生物多样性 ›› 2024, Vol. 32 ›› Issue (4): 23410. DOI: 10.17520/biods.2023410
收稿日期:
2023-10-31
接受日期:
2024-01-17
出版日期:
2024-04-20
发布日期:
2024-03-06
通讯作者:
* E-mail: 基金资助:
Received:
2023-10-31
Accepted:
2024-01-17
Online:
2024-04-20
Published:
2024-03-06
Contact:
* E-mail: 摘要:
群落物种多度分布(species abundance distribution, SAD)是描述自然界生物群落中各物种间个体数量关系的定量方法, 也是群落物种多样性的一项主要研究内容。目前, 已提出了40余种SAD理论模型, 但该如何解读群落物种多样性, 学界内却很难达成一致。研究表明, 各类生物群落通常由极少的优势种和大量的稀有种组成。先前有研究运用SAD分形模型对近两万个群落样本的统计分析发现, 自然群落SAD最容易观测到的分布特征是1 : 1/2 : 1/3……, 并据此提出了SAD的一般性分布关系。虽然后续研究对该项研究进行过验证, 但对一般性分布关系和分形模型的探讨尚不够充分, 特别是对其内在机制的解读, 还要依靠更多学者提供想法, 找出问题, 逐步完善, 并最终形成共识。本文选取大西洋深海双壳类群落和全球农作物授粉昆虫群落为例, 基于拟合优度R2和分形参数p的统计分析(包括平均值、中值和频数分布), 对分形模型和一般性分布关系两方面内容进行了更为详细的检验和研究。结果表明: (1)分形模型对两类群落均有较好的拟合效果, 平均近70%样本(具体分别为85.5%和67.8%)的R2 > 0.8; (2)两组群落最常见的SAD都是1 : 1/2 : 1/3……, 这说明一般性分布关系可以得到包括深海贝类与授粉昆虫在内的多种生物群落的支持, 具有较强的普遍性意义。本研究拟通过分形模型和一般性分布关系的验证, 为学界提供值得思考和讨论的学术议题(如一般性分布关系的内在机制可能是什么), 为开拓群落物种多样性研究的新领域找到较为新颖的切入点。
中图分类号:
徐伟强, 苏强 (2024) 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例. 生物多样性, 32, 23410. DOI: 10.17520/biods.2023410.
Weiqiang Xu, Qiang Su (2024) Exploring the interplay of fractal model and species abundance distribution: A case study of shellfish and insect. Biodiversity Science, 32, 23410. DOI: 10.17520/biods.2023410.
图1 大西洋深海双壳类动物数据库(BDA)和雷丁大学作物授粉昆虫数据库(RCP)研究站位全球分布图
Fig. 1 Global distribution of research stations in Bivalvia of the Deep-sea Atlantic Database (BDA) and Reading University Crop Pollinator Database (RCP)
图2 雷丁大学作物授粉昆虫数据库(RCP)中群落样本未进行30 d时间间隔设定的分形参数p的频数分布
Fig. 2 Frequency distribution of the fractal p of community samples in Reading University Crop Pollinator Database (RCP) without a 30-day time interval post-sampling
图3 运用p模型对从大西洋深海双壳类动物数据库(BDA)和雷丁大学作物授粉昆虫数据库(RCP)中随机选取的4个自然群落的拟合结果
Fig. 3 The p-model fits four natural communities randomly selected from Bivalvia of the Deep-sea Atlantic Database (BDA) and Reading University Crop Pollinator Database (RCP)
数据库 Dataset | 最大值 Max. | 最小值 Min. | 中位值 Median | 平均值 Mean | 样本数量 No. of sample | 参考文献 References |
---|---|---|---|---|---|---|
BDA | 5.66 | 0.00 | 1.57 | 1.62 ± 0.66 | 242 | 本研究 This study |
RCP | 4.92 | 0.00 | 1.11 | 1.19 ± 0.58 | 926 | 本研究 This study |
BFD | 6.03 | 0.81 | 1.53 | 1.65 ± 0.03 | 1,265 | Gao & Su, |
DIN | 5.46 | 0.26 | 1.66 | 1.74 ± 0.01 | 2,402 | Gao & Su, |
DEV | 11.39 | 0.05 | 1.77 | 2.09 ± 0.02 | 2,179 | Gao & Su, |
DINC | 5.11 | 0.29 | 1.61 | 1.67 ± 0.02 | 602 | Gao & Su, |
Diatom | 5.83 | 0.34 | 1.27 | 1.34 ± 0.01 | 3,224 | Su, |
Fish | 4.56 | 0.76 | 1.59 | 1.70 ± 0.02 | 761 | Su, |
BBS | 2.38 | 0.55 | 0.94 | 0.98 ± 0.004 | 2,769 | Su, |
CBC | 3.74 | 0.73 | 1.49 | 1.56 ± 0.01 | 1,999 | Su, |
FIA | 2.23 | 0.24 | 0.91 | 0.93 ± 0.003 | 10,355 | Su, |
Gentry | 1.85 | 0.35 | 0.83 | 0.87 ± 0.02 | 222 | Su, |
MCDB | 3.27 | 0.50 | 1.55 | 1.59 ± 0.05 | 103 | Su, |
NABC | 3.11 | 0.54 | 1.24 | 1.28 ± 0.02 | 400 | Su, |
Total | 11.39 | 0.00 | 1.51 | 1.46 ± 0.10 | 27,449 |
表1 大西洋深海双壳类动物数据库(BDA)和雷丁大学作物授粉昆虫数据库(RCP)中参数p值计算结果及与先前研究中p值的比较
Table 1 Comparison of fractal p calculation results in Bivalvia of the Deep-sea Atlantic Database (BDA), Reading University Crop Pollinator Database (RCP) and previous studies
数据库 Dataset | 最大值 Max. | 最小值 Min. | 中位值 Median | 平均值 Mean | 样本数量 No. of sample | 参考文献 References |
---|---|---|---|---|---|---|
BDA | 5.66 | 0.00 | 1.57 | 1.62 ± 0.66 | 242 | 本研究 This study |
RCP | 4.92 | 0.00 | 1.11 | 1.19 ± 0.58 | 926 | 本研究 This study |
BFD | 6.03 | 0.81 | 1.53 | 1.65 ± 0.03 | 1,265 | Gao & Su, |
DIN | 5.46 | 0.26 | 1.66 | 1.74 ± 0.01 | 2,402 | Gao & Su, |
DEV | 11.39 | 0.05 | 1.77 | 2.09 ± 0.02 | 2,179 | Gao & Su, |
DINC | 5.11 | 0.29 | 1.61 | 1.67 ± 0.02 | 602 | Gao & Su, |
Diatom | 5.83 | 0.34 | 1.27 | 1.34 ± 0.01 | 3,224 | Su, |
Fish | 4.56 | 0.76 | 1.59 | 1.70 ± 0.02 | 761 | Su, |
BBS | 2.38 | 0.55 | 0.94 | 0.98 ± 0.004 | 2,769 | Su, |
CBC | 3.74 | 0.73 | 1.49 | 1.56 ± 0.01 | 1,999 | Su, |
FIA | 2.23 | 0.24 | 0.91 | 0.93 ± 0.003 | 10,355 | Su, |
Gentry | 1.85 | 0.35 | 0.83 | 0.87 ± 0.02 | 222 | Su, |
MCDB | 3.27 | 0.50 | 1.55 | 1.59 ± 0.05 | 103 | Su, |
NABC | 3.11 | 0.54 | 1.24 | 1.28 ± 0.02 | 400 | Su, |
Total | 11.39 | 0.00 | 1.51 | 1.46 ± 0.10 | 27,449 |
图4 大西洋深海双壳类动物数据库(BDA)和雷丁大学作物授粉昆虫数据库(RCP)中群落样本分形参数p频数分布
Fig. 4 The frequency distribution of the fractal p of community samples in Bivalvia of the Deep-sea Atlantic Database (BDA) and Reading University Crop Pollinator Database (RCP)
图5 大西洋深海双壳类动物数据库(BDA, n = 242)和雷丁大学作物授粉昆虫数据库(RCP, n = 926)中群落样本多样性指数频数分布
Fig. 5 The frequency distribution of diversity index of community samples in Bivalvia of the Deep-sea Atlantic Database (BDA, n = 242) and Reading University Crop Pollinator Database (RCP, n = 926)
[1] | Alexander JM, Diez JM, Hart SP, Levine JM (2016) When climate reshuffles competitors: A call for experimental macroecology. Trends in Ecology & Evolution, 31, 831-841. |
[2] | Allen JA (2008) Bivalvia of the deep Atlantic. Malacologia, 50, 57-173. |
[3] | Antão LH, Bates AE, Blowes SA, Waldock C, Supp SR, Magurran AE, Dornelas M, Schipper AM (2020) Temperature-related biodiversity change across temperate marine and terrestrial systems. Nature Ecology & Evolution, 4, 927-933. |
[4] | Arellano G, Umaña MN, Macía MJ, Loza MI, Fuentes A, Cala V, Jørgensen PM (2017) The role of niche overlap, environmental heterogeneity, landscape roughness and productivity in shaping species abundance distributions along the Amazon-Andes gradient. Global Ecology and Biogeography, 26, 191-202. |
[5] | Avolio ML, Komatsu KJ, Collins SL, Grman E, Koerner SE, Tredennick AT, Wilcox KR, Baer S, Boughton EH, Britton AJ, Foster B, Gough L, Hovenden M, Isbell F, Jentsch A, Johnson DS, Knapp AK, Kreyling J, Langley JA, Lortie C, McCulley RL, McLaren JR, Reich PB, Seabloom EW, Smith MD, Suding KN, Suttle KB, Tognetti PM (2021) Determinants of community compositional change are equally affected by global change. Ecology Letters, 24, 1892-1904. |
[6] | Baldridge E, Harris DJ, Xiao X, White EP (2016) An extensive comparison of species-abundance distribution models. PeerJ, 4, e2823. |
[7] | Baula IU, Azanza RV, Fukuyo Y, Siringan FP (2011) Dinoflagellate cyst composition, abundance and horizontal distribution in Bolinao, Pangasinan, Northern Philippines. Harmful Algae, 11, 33-44. |
[8] | Bedford BL, Walbridge MR, Aldous A (1999) Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology, 80, 2151-2169. |
[9] | Benitez J, Pizarro JC, Blazina AP, Lencinas MV (2021) Response of bird communities to native forest urbanization in one of the southernmost city of the world. Urban Forestry & Urban Greening, 58, 126887. |
[10] |
Brown JH (2014) Why are there so many species in the tropics? Journal of Biogeography, 41, 8-22.
PMID |
[11] | Cerezer FO, Almeida de Azevedo R, Nascimento MAS, Franklin E, de Morais JW, de Sales Dambros C (2020) Latitudinal gradient of termite diversity indicates higher diversification and narrower thermal niches in the tropics. Global Ecology and Biogeography, 29, 1967-1977. |
[12] | Connolly S, Dornelas M (2011) Fitting and empirical evaluation of models for species abundance distributions. In: Biological Diversity: Frontiers in Measurement and Assessment (eds MagurranAE, McGill BJ), pp. 123-140. Oxford University Press, Oxford. |
[13] | Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12, 42-58. |
[14] | Frontier S (1985) Diversity and structure in aquatic ecosystems. In: Oceanography and Marine Biology: An Annual Review (ed. Rnes M), pp. 253-312. Aberdeen University Press, Aberdeen. |
[15] | Frontier S (1987) Applications of fractal theory to ecology. In: Develoments in Numerical Eecology (eds. Legendre P, Legendre L), pp. 335-378. Springer-Verlag, Berlin |
[16] | Frontier S (1994) Species diversity as a fractal property of biomass. In: Fractals in the Natural and Applied Sciences (ed. Novak M), pp. 119-127. North-Holland Publishing, Amsterdam. |
[17] |
Gao JF, Su Q (2021) Verification and discussion on fractal model and the general pattern on species abundance in community. Advances in Earth Science, 36, 625-631. (in Chinese with English abstract)
DOI |
[高俊峰, 苏强 (2021) 群落物种多度的分形模型和一般性分布规律的验证与探讨. 地球科学进展, 36, 625-631.]
DOI |
|
[18] | Gao JF, Su Q (2022a) A comprehensive analysis of the relationship between temperature and species diversity: The case of planktonic foraminifera. Frontiers in Marine Science, 9, 1069276. |
[19] | Gao JF, Su Q (2022b) A multi-level exploration of the relationship between temperature and species diversity: Two cases of marine phytoplankton. Ecology and Evolution, 12, e9584. |
[20] | Gao JF, Su Q (2023) The relationship between inorganic nutrients and diversity of dinoflagellate cysts: An evaluation from the perspective of species abundance distribution. Frontiers in Marine Science, 9, 1089331. |
[21] | Hill MO (1973) Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427-432. |
[22] | Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93, 145-159. |
[23] | Lee-Yaw JA, McCune JL, Pironon S, Sheth SN (2022) Species distribution models rarely predict the biology of real populations. Ecography, 16, e05877. |
[24] | Li H, Chen YX, Yu GL, Rossi F, Huo D, de Philippis R, Cheng XL, Wang WB, Li RH (2021) Multiple diversity facets of crucial microbial groups in biological soil crusts promote soil multifunctionality. Global Ecology and Biogeography, 30, 1204-1217. |
[25] | Loke LHL, Chisholm RA (2023) Unveiling the transition from niche to dispersal assembly in ecology. Nature, 618, 537-542. |
[26] | Ma KM (2003) Advances of the study on species abundance pattern. Acta Phytoecologica Sinica, 27, 412-426. (in Chinese with English abstract) |
[马克明 (2003) 物种多度格局研究进展. 植物生态学报, 27, 412-426.]
DOI |
|
[27] | Ma KP (1994) Measurement of biotic community diversity. I. Measurement of α diversity (Part 1). Chinese Biodiversity, 2, 162-168. (in Chinese) |
[马克平 (1994) 生物群落多样性的测度方法. I. α多样性的测度方法(上). 生物多样性, 2, 162-168.] | |
[28] | Ma KP, Liu YM (1994) Measurement of biotic community diversity. I. Measurement of α diversity (Part 2). Chinese Biodiversity, 2, 231-239. (in Chinese) |
[马克平, 刘玉明 (1994) 生物群落多样性的测度方法. I. α多样性的测度方法(下). 生物多样性, 2, 231-239.] | |
[29] | MacArthur RH (1957) On the relative abundance of bird species. Proceedings of the National Academy of Sciences, USA, 43, 293-295. |
[30] | Mandelbrot B (1953) An informational theory of the statistical structure of language. Communication Theory, 84, 486-502. |
[31] | Matthews TJ, Whittaker RJ (2015) On the species abundance distribution in applied ecology and biodiversity manage- ment. Journal of Applied Ecology, 52, 443-454. |
[32] | McClain CR (2021) The commonness of rarity in a deep-sea taxon. Oikos, 130, 863-878. |
[33] | McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, Dornelas M, Enquist BJ, Green JL, He FL, Hurlbert AH, Magurran AE, Marquet PA, Maurer BA, Ostling A, Soykan CU, Ugland KI, White EP (2007) Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 10, 995-1015. |
[34] |
Passy SI, Larson CA, Jamoneau A, Budnick W, Heino J, Leboucher T, Tison-Rosebery J, Soininen J (2018) Biogeographical patterns of species richness and abundance distribution in stream diatoms are driven by climate and water chemistry. The American Naturalist, 192, 605-617.
DOI PMID |
[35] | Pielou EC (1975) Ecological Diversity. Wiley, New York. |
[36] | Preston FW (1948) The commonness, and rarity, of species. Ecology, 29, 254-283. |
[37] |
Rinas CL, McMullin RT, Rousseu F, Vellend M (2023) Diversity and assembly of lichens and bryophytes on tree trunks along a temperate to boreal elevation gradient. Oecologia, 202, 55-67.
DOI PMID |
[38] | Sankaran M, McNaughton SJ (1999) Determinants of biodiversity regulate compositional stability of communities. Nature, 401, 691-693. |
[39] | Senapathi D (2021) Temporal Variation in Global Crop Pollinator Communities. University of Reading. http://dx.doi.org/10.17864/1947.291/. (accessed on 2023-05-30) |
[40] | Senapathi D, Fründ J, Albrecht M, Garratt MPD, Kleijn D, Pickles BJ, Potts SG, An JD, Andersson GKS, Bänsch S, Basu P, Benjamin F, Bezerra ADM, Bhattacharya R, Biesmeijer JC, Blaauw B, Blitzer EJ, Brittain CA, Carvalheiro LG, Cariveau DP, Chakraborty P, Chatterjee A, Chatterjee S, Cusser S, Danforth BN, Degani E, Freitas BM, Garibaldi LA, Geslin B, de Groot GA, Harrison T, Howlett B, Isaacs R, Jha S, Klatt BK, Krewenka K, Leigh S, Lindström SAM, Mandelik Y, McKerchar M, Park M, Pisanty G, Rader R, Reemer M, Rundlöf M, Smith B, Smith HG, Silva PN, Steffan-Dewenter I, Tscharntke T, Webber S, Westbury DB, Westphal C, Wickens JB, Wickens VJ, Winfree R, Zhang H, Klein AM (2021) Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 288, 20210212. |
[41] |
Smith MD, Koerner SE, Avolio ML, Komatsu KJ, Eby S, Forrestel EJ, Collins SL, Wilcox KR, Ahumada R, Morgan JW, Oliva G, Oñatibia GR, Overbeck GE, Peter G, Quiroga E, Sankaran M, Wu JS, Yahdjian L, Yu Q (2022) Richness, not evenness, varies across water availability gradients in grassy biomes on five continents. Oecologia, 199, 649-659.
DOI PMID |
[42] |
Su Q (2015) Analyzing fractal property of species abundance distribution in a community. Advances in Earth Science, 30, 1144-1150. (in Chinese with English abstract)
DOI |
[苏强 (2015) 群落物种多度格局的分形解析. 地球科学进展, 30, 1144-1150.]
DOI |
|
[43] |
Su Q (2016) Analyzing fractal property of species abundance distribution and diversity indexes. Journal of Theoretical Biology, 392, 107-112.
DOI PMID |
[44] | Su Q (2018) A general pattern of the species abundance distribution. PeerJ, 6, e5928. |
[45] | Tang ZY, Qiao XJ, Fang JY (2009) Species-area relationship in biological communities. Biodiversity Science, 17, 549-559. (in Chinese with English abstract) |
[唐志尧, 乔秀娟, 方精云 (2009) 生物群落的种-面积关系. 生物多样性, 17, 549-559.]
DOI |
|
[46] | Thein MM, Wu LM, Corlett RT, Quan RC, Wang B (2021) Changes in seed predation along a 2300-m elevational gradient on a tropical mountain in Myanmar: A standardized test with 32 non-native plant species. Ecography, 44, 602-611. |
[47] | Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493. |
[48] | Tokeshi M (1993) Species abundance patterns and community structure. Advances in Ecological Research, 24, 111-186. |
[49] | Ulrich W, Ollik M, Ugland KI (2010) A meta-analysis of species-abundance distributions. Oikos, 119, 1149-1155. |
[50] |
Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301.
DOI PMID |
[51] | Wang QY (2006) Comparison between estimated standard error and coefficient of determination of regression. Statistics and Decision, 23, 141-141. (in Chinese) |
[王巧英 (2006) 回归估计标准误差与可决系数的比较. 统计与决策, 23, 141-141.] | |
[52] |
Yang QC, Zhang HH, Wang LH, Ling F, Wang ZX, Li TT, Huang JL (2021) Topography and soil content contribute to plant community composition and structure in subtropical evergreen-deciduous broadleaved mixed forests. Plant Diversity, 43, 264-274.
DOI |
[53] |
Zhang S, Lin F, Yuan ZQ, Kuang X, Jia SH, Wang YY, Suo YY, Fang S, Wang XG, Ye J, Hao ZQ (2015) Herb layer species abundance distribution patterns in different seasons in an old-growth temperate forest in Changbai Mountain, China. Biodiversity Science, 23, 641-648. (in Chinese with English abstract)
DOI |
[张姗, 蔺菲, 原作强, 匡旭, 贾仕宏, 王芸芸, 索炎炎, 房帅, 王绪高, 叶吉, 郝占庆 (2015) 长白山阔叶红松林草本层物种多度分布格局及其季节动态. 生物多样性, 23, 641-648.]
DOI |
|
[54] | Zillio T, Condit R (2007) The impact of neutrality, niche differentiation and species input on diversity and abundance distributions. Oikos, 116, 931-940. |
[1] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[2] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[3] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[4] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[5] | 刘彩莲, 张雄, 樊恩源, 王松林, 姜艳, 林柏岸, 房璐, 李玉强, 刘乐彬, 刘敏. 中国海域海马的物种多样性、生态特征及保护建议[J]. 生物多样性, 2024, 32(1): 23282-. |
[6] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[7] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[8] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[9] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[10] | 钟欣艺, 赵凡, 姚雪, 吴雨茹, 许银, 鱼舜尧, 林静芸, 郝建锋. 三星堆遗址城墙不同维护措施下草本植物物种多样性与土壤抗冲性的关系[J]. 生物多样性, 2023, 31(8): 23169-. |
[11] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
[12] | 邓婷婷, 魏岩, 任思远, 祝燕. 北京东灵山暖温带落叶阔叶林地形和林分结构对林下草本植物物种多样性的影响[J]. 生物多样性, 2023, 31(7): 22671-. |
[13] | 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响[J]. 生物多样性, 2023, 31(6): 22518-. |
[14] | 陈晓澄, 张鹏展, 康斌, 刘林山, 赵亮. 基于中国科学院西北高原生物研究所馆藏标本分析青藏高原雀形目鸟类物种和功能多样性[J]. 生物多样性, 2023, 31(5): 22638-. |
[15] | 肖媛媛, 冯薇, 乔艳桂, 张宇清, 秦树高. 固沙灌木林地土壤微生物群落特征对土壤多功能性的影响[J]. 生物多样性, 2023, 31(4): 22585-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn