, 2014, 22(3): 311-319. |
[15] | 孙莎莎, 唐文乔, 郭弘艺, 李辉华, 刘东, 周天舒, 陈浩洲, 沈林宏, 顾树信. 靖江沿岸秋季鱼类群聚的组成特点及其丰度生物量变化[J]. 生物多样性, 2013, 21(6): 688-698. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn